Информационная поддержка школьников и студентов
Поиск по сайту

Аттрактор лоренца. Хаотическая динамика. Поведение решения системы

Реферат

По дисциплине: Математика

Аттрактор Лоренца

Аттрактор Лоренца

решение системы при r =0,3

решение системы при r =1,8

решение системы при r =3,7

решение системы при r =10

решение системы при r =16

решение системы при r =24,06

решение системы при r =28 ― собственно, это и есть аттрактор Лоренца

решение системы при r =100 ― виден режим автоколебаний в системе

Аттрактор Лоренца (от англ. to attract - притягивать) ― инвариантное множество в трехмерном гладкого , которое имеет определённую сложную топологическую структуру и является асимптотически устойчивым, оно и все траектории из некоторой окрестности стремятся к при (отсюда название).

Аттрактор Лоренца был найден в численных экспериментах , исследовавшего поведение траекторий нелинейной системы:

при следующих значениях параметров: σ=10, r =28, b =8/3. Эта система вначале была введена как первое нетривиальное для задачи о морской воды в плоском слое, чем и мотивировался выбор значений σ, r и b , но она возникает также и в других физических вопросах и моделях:

    конвекция в замкнутой петле;

    вращение водяного колеса;

    модель одномодового ;

    диссипативный с инерционной нелинейностью.

Исходная гидродинамическая система уравнений:

где - скорость течения, - температура жидкости, - температура верхней границы (на нижней поддерживается ), - плотность, - давление, - сила тяжести, - соответственно , и кинематической .

В задаче о конвекции модель возникает при разложении скорости течения и температуры в двумерные и последующей их «обрезки» с точностью до первых-вторых гармоник. Кроме того, приведённая полная система уравнений записывается в . Обрезка рядов в определённой мере оправдана, так как Сольцмен в своих работах продемонстрировал отсутствие каких-либо интересных особенностей в поведении большинства гармоник.

Применимость и соответствие реальности

Обозначим физический смысл переменных и параметров в системе уравнений применительно к упомянутым задачам.

    Конвекция в плоском слое. Здесь x отвечает за скорость вращения водяных валов, y и z - за распределение температуры по горизонтали и вертикали, r - нормированное , σ - (отношение коэффициента кинематической к коэффициенту ), b содержит информацию о геометрии конвективной ячейки.

    Конвекция в замкнутой петле. Здесь x - скорость течения, y - отклонение температуры от средней в точке, отстоящей от нижней точки петли на 90°, z - то же, но в нижней точке. Подведение тепла производится в нижней точке.

    Вращение водяного колеса. Рассматривается задача о колесе, на ободе которого укреплены корзины с отверстиями в дне. Сверху на колесо симметрично относительно оси вращения льётся сплошной поток воды. Задача равнозначна предыдущей, перевернутой «вверх ногами», с заменой температуры на плотность распределения массы воды в корзинах по ободу.

    Одномодовый лазер. Здесь x - амплитуда волн в лазера, y - , z - инверсия населённостей , b и σ - отношения коэффициентов инверсии и поля к коэффициенту релаксации поляризации, r - интенсивность .

Стоит указать, что применительно к задаче о конвекции модель Лоренца является очень грубым приближением, весьма далёким от реальности. Более-менее адекватное соответствие существует в области регулярных режимов, где устойчивые решения качественно отображают экспериментально наблюдаемую картину равномерно вращающихся конвективных валов (). Хаотический режим, присущий модели, не описывает турбулентной конвекции в силу существенной обрезки исходных тригонометрических рядов.

Интересным является существенно большая точность модели при некоторой её модификации, применяемая в частности для описания конвекции в слое, подвергаемом вибрации в вертикальном направлении либо переменному тепловому воздействию. Такие изменения внешних условий приводят к модулированию коэффициентов в уравнениях. При этом высокочастотные Фурье-компоненты температуры и скорости существенно подавляются, улучшая соответствие модели Лоренца и реальной системы.

Примечательно везение Лоренца при выборе значения параметра , так как система приходит к только при значениях, больших 24,74, при меньших поведение оказывается совершенно иным.

Поведение решения системы

Рассмотрим изменения в поведении решения системы Лоренца при различных значениях параметра r. На иллюстрациях к статье приведены результаты численного моделирования для точек с начальными координатами (10,10,10) и (-10,-10,10). Моделирование производилось с помощью приведённой ниже программы, написанной на языке , построение графиков по полученным таблицам - из-за слабых графических возможностей Фортрана с помощью Compaq Array Viewer.

    r <1 - аттрактором является начало координат, других устойчивых точек нет.

    1< r <13,927 - траектории спирально приближаются (это соответствует наличию затухающих колебаний) к двум точкам, положение которых определяется формулами:

Эти точки определяют состояния стационарного режима конвекции, когда в слое формируется структура из вращающихся валов жидкости.

    r ≈13,927 - если траектория выходит из начала координат, то, совершив полный оборот вокруг одной из устойчивых точек, она вернется обратно в начальную точку - возникают две гомоклинические петли. Понятие гомоклинической траектории означает, что она выходит и приходит в одно и то же положение равновесия.

    r >13,927 - в зависимости от направления траектория приходит в одну из двух устойчивых точек. Гомоклинические петли перерождаются в неустойчивые предельные циклы, также возникает семейство сложно устроенных траекторий, не являющееся аттрактором, а скорее наоборот, отталкивающее от себя траектории. Иногда по аналогии эта структура называется «странным репеллером» (англ. to repel - отталкивать).

    r ≈24,06 - траектории теперь ведут не к устойчивым точкам, а асимптотически приближаются к неустойчивым предельным циклам - возникает собственно аттрактор Лоренца. Однако обе устойчивые точки сохраняются вплоть до значений r ≈24,74.

