Информационная поддержка школьников и студентов
Поиск по сайту

История экг. История электрокардиографов: от солевых ванн до карманных ЭКГ. ЭКГ при нарушениях функции проводимости

Электрические явления в сердце были обнаружены и подробно описаны Сеченовым. Это произошло во второй половине XIX века. В течение десяти лет после открытия самого явления шла разработка нужного прибора для записи импульсов. В 1873 году появился электромер, который позволил получать больше информации при обследованиях сердца.

Совершенствование оборудования

Электромер спустя еще 15 лет мог уже записывать электрическую активность миокарда. Далее ученые занялись теоретическими выкладками и записали основные положения электрокардиографии. Без теории невозможно было развивать саму сферу исследований.

В конце XIX века появилось понятие электрической оси сердца, а сам орган был представлен, как двухполярный (имеющий равные противоположные заряды). Первый электрокардиограф был создан, впрочем, не на основе электромера. Электромер использовался для диагностики первых потенциалов. Прибор для ЭКГ создали на основе струнного гальванометра. Система работала следующим образом.

Электрический ток, который шел от поверхности тела по электродам, проходил через чувствительную кварцевую нить, которая находилась в магнитном поле. Нить под воздействием тока вибрировала. Тень нити фиксировалась оптикой, полученные данные подавались на экран. Это устройство сложно было назвать совершенным. Оно явно было недоработанным и могло дать сбой. Однако именно такая система позволила сделать в электрокардиографии первый шаг.

Изобретатель громоздкого кардиографа весом 270 кг Эйнтховен сделал огромный вклад в развитие кардиографии. Даже такое понятие, как стандартные отведения, появилось благодаря ему.

Современные аппараты

Электрокардиографы современного образца используют не фотопленку, а специальную термическую пленку для печати кривой. Причем данные сначала поступают в электронном виде и сохраняются, позже их можно распечатать, если в этом возникнет необходимость. Оборудование стало более компактным, поэтому его используют даже для диагностики на выезде, например, пациентам могут сделать электрокардиограмму в машинах скорой помощи.

Кроме того, аппарат позволяет в пути отслеживать ритм сердца пациента. Устройства нового поколения появились благодаря развитию науки, появлению новых технологий и материалов. Принцип работы прибора при этом никак не изменился. В некоторых приборах только появились новые функции.

Показания к диагностике

Электрокардиограф диагностирует не только заболевания сердца. С помощью аппарата можно выявить:

  • аритмию;
  • ишемическую болезнь;
  • нарушение проводимости;
  • тромбоэмболию легочной артерии;
  • стенокардию;
  • тахикардию;
  • сердечную аневризму;
  • брадикардию;
  • явление экстрасистолии;
  • миокардит и перикардит;
  • миокардиодистрофию.

Современные аппараты стали более компактными и многофункциональными

Это далеко не полный список заболеваний, которые можно диагностировать с помощью ЭКГ. В некоторых случаях после ЭКГ пациента направляют на более детальное обследование с помощью других методов. Важно учесть, что аппарат не позволяет выявлять опухоли сердца, шумы и пороки в стандартных условиях диагностики. Однако при использовании метода исследования под нагрузкой, а также при суточных исследованиях врач может выявить заболевания.

После такого исследования проводятся другие методы диагностики заболеваний, которые позволяют увидеть орган. Во время суточного ЭКГ весь получаемый массив информации передается на компьютер. Благодаря современным технологиям данные можно быстро и эффективно анализировать.

За предоставленный материал выражаем благодарность сайту sonomedica.ru

Введение

В связи с ухудшением экологической обстановки, увеличением количества стрессов, неправильного питания и других пагубных факторов очень остро встала проблема сердечно-сосудистых заболеваний. Причем масштабы проблемы очень велики: по данным Минздрава Российской Федерации -- около трети населения России в той или иной мере страдают заболеваниями, связанными с нарушением работы сердечно-сосудистой системы. Очень важно выявлять отклонения от нормы на ранней стадии развития -- тогда лечение заболевания в большинстве случаев не составляет особой сложности, и позволяет человеку поправить свое здоровье не отрываясь от повседневной деятельности. Поэтому все чаще требуются системы быстрой диагностики, в том числе и диагностики сердца.

На сегодняшний день одним из самых распространенных методов диагностики и распознавания сердечно-сосудистых заболеваний является электрокардиография. Сигнал ЭКГ характеризуется набором зубцов, по временным и амплитудным параметрам которых ставится диагноз. До недавнего времени процедуру нахождения характеристик зубцов выполнял врач-кардиолог, использую при этом только чертежные принадлежности. Такая схема достаточно проста и надежна, но требует много времени, и она работала в течении долгого времени из-за отсутствия альтернативных подходов к решению данной задачи.

С развитием компьютеров стали появляться специализированные комплексы, позволяющие выявлять сердечные заболевания, на основе автоматизированного анализа временных параметров ЭКГ. На сегодняшний день известны разработки фирм MedIT, Innomed Medical Co. Ltd. и другие.

В то же время, в нашей стране технический уровень специалистов достаточно высок, чтобы разработать собственный аналог подобных комплексов, стоящий при этом дешевле западных.

Электрокардиография

Электрокардиография - метод записи электрических потенциалов, сопровождающих работу сердца. К специальному регистрирующему аппарату (электрокардиографу) присоединяются электроды, другой конец которых крепится к конечностям пациента или размещается на его грудной клетке; собственно запись электрических потенциалов, сопровождающих работу сердца, называется электрокардиограммой (ЭКГ).

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) (рис.1) -- графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

Рис.1

История

электрокардиография сердце ритм фурье кардиомонитор

В XIX веке стало ясно, что сердце во время своей работы производит некоторое количество электричества. Первые электрокардиограммы были записаны Габриелем Липпманом с использованием ртутного электрометра. Кривые Липпмана имели монофазный характер, лишь отдалённо напоминая современные ЭКГ.

Опыты продолжил Виллем Эйнтховен, сконструировавший прибор (струнный гальванометр), позволявший регистрировать истинную ЭКГ. Он же придумал современное обозначение зубцов ЭКГ и описал некоторые нарушения в работе сердца. В 1924 году ему присудили Нобелевскую премию по медицине.

Первая отечественная книга по электрокардиографии вышла под авторством русского физиолога А. Самойлова в 1909 г. (Электрокардиограмма. Йенна, изд-во Фишер).

Применение

· Определение частоты и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений -- аритмии).

· Показывает острое или хроническое повреждение миокарда (инфаркт миокарда, ишемия миокарда).

· Может быть использована для выявления нарушений обмена калия, кальция, магния и других электролитов.

· Выявление нарушений внутрисердечной проводимости (различные блокады).

· Метод скрининга при ишемической болезни сердца, в том числе и при нагрузочных пробах.

· Даёт понятие о физическом состоянии сердца (гипертрофия левого желудочка).

· Может дать информацию о внесердечных заболеваниях, таких как тромбоэмболия лёгочной артерии.

· В определённом проценте случаев может быть абсолютно неинформативна.

· Позволяет удалённо диагностировать острую кардиальную патологию (инфаркт миокарда, ишемия миокарда) с помощью кардиофона.

Прибор

Как правило, электрокардиограмма записывается на термобумаге. Полностью электронные приборы позволяют сохранять ЭКГ в компьютере. Скорость движения бумаги составляет обычно 25мм/с. В некоторых случаях скорость движения бумаги устанавливают на 12,5мм/с, 50мм/с или 100мм/с. В начале каждой записи, регистрируется контрольный милливольт. Обычно его амплитуда составляет 10мм/мВ.

Как проводится ЭКГ

ЭКГ является записью электрической активности сердца. Запись производится с поверхности тела пациента (верхние и нижние конечности и грудная клетка).

Наклеиваются электроды (10 штук) или используются специальные присоски и манжеты. Снятие ЭКГ занимает 5-10 минут.

ЭКГ регистрируют на различной скорости. Обычно скорость движения бумаги составляет 25 мм/сек. При этом 1 мм кривой равен 0, 04 сек. Иногда для более детальной записи используют скорость 50 и даже 100 мм/сек. При длительной регистрации ЭКГ для экономии бумаги используют меньшую скорость - от 2,5 до 10 мм/сек.

История кардиографии и ЭКГ начинается со знаменитого опыта Гальвани , установившего в 1786 году наличие электрических явлений в организме животного, возникающих при мышечном движении.

Гельмгольц в 1854 году показал, что каждая точка мышцы в момент своего возбуждения заряжается электроотрицательно относительно к участкам мышцы, находящихся в покое. Таким образом, впереди волны сокращения распространяется электроотрицательная волна.

Уоллер в 1875 год впервые зарегистрировал токи действия обнаженных сердец животных, а затем (1887г) и сердце человека. В отличие от электрограммы сердца, полученной непосредственной с обнаженного сердца животных, электрограмму, полученную с поверхности тела человека стали называть ЭКГ. Она в тот время имела всего 3 зубца, напоминающие Р, R и Т современной ЭКГ. Уоллер пришел к выводу, что верхушка сердца во время систолы положительно заряжена, а основание – отрицательно. Линия, соединяющая эти два полюса, была названа им электрической осью сердца.

Крупным событием в истории ЭКГ было применение сконструированного голландским ученым Эйнтховеном струйного гальванометра (1903г). ЭКГ уже состояла из 5 зубцов и напоминала современную запись.

Эйнтховеном был разработан классический метод отведений токов действия сердца от конечностей, который до сих пор применяется в клинической практике (система треугольника).

Совместно с сотрудниками Фаром и Ваартом предложил метод определения направления ЭОС. Им же было установлено математическое взаимодействие зубцов ЭКГ в трех классических отведениях.

Впервые теорию об ЭКГ как следствии интерференции суммарных токов действия правого и левого желудочков разработал основоположник отечественной клинической электрокардиографии В.Ф.Зеленин (1910г), задолго до Льюиса, блестяще подтвердившего ее экспериментально.

Льюис (1916г) экспериментально установил последовательность и время распространения возбуждения в различных отделах миокарда желудочков. Впервые введено понятие об электрическом векторе сердца.

В 1942 году Гольдберг предложил усиленные однополюсные отведения:

avR, avL, avF – augmented – увеличение, v – вольтаж.


Со­став­ные эле­мен­ты нор­маль­ной элек­т­ро­кар­дио­грам­мы

Зубцы ЭКГ. Сегменты и интервалы ЭКГ.

К составным элементам ЭКГ относятся: зубцы, интервалы, сегменты, комплексы. Они отражают процессы распространения возбуждения по различным отделам миокарда и его угасание.

Зубцы ЭКГ – это значимое отклонение кривой ЭКГ вверх или вниз от изоэлектрической линии. Зубцы обозначаются буквами латинского алфавита. Их названия: P, Q, R, S, T, U. Самый высокий из них – зубец R, самый низкий – зубец P.

Форма, величина и направление зубцов ЭКГ в разных отведениях определяются величиной и направлением проекции суммарного вектора ЭДС отделов миокарда на ось того или иного отведения.

Если вектор ЭДС направлен в сторону положительного (активного) электрода и проецируется на положительную часть оси отведения, регистрируются положительные зубцы (зубцы, направленные вверх). Всегда положителен зубец R, преимущественно положительны зубцы P,T.

Если вектор ЭДС направлен в сторону отрицательного электрода и проецируется на отрицательную часть оси отведения, регистрируются отрицательные зубцы (зубцы, направленные вниз). Всегда отрицательны зубцы Q, S.

Если вектор ЭДС перпендикулярен к оси отведения, зубцы на ЭКГ не регистрируются.

Если в течение распространения возбуждения по какому-то отделу миокарда вектор меняет свое направление по отношению к полюсам электродов, регистрируется двухфазный зубец. Двухфазными могут быть зубцы P и T в некоторых отведениях.

Интервалы ЭКГ – это временны е элементы, обозначающиеся двумя буквами соответственно зубцам, между которыми они регистрируются. К интервалам ЭКГ относятся:

PQ – от начала зубца Р до начала зубца Q (R).

QRS – от начала зубца Q (R) до конца зубца S (R).

QRST – от начала зубца Q (R) до конца зубца Т.

RR – между вершинами зубцов R в соседних сердечных циклах.

Изолиния регистрируется на ЭКГ, если разность потенциалов между возбужденным и невозбужденным участками миокарда равна «0» или очень мала (например, предсердия возбуждены полностью, а желудочки только в начальной фазе возбуждения; желудочки возбуждены полностью, а угасание возбуждения еще не началось или находится в начальной фазе), или, если сердце находится в состоянии покоя (диастола).

Сегменты ЭКГ – это отрезки кривой ЭКГ, находящиеся на уровне изоэлектрической линии или близко к ней. Обозначаются двумя буквами, соответственно зубцам, между которыми они регистрируются. К сегментам ЭКГ относятся:

PQ – от конца зубца Р до начала зубца Q (R) (не путать с интервалом PQ !!).

ST – от конца зубца S (R) до начала зубца Т.

ТР – от конца зубца Т до начала зубца Р следующего сердечного цикла.

Комплексы ЭКГ – это сложные элементы ЭКГ, включающие от одного до нескольких зубцов, интервалы, сегменты. Обозначаются соответственно зубцам, которые в них входят. К комплексам ЭКГ относятся следующие.

Зубец Р (предсердный комплекс) – отражает процесс возбуждения предсердий.

Комплекс QRS (начальная часть желудочкового комплекса) – отражает процесс возбуждения желудочков. Включает от 1 до 3 зубцов.

Комплекс QRST (желудочковый комплекс) – отражает процесс возбуждения и угасания возбуждения желудочков (электрическая систола желудочков). Состоит из комплекса QRS, сегмента ST и зубца Т.

Зубец Р ЭКГ (предсердный комплекс) отражает внутрипредсердную проводимость и процесс деполяризации (охват возбуждением) предсердий. Начальная, восходящая часть (до вершины) отражает возбуждение правого предсердия; вершина и часть нисходящей кривой отражает возбуждение и правого, и левого предсердий; конечная часть – только левого предсердия. Фаза реполяризации предсердий (предсердный зубец Т) на ЭКГ не регистрируется, т.к. сливается с комплексом QRS.

Сегмент PQ отражает распространение возбуждения по АВ-соединению, по пучку Гиса и его разветвлениям. Величина разности потенциалов при этом очень мала, поэтому на ЭКГ регистрируется изоэлектрическая линия.

Интервал PQ отражает процесс деполяризации (охват возбуждением) предсердий и распространение возбуждения по атрио-вентрикулярному соединению, пучку Гиса и его разветвлениям с задержкой волны возбуждения в АВ-узле и АВ-соединении.

Комплекс QRS (начальная часть желудочкового комплекса) отражает внутрижелудочковую проводимость и охват возбуждением желудочков (деполяризация желудочков).

Наличие 3-х зубцов, имеющих различное направление, в желудочковом комплексе QRS определяется последовательной сменой 3-х фаз распространения возбуждения по желудочкам и изменением ориентации 3-х главных суммарных моментных векторов. Это в свою очередь приводит к изменению величины и направления проекции главных векторов на оси отведений, что отражается регистрацией последовательных зубцов QRS желудочкового комплекса.

Зубец Q соответствует первому начальному главному вектору. Он отражает деполяризацию межжелудочковой перегородки, начиная со средней ее трети и субэндокардиальной части верхушки правого желудочка. Начальный моментный вектор ориентирован слева направо и несколько вверх, он малой величины и в большинстве отведений проецируется на отрицательные части осей отведений, поэтому на ЭКГ регистрируется непостоянный небольшой отрицательный зубец Q.

Зубец R соответствует среднему главному моментному вектору. Он отражает распространение возбуждения по миокарду правого и левого желудочков, кроме базальных отделов.

Средний главный моментный желудочковый вектор ориентирован справа налево и вниз, в сторону левого желудочка. Он большой величины и проецируется на положительные части осей большинства отведений, поэтому на ЭКГ регистрируются высокие положительные зубцы R.

Зубец S соответствует конечному главному моментному вектору. Он отражает деполяризацию базальных (верхних) отделов межжелудочковой перегородки и желудочков. Ориентация конечного вектора подвержена колебаниям. Чаще он ориентирован вверх, вправо и назад и проецируется на отрицательную часть большинства осей отведений. Поэтому на ЭКГ регистрируется непостоянный вариабельный отрицательный зубец S.

Интервал QRS отражает продолжительность проведения возбуждения по миокарду желудочков.

Интервал внутреннего отклонения – это время, соответствующее периоду от начала возбуждения желудочка до момента охвата возбуждением максимального количества его мышечных волокон. Показатель даёт представление о продолжительности активации правого (V 1) и левого (V 6) желудочков.

Сегмент ST отражает период полного охвата возбуждением обоих желудочков, когда разность потенциалов отсутствует, и период начальной, ранней реполяризации, когда возникающая ЭДС очень мала. Поэтому допускается небольшое смещение сегмента ST от изоэлектрической линии.

Зубец Т отражает процесс быстрой конечной реполяризации миокарда желудочков.

Зубец U регистрируется редко, окончательно его происхождение не выяснено. Предполагается, что он отражает реполяризацию волокон проводящей системы сердца. Чаще регистрируется в V 2 , V 3 , реже в V 4 -V 6 .

Интервал QRST отражает продолжительность электрической систолы желудочков.

Сегмент ТР соответствует фазе диастолы, когда восстанавливается поляризация мембраны клеток миокарда, последние находятся в невозбужденном состоянии (состояние покоя), разность потенциалов отсутствует. На ЭКГ регистрируется изоэлектрическая линия.

Интервал RR отражает продолжительность сердечного цикла и включает продолжительность предсердного (зубец Р) и желудочкового (QRST) комплексов, сегмента PQ и электрической диастолы сердца (сегмент ТР). Строго говоря, продолжительность сердечного цикла отражает интервал РР, который измеряется от начала зубца Р одного сердечного цикла до начала зубца Р следующего за ним цикла. Однако, на практике принято измерять интервал RR, который соответствует интервалу РР.


Анализ и характеристика

элементов электрокардиограммы

1. Оценка техники записи ЭКГ

1.1. Скорость движения ленты. Большинство современных электрокардиографов могут регистрировать ЭКГ с различной скоростью движения ленты: 12,5, 25, 50, 75 и 100 мм/с. При большой скорости (>50 мм/сек) ЭКГ выглядит растянутой с закруглёнными вершинами зубцов, при медленной – наоборот, наблюдается сближение заострённых зубцов ЭКГ, а амплитуда их кажется увеличенной. Как правило, при записи ЭКГ используют скорость 50 и 25 мм/с. Первая используется наиболее часто в повседневной практике, а вторая необходима при регистрации ЭКГ на длинную ленту при выявлении и анализе аритмий или при длительном ЭКГ-наблюдении. Скорость движения регистрируется на ленте ниже записи электрокардиограммы. При скорости 50 мм/с цена деления в 1 мм на ленте соответствует временному отрезку 0,02 с, при скорости 25 мм/с – 0,04 с.

1.2. Помехи при регистрации ЭКГ (наводные токи, дрейф изолинии из-за плохого контакта электродов с кожей и др.). Если помехи значительны, ЭКГ следует переснять.

1.3. Проверка контрольного милливольта. Для стандартизации зубцов ЭКГ ориентиром является контрольный милливольт – амплитуда калибровочного сигнала. При записи ЭКГ стандартное напряжение на входе составляет 1 милливольт (1 мВ), что соответствует отклонению осциллографа в 10 мм. Контрольный милливольт регистрируется на ленте после или перед записью ЭКГ, ли­бо ни­же ЭКГ записывается цифрами. При многоканальной записи ЭКГ одновременно регистрируется в нескольких отведениях. Нередко возникает ситуация, когда зубцы S и R в соседних отведениях наслаиваются друг на друга, тогда ЭКГ регистрируют с напряжением, уменьшенным до 0,5 мВ (5 мм).

Вид ЭКГ при разной величине контрольного милливольта

а) 10 мм/мВ

2. Измерение элементов ЭКГ

Постоянная скорость движения ленты и миллиметровая сетка на бумаге позволяют измерить продолжительность интервалов и амплитуду зубцов ЭКГ.

2.1. Определение продолжительности зубцов, интервалов, комплексов ЭКГ. Продолжительность измеряется на уровне изоэлектрической линии в том отведении от конечностей, в котором чётко выражены зубцы, являющиеся границами элементов (чаще всего во II стандартном), и выражается в секундах. Для этого необходимо количество миллиметровых клеточек умножить на 0,02 с при скорости движения ленты 50 мм/с или на 0,04 с - при скорости 25 мм/с.

2.2. Определение амплитуды (высоты, глубины) зубцов ЭКГ. Амплитуда зубцов расстояние в мм от вершины зубца до изоэлектрической линии.

2.3. Определение вольтажа ЭКГ. Так как наиболее высокими зубцами ЭКГ являются зубцы комплекса QRS, то имен­но на их амплитуду ориентируются, определяя вольтаж ЭКГ. При оценке вольтажа важно помнить о проверке контрольного милливольта (см. п. 1.2.). Измеряют амплитуду комплекса QRS от вершины зубца R до вершины зубца S в стандартных и грудных отведениях (оценку вольтажа см. в п. 6.3.5.).

3. Анализ сердечного ритма

Анализ сердечного ритма предусматривает:

Определение регулярности сердечных сокращений,

Определение водителя ритма,

Подсчёт частоты сердечных сокращений.

3.1. Определение регулярности сердечного ритма.

Регулярность сердечного ритма оценивается при сравнении продолжительности интерва­лов RR (РР) между последовательными сердечны­ми циклами. Если они близки (в пределах ±10% от средней продолжительности RR), сердечный ритм считается правильным (регулярным) . В противном случае ритм считается неправильным (нерегулярным) и следует идентифицировать аритмию.

3.2. Определение водителя ритма.

Для определения водителя ритма на ЭКГ необходимо оценить последовательность возбуждения отделов сердца: при синусовом номотопном ритме возбуждение предсердий предшествует возбуждению желудочков, поэтому в большинстве отведений (особенно в I, II, aVF, V 4 -V 6) зубцы Р положительные и регистрируются перед каждым комплексом QRS. Кроме того, зубцы Р имеют нормальную форму и ширину, и располагаются на одинаковом расстоянии от комплекса QRS (постоянный интервал PQ) в одном и том же отведении. При отсутствии этих признаков диагностируются различные варианты несинусового ритма : предсердный, желудочковый ритмы, ритм из AV-соединения и др. (эктопические, гетеротопные ритмы ).

3.3. Подсчёт частоты сердечных сокращений.

При правильном ритме проводится подсчёт продолжительности одного сердечного цикла (интервал RR в с), а далее выясняют, сколько таких циклов укладывается в 1 минуту (60 с), т.е.ЧСС = 60/ RR. Или можно воспользоваться специальной таблицей (таблица 1 приложений), в которой каждому значению RR (в с) соответствует заранее вычисленная ЧСС. Можно подсчитать и приблизительно: 600 разделить на количество больших клеток (5 мм) между RR. В случае небольшой синусовой аритмии подсчитывают среднюю цифру ЧСС по продолжительности нескольких (от 5 до 10) сердечных циклов. При выраженной синусовой аритмии определяют максимальную и минимальную ЧСС по продолжительности наибольшего и наименьшего RR. В заключении указывается два показателя ЧСС. При неправильном ритме в одном из отведений (чаще во II стандартном) ЭКГ записывают на длинную ленту. Подсчитывают число комплексов QRS, зарегистрированных за 3 с (15 см бумажной ленты при скорости 50 мм/с), и полученный результат умножается на 20.

3.4. Оценка частоты сердечных сокращений. При оценке ЧСС ориентируются на средневозрастной показатель и допустимые отклонения от него. В таблице 2 приложений приведены усреднённые показатели ЧСС по данным различных авторов. Если ЧСС выходит за пределы допустимых отклонений, говорят о тахикардии (учащение ЧСС) или брадикардии (урежение ЧСС). Возможна и более приблизительная эмпирическая оценка: допустимые отклонения составляют ±20% от средневозрастной нормы.

4. Анализ и оценка проводимости

Для определения проводимости измеряют:

Продолжительность зубца Р – проводимость по предсердиям;

Продолжительность интервала PQ – проводимость по предсердиям, AV-соединению и пучку Гиса;

Продолжительность комплекса QRS – проводимость по желудочкам;

В таблице 3 приложений приведены показатели продолжительности зубца Р, интервала PQ и комплекса QRS в зависимости от возраста. Увеличение продолжительности перечисленных элементов ЭКГ указывает на замедление, а уменьшение – на ускорение проведения импульсов в соответствующем отделе проводящей системы сердца.

Для закрепления прочитанного материала выполните следующее задание: На приведённой ЭКГ определить водитель ритма, подсчитать и оценить ЧСС, рассчитать продолжительность и амплитуду зубцов.

5. Определение положения электрической оси сердца

Электрическая ось сердца – это главное направление среднего результирующего вектора деполяризации желудочков (вектора QRS). Она определяется положением сердца в грудной полости. Т.к. сердце является трёхмерным органом, вектор QRS может быть спроецирован на фронтальную, горизонтальную и сагиттальную плоскости тела. В этих плоскостях могут происходить повороты сердца вокруг условных переднезадней (фронтальная плоскость), продольной (горизонтальная) и поперечной (сагиттальная плоскость) осей.

Повороты сердца вокруг осей характеризуются определёнными диагностическими признаками на ЭКГ. Для определение поворотов необходимо проанализировать величину и направление зубцов комплекса QRS в различных отведениях, т.к. последние отражают проекцию вектора QRS на оси этих отведений. Умение распознавать на ЭКГ повороты сердца вокруг осей, которые чаще всего происходят в нескольких плоскостях одновременно, важно для понимания и оценки расположения сердца в норме и, особенно, при патологии.

В обычной практике чаще ограничиваются определением поворотов сердца вокруг передне-задней оси во фронтальной плоскости, проходящей через 3 точки отведений от конечностей. Проекциюсуммарного вектораQRS на фронтальную плоскость и называют средней электрической осью сердца или просто электрической осью сердца (ЭОС) .

Переднезадняя ось сердца проходит спереди назад через центр массы сердца перпендикулярно к фронтальной плоскости. Поворот против часовой стрелки приводит сердце в горизонтальное положение (смещение ЭОС влево), а поворот по часовой стрелке – в вертикальное (смещение ЭОС вправо).

По предложению Эйнтховена ЭОС определяется в градусах и количественно выражается углом α , который образован электрической осью сердца и осью I отведения или тождественной последней горизонтальной линией, проведённой через электрический центр сердца. Чтобы получить величину угла α, следует описать окружность через вершины треугольника Эйнтховена с центром, совпадающим с электрическим центром сердца, или воспользоваться 6-и осевой схемой Бейли. Отчёт градусов условно принято начинать с правой стороны окружности от точки пересечения с горизонтальной линией, проведённой через электрический центр сердца, и делящей круг на нижнюю (положительную) и верхнюю (отрицательную) части. Отсчёт градусов в нижней половине идёт по часовой стрелке, начиная с 0° и до +180°; в верхней половине – против часовой стрелки, начиная с 0° и до -180°. Размещая электрический вектор в различных секторах окружности, можно определить величину угла α.

В норме у здоровых людей ЭОС ориентирована сверху вниз, справа налево чаще под уг­лом α=30°-70° с допустимыми отклонениями к вертикальному положению у астеников или горизонтальному – у тучных людей и гиперстеников. Таким образом, у здоровых людей угол α колеблется от 0° до 90°, располагаясь в левом нижнем квадранте окружности. ЭОС приблизительно соответствует ориентации анатомической оси серд­ца. У детей направление ЭОС изменяется с возрастом ребёнка (см. раз­дел «Осо­бен­но­сти ЭКГ у де­тей»). Для определения положения ЭОС нужно сопоставить и проанализировать соотношение и направление зубцов комплекса QRS в отведениях от конечностей (для приблизительной оценки достаточно только стандартных отведений).

При проекции ЭОС на положительную часть оси отведения, в этом отведении в комплексе QRS преобладает зубец R (R>S). При проекции ЭОС на отрицательную часть оси отведения в комплексе QRS преобладает зубец S (S>R).

Если ЭОС расположена параллельно оси данного отведения, то в этом отведении регистрируется зубец R или S наибольшей амплитуды. Если ЭОС располагается перпендикулярно оси данного отведения, то в этом отведении записывается изолиния или R=S.

Если доминирующим зубцом в комплексе QRS является зубец R, комплекс считается положительным (общая направленность комплекса QRS вверх «+»); если зубец S (Q) – комплекс считается отрицательным (общая направленность вниз «-»).

На протяжении многих лет сердечно-сосудистые патологии являются одними из самых распространенных заболеваний среди взрослого населения, причем с каждым годом они все чаще угрожают молодым поколениям.

Поэтому применение электрокардиографов в клинической практике имеет особое значение для диагностики, профилактики и лечения. Прибор для записи кардиограмм незаменим в различных кардиологических отделениях, больших больницах, госпиталях и частных клиниках.

Электрокардиографы прошли долгий путь эволюции, прежде чем стали теми устройствами, которые знакомы специалистам сегодня. Стоит осветить этапы развития данного прибора, чтобы понять, как проходило его техническое развитие и изменение функционала.

Это необходимо для получения наиболее полного представления о том, как работает современный электрокардиограф.

Изобретение метода

Впервые метод электрокардиографии был разработан около века назад. Техника записи эхокардиограммы была изобретена Огастесом Уоллером (1856 - 1922) в 1887 году. Один из первых экспериментов был проведен экспертом на собаке.

Чуть позднее его современник нидерландский физиолог (1860 - 1927), ставший лауреатом Нобелевской премии, усовершенствовал идею и предложил использовать уникальное устройство с особым принципом работы.

Электрические поля производятся сердечной мышцей, что в результате приводит к распространению особых гальванических токов по поверхности тела. Прибор, спроектированный Эйнтховеном, позволяли регистрировать их.

Данный метод остается актуальным до сих пор при проведении исследований работы сердечной мышцы.

Первый электрокардиограф 1911 года

В 1911 году компания Cambridge Scientific Instrument Company выпускает первый кардиограф, который представлял собой специализированное оборудование больших габаритов с функцией ведения записи через проекционный оптический регистратор на специальной бумаге. При этом использовались солевые ванны, выполнявшие роль электродов для 3 отведений.

Уже тогда специалисты понимали, что необходимо создать портативное устройство с легким весом, чтобы его было проще переносить и транспортировать. Также перед ними стояла важная задача – нужно было повысить точность снятия показаний, а также обеспечить эргономику.

Дополненный электрокардиограф 1942 года

Вильсон и Гольдерберг оснастили в 1942 году прибор дополнительными 3 отведениями (однополюсными и усиленными), чтобы их можно было применять в тех случаях, когда мало базовых соединений для проведения исследования. Такая конструкция в электрокардиографах по-прежнему применяется.

Электрокардиограф с ламповым усилителем 1950-х годов

В 50-е годы ХХ века аппарат ЭКГ был оснащен ламповым усилителем, а также специальными накладными электродами и малогабаритным регистратором. Со временем устройство стало портативным, хотя его вес был еще тогда не самым легким (около 10 кг).

Allen Electric Equipment Company выпустила первые серийные переносные приборы, но они все еще мало напоминали те портативные электрокардиографы, которые существуют сейчас.

Благодаря стараниям инженера Нормана Холтера в 1959 году появляется аппарат с легкой портативной конструкцией, что уже было грандиозным достижением для тех лет. Теперь можно было вести запись за пределами лечебного отделения.

Развитие портативных электрокардиографов после 1960 года

В 60-70-е годы прошлого века были использованы полупроводниковые элементы. Через некоторое время стали появляться портативные электрокардиографы, которые своим внешним видом и техническими характеристиками уже больше напоминали современный аппараты ЭКГ.

Габариты таких устройств уменьшились, а по весу их можно было сравнить с одним книжным томом. В это время кардиографы могли питаться от батареи, обрели прочный корпус. Одной из лучших вариантов моделей того времени стал аппарат ЭК1Г-03М , выпущенный в 1976 году.

Электрокардиографы в XXI веке

Постоянное развитие новых технологий позволило постепенно усовершенствовать аппарат ЭКГ. Сегодня заметно расширился ассортимент, что позволяет современным специалистам подбирать наиболее оптимальные модели для своей работы.

Производители выпускают различные портативные устройства, причем многие имеют малые габариты, позволяющие помещать их в карман.

В настоящие дни электрокардиографы стали автоматизированными многоканальными аппаратами с расширенным функционалом. Современные аппараты ЭКГ имеют встроенные термопринтеры и интерфейс для передачи получаемых показателей на ПК. Анализ кардиограмм у многих аппаратов ЭКГ проводится автоматически.

Но при этом нельзя недооценивать прошлые достижения. Сам принцип работы электрокардиографов остается прежним, так как основывается на гальванической регистрации потенциалов.

Инновации будущего

Последние двадцать лет – эпоха прогресса. Стали появляться датчики с различным уровнем потребляемой мощности, коэффициентом усиления и полосой пропускания. Недавно было предложено инновационное устройство CardioQVARK с весом всего 58 г.

Данное устройство напоминает чехол для смартфона и имеет датчики снаружи, разъем для подключения телефона. Создатели считают, что достаточно одного прикосновения пальцев к электродам для запуска приложения. На считывание информации нужно всего лишь двадцать секунд.

Показатели будут отображены на экране смартфона. При этом специалист может вести базу данных пациента и легко переносить результаты на компьютер и другие устройства.

В настоящее время американские специалисты трудятся над новыми проектами и разработками. Возможно, очень скоро электрокардиографы станут еще более доступными и эргономичными, что позволит заметно улучшить качество диагностики и самого уровня жизни.

В его честь коллеги составили сборник научных трудов, где была опубликована первая в мире электрокардиограмма, снятая Виллемом Эйнтховеном. К этому дню создатель ЭКГ шёл уже много лет, побуждаемый одновременно любовью к науке и необходимостью вернуть банковский кредит.

Кредит, которому обязаны все сердечники мира, был нужен, чтобы откупиться от распределения. Вышло так: Эйнтховен рано потерял отца, который служил колониальным врачом в Семаранге на острове Ява. Правительство Нидерландов оплачивало учёбу таких сирот в Утрехтском университете при условии, что они также станут работать в колониях. Круг профессий узок: врач, бухгалтер, учитель.

Начало карьеры Эйнтховена

Поскольку Эйнтховена тянуло к естественным наукам, он избрал медицину. Но уже во время практики понял, что рождён не врачом, а скорее физиком. Сперва он пытался примирить эти начала, специализируясь на офтальмологии как самой точной из медицинских наук. Диплом его уже был с открытием. Речь шла об известной оптической иллюзии: если на стене рядом пятна разных цветов, красное и синее, то одно из них кажется более близким. Позднее Кандинский написал об этом целую теорию, на которой зиждилось абстрактное искусство: мол, есть цвета агрессивные, которые как будто стремятся к зрителю (жёлтый, к примеру), а есть «уходящие», как бы отодвигающиеся вглубь картины, вроде синего.

Первый серийный электрокардиограф, который выпускался в Кембридже с 1908 года под наблюдением Эйнтховена.

Диплом с отличием

Электродов с гелем и присосками ещё не изобрели. Для гарантированного контакта с кожей пациент опускал конечности в подсоленную воду.

Снималась разница потенциалов между вершинами так называемого «треугольника Эйнтховена»: правая рука - левая рука (I отведение), правая рука - нога (II отведение), левая рука - нога (III отведение). Сейчас принято накладывать электрод на левую ногу, фотография запечатлела эксперимент с правой.

На верхней поверхности станины расположены основные узлы прибора, в порядке слева направо: источник света, струнный гальванометр, фотокамера (на ней лежит правая рука оператора).

Научный руководитель думал, что дело тут в разной длине волны, но студент Эйнтховен доказал иное. Зрачки у разных людей слегка смещены от центра радужки. Те, у кого зрачки чуть ближе к вискам, и среди них Кандинский, воспринимают синий как «уходящий». А те, чьи зрачки смещены к носу – наоборот.

Работа блестящая, диплом с отличием. И теперь молодого человека ждали колонии.

Эйнтховен - ученый

Однако тут вышел на пенсию завкафедрой гистологии и физиологии Лейденского университета, и впечатлённые открытием Эйнтховена учёные выдвинули его на вакантное место. Всё хорошо, только правительство предъявило Виллему счёт на 6000 гульденов за обучение и грант на работу по оптике. Эта сумма равнялась жалованью профессора за полтора года. И всё же Эйнтховен предпочёл заплатить и стать учёным, чем торчать в далёкой колонии, где каждый день приходится делать одно и то же.

Изобретение как новый социальный уровень

Кредит оказал громадное влияние на всю его жизнь. Была семья, требовавшая больших расходов, и наука, отнимавшая всё время. Поэтому приходилось жить гораздо скромнее коллег. Другие профессора обставляли лаборатории со вкусом за свой счёт. А заходивших к Эйнтховену поражали голые стены. Когда наш герой создал электрокардиографию и в его лабораторию началось паломничество со всего мира, жена в героическом усилии сделать интерьер побогаче повесила всюду кружевные шторки, за которые профессору было неудобно перед гостями. Собственно, и главное своё изобретение Виллем сделал, чтобы вырваться из бедности.

Выступление Уоллера

На четвёртый год своего заведования кафедрой Эйнтховен увидел выступление Огастуса Уоллера, читавшего лекции по физиологии в лондонской больнице Сент-Мэри, той самой, где рожают женщины из британской королевской семьи.

Уоллер наглядно демонстрировал, что сердце - источник слабых токов, импульсы которых регулярно повторяются. Делал он это с помощью капиллярного электрометра. В тонком стеклянном капилляре встречаются ртуть и серная кислота. Электрический ток меняет поверхностное натяжение ртути и граница двух жидкостей ползает по капилляру. Токи сердца самые слабые – в 100 миллионов раз меньше тока в электрической розетке, так что сдвиги видны только в сильную лупу. Тем не менее, они есть, и можно заснять их на движущуюся фотоплёнку. Получается кривая изменения электрического поля сердца.

Феномен демонстрировал бульдог Уоллера по кличке Джимми. Он смирно стоял на столе, его лапы помещались в разных ёмкостях с солёной водой, от которых шли провода к прибору. Опыт привлёк всеобщее внимание. В парламенте тут же нашлись депутаты, желавшие привлечь Уоллера к ответственности за жестокое обращение с животными. Но тот показал на себе, что исследование совершенно безвредно.

Первые работы Виллема Эйнтховена по электрокардиографии

Вверху слева: Виллем Эйнтховен (1860-1927) в 1903 году в своей лаборатории, на заднем плане - команда, обслуживавшая его первый прибор;

Вверху справа: «электрокардиография до ЭКГ», то есть показания ртутного электрометра, регистрирующего изменения электрического поля сердца человека. Чёрно-белый силуэт - линия колебания уровня ртути в капилляре на границе с серной кислотой, ниже - та же кардиограмма, пересчитанная Эйнтховеном с поправкой на инерцию тяжёлой ртути (1895 год), с придуманными им обозначениями зубцов кардиограммы.

Правда, и пользы тоже не было. Ясно, что больные сердца работают не так, как здоровые, но кривая получалась слишком пологой – ртуть тяжела, у неё большая инерция, которая скрадывает все пики на кардиограмме. Уоллер опустил руки, но ему же не надо было отдавать кредит. Эйнтховен взялся употребить прибор в клинике. За пять лет он разработал математический метод коррекции показаний электрометра. Могучие расчёты, с дифференцированием и интегрированием, позволяли воссоздать истинный облик зубцов кардиограммы. В 1895 году Эйнтховен дал им названия, которые они носят до сих пор: зубец P (соответствует возбуждению предсердий), Q (срабатывает межжелудочковая перегородка), высокий зубец R (возбуждение левого желудочка), S и T (возбуждение и расслабление желудочков). Конечно, всякий раз высчитывать кривую для каждого больного нереально – калькуляторов-то не было. Эйнтховен не унывал, надеясь, что пока он осмысляет значение зубцов, люди что-нибудь изобретут.

Изобретение Клемана Адера

И тут в историю кардиологии ворвался человек, не имеющий к медицине никакого отношения. Звали его Клеман Адер. Ему тоже понадобились деньги. Инженер Адер мечтал создать летающую машину тяжелее воздуха. Он сделал планер, похожий на летучую мышь, и разработал лёгкую паровую машину в качестве двигателя. А чтобы оплатить её производство, изобрёл чуткий прибор для регистрации сигналов, передающихся по подводным телеграфным кабелям. Длина лежащих на дне морском кабелей громадная, сопротивление большое, и токи слабые, хоть и посильней, чем в нашем сердце.

Адер придумал струнный гальванометр. Действие его основано на законе Ампера: провод под током в магнитном поле отклоняется. И тем сильней, чем больше ток и мощнее поле. Дёргающаяся от точек и тире проволочка то и дело закрывает отверстие, которое снимается на движущуюся плёнку. Благодаря Адеру скорость передачи сигналов через Атлантику выросла с 400 до 600 в минуту. Правда, сделанный на гонорар за это достижение в 1897 году «авьон» рухнул, пролетев несколько десятков метров – Адер не придумал для него систему управления (с этой задачей справились позднее братья Райт). Зато Эйнтховен приспособил струнный гальванометр для регистрации сигналов сердца.

Лишь проволока Адера не годилась – она была слишком толста. Виллем заменил её посеребрённой кварцевой нитью диаметром всего 2 микрона. Изготавливалась она по экзотической технологии: человек с водородной горелкой плавил кварц, в расплав окуналась стрела, которую другой человек выпускал из лука, так что нить вытягивалась и остывала на лету. Получалась струна, колебавшаяся от сердечных токов так, что выходила вполне современная электрокардиограмма. К большому удовольствию Эйнтховена, она в точности совпала с его расчётами.

Начало заработков

Теперь можно переходить от удовольствий к заработкам: выпускать приборы для диагностики болезни сердца. Эйнтховен обратился в мюнхенскую компанию «Эдельманн». Там с радостью взяли чертежи, и скоро прибор был готов, но тут выяснилось, что никаких отчислений Виллему по немецким законам не полагается. Гальванометр изобрёл Адер, токи сердца засёк Уоллер. Эйнтховен вообще ни при чём.

Выручили голландца связисты: они с удовольствием покупали гальванометры его конструкции для телеграфного сообщения с колониями. В том числе и с теми, от работы в которых Виллем откупался. Контракт с Эдельманном был разорван, но немцы выпустил несколько десятков электрокардиографов. Купили их университеты, где работали учёные, заметившие публикации Эйнтховена.

Деятели науки и техники, создававшие электрокардиографию вместе с Эйнтховеном

Вверху слева: Огастус Дезире Уоллер (1856-1922, стоит справа) демонстрирует в Лондонском Королевском обществе колебания сердца своего бульдога Джимми, 1889 год. Гравюра из Illustrated London News, иллюстрация к статье к 20-летию первой кардиограммы, 1909.

Вверху справа: французский изобретатель Клеман Адер (1841-1925), который в 1897 году изобрёл струнный гальванометр для телеграфистов, чтобы получить средства на создание своего летательного аппарата «Аквилон» (Авьон-III).

Внизу слева: русский, а затем советский физиолог Александр Филиппович Самойлов (1867-1930), сподвижник и личный друг Эйнтховена. Ввёл аббревиатуру ЭКГ, первым заметил, что аномальный зубец P указывает на порок сердца. Ввёл в практику анализ всех трёх стандартных отведений. Самойлов создал первые в России и Москве лаборатории ЭКГ, лично возглавлял центральную лабораторию, развёрнутую в Боткинской больнице.

Внизу справа: британский кардиолог Томас Люьис (1881-1945), сподвижник и личный друг Эйнтховена. Первым засёк на ЭКГ аритмию и большое количество других патологий, признан «отцом клинической электрофизиологии». Обнаружил явление сужения сосудов как реакции на ранение, а также (увы, на собственном примере) роль курения в возникновении сердечно-сосудистых заболеваний.

Самойлов и Эйнтховен

Первым стал профессор Казанского университета Александр Самойлов. Он очень похож на Эйнтховена: тоже рано потерял отца, разочаровался в медицине (поработав на холерной эпидемии 1892 года), ушёл в физиологию. Самойлов сразу же познакомился с Эйнтховеном и они стали друзьями. В Казани впервые был диагностирован по кардиограммепорок сердца, и в первый раз прозвучала аббревиатура "ЭКГ".

К 20-летию первой кардиограммы Самойлов послал Эйнтховену шуточное поздравление, которое просил зачитать вслух струнному гальванометру, так как тот «умеет хорошо и много писать (но не всегда достаточно ясно и порой слишком много) – читать же он совсем не может».

Вот отрывок из этого письма:

«Я почти влюблён в Вас и если я хоть один день не писал с Вами, то чувствую, чего-то не хватает. Я откровенный человек и должен Вам сознаться, что бывали моменты, когда я Вас, уважаемый струнный гальванометр, хотел бы разбить на 1000 кусков… Ваши металлические части никогда меня не раздражали, но струна! Когда, наконец, приступаешь к опыту, то оказывается, что струна не хочет больше проводить или же начинает дрожать, как будто её кто-то испугал или у неё приступ малярии (мы пробовали раз хину, но это не помогло)». А дальше – комплименты юбиляру.

Эйнтховен ответил в том же духе: «Струнный гальванометр в восторге от похвалы, высказанной в его адрес… Он ответил мне, что затруднения, касающиеся струн, могут быть устранены, если выписывать их из Америки, где механики изготовляют их прекрасно. Но во время чтения гальванометр вдруг рассвирепел: «Как это я не умею читать? Это невыносимая ужасная клевета! Разве я не читаю самые сокровенные тайны человеческого сердца?»

Всё это говорилось о первой машине Эйнтховена, занимавшей две комнаты и требовавшей пять человек обслуги. Много с тех пор утекло воды и клетчатой фотобумаги. Эйнтховен получил Нобелевскую премию. Потом не стало его, не стало Самойлова, появились осцилляторы, электролампы, затем транзисторы. Но только спустя 80 лет промышленность породила прибор, который по чувствительности и точности был сравним с той первой громадной машиной, изготовленной кустарным способом.

В разговорах с деятелями советского правительства Самойлов любил приводить этот пример как иллюстрацию отношений науки и промышленности: «..все завоевания техники можно сравнить лишь с крохами со стола науки. Мы должны развивать науку, иначе наступит крах не только науки, но и техники».

Михаил Шифрин