При больших значениях параметра траектория претерпевает серьезные изменения. Шильников и Каплан показали, что при очень больших r система переходит в режим автоколебаний, при этом, если уменьшать параметр, будет наблюдаться переход к хаосу через последовательность удвоений периода колебаний.

Значимость модели

Модель Лоренца является реальным физическим примером с хаотическим поведением, в отличие от различных искусственно сконструированных отображений ( , и др.).

Программы, моделирующие поведение системы Лоренца

Borland C

#include

#include

void main()

double x = 3.051522, y = 1.582542, z = 15.62388, x1, y1, z1;

double dt = 0.0001;

int a = 5, b = 15, c = 1;

int gd=DETECT, gm;

initgraph(&gd, &gm, "C:\\BORLANDC\\BGI");

do {

X1 = x + a*(-x+y)*dt;

Y1 = y + (b*x-y-z*x)*dt;

Z1 = z + (-c*z+x*y)*dt;

X = x1; y = y1; z = z1;

Putpixel((int)(19.3*(y - x*0.292893) + 320),

(int)(-11*(z + x*0.292893) + 392), 9);

} while (!kbhit());

closegraph();

Mathematica

data = Table[

With[{N = 1000, dt = 0.01, a = 5, b = 1 + j, c = 1},

NestList &,

{3.051522, 1.582542, 15.62388}, N

{j, 0, 5}];

Graphics3D@MapIndexed[{Hue], Point[#1]} &, data]

Borland Pascal

Program Lorenz;

Uses CRT, Graph;

Const

dt = 0.0001;

a = 5;

b = 15;

c = 1;

Var

gd, gm: Integer;

x1, y1, z1, x, y, z: Real;

Begin

gd:=Detect;

InitGraph(gd, gm, "c:\bp\bgi");

x:= 3.051522;

y:= 1.582542;

z:= 15.62388;

While not KeyPressed Do Begin

x1:= x + a*(-x+y)*dt;

y1:= y + (b*x-y-z*x)*dt;

z1:= z + (-c*z+x*y)*dt;

x:= x1;

y:= y1;

z:= z1;

PutPixel(Round(19.3*(y - x*0.292893) + 320),

Round(-11*(z + x*0.292893) + 392), 9);

End;

CloseGraph;

ReadKey;

End.

FORTRAN

program LorenzSystem

real,parameter::sigma=10

real,parameter::r=28

real,parameter::b=2.666666

real,parameter::dt=.01

integer,parameter::n=1000

real x,y,z

open(1,file="result.txt",form="formatted",status="replace",action="write")

x=10.;y=10.;z=10.

do i=1,n,1

x1=x+sigma*(y-x)*dt

y1=y+(r*x-x*z-y)*dt

z1=z+(x*y-b*z)*dt

x=x1

y=y1

z=z1

write(1,*)x,y,z

enddo

print *,"Done"

close(1)

end program LorenzSystem

QBASIC/FreeBASIC(«fbc -lang qb»)

DIM x, y, z, dt, x1, y1, z1 AS SINGLE

DIM a, b, c AS INTEGER

x = 3.051522: y = 1.582542: z = 15.62388: dt = 0.0001

a = 5: b = 15: c = 1

SCREEN 12

PRINT "Press Esc to quit"

WHILE INKEY$ <> CHR$(27)

x1 = x + a * (-x + y) * dt

y1 = y + (b * x - y - z * x) * dt

z1 = z + (-c * z + x * y) * dt

x = x1

y = y1

z = z1

PSET ((19.3 * (y - x * .292893) + 300), (-11 * (z + x * .292893) + 360)), 9

WEND

END

JavaScript и HTML5

var cnv = document.getElementById("cnv");

var cx = cnv.getContext("2d");

var x = 3.051522, y = 1.582542, z = 15.62388, x1, y1, z1;

var dt = 0.0001;

var a = 5, b = 15, c = 1;

var h = parseInt(cnv.getAttribute("height"));

var w = parseInt(cnv.getAttribute("width"));

var id = cx.createImageData(w, h);

var rd = Math.round;

var idx = 0;

i=1000000; while (i--) {

x1 = x + a*(-x+y)*dt;

y1 = y + (b*x-y-z*x)*dt;

z1 = z + (-c*z+x*y)*dt;

x = x1; y = y1; z = z1;

idx=4*(rd(19.3*(y - x*0.292893) + 320) + rd(-11*(z + x*0.292893) + 392)*w);

id.data = 255;

cx.putImageData(id, 0, 0);

IDL

PRO Lorenz

n=1000000 & r=dblarr(n,3) & r= & a=5. & b=15. & c=1.

FOR i=0.,n-2. DO r=r + [ a*(r-r), b*r-r-r*r, r*r-c*r ]*0.0001

plot,19.3*(r[*,1]-r[*,0]*0.292893)+320.,-11*(r[*,2]+r[*,0]*0.292893)+392.

END

Литература

    Кузнецов С. П. , Лекция 3. Система Лоренца; Лекция 4. Динамика системы Лоренца. // - М.: Физматлит, 2001.

    Saltzman B . Finite amplitude free convection as an initial value problem. // Journal of the atmospheric science, № 7, 1962 - p. 329-341.

    Лоренц Э . Детерминированное непериодическое движение // Странные аттракторы. - М., 1981. - С. 88-116.

Хаотические, странные аттракторы соответствуют непредсказуемому поведению систем, не имеющих строго периодической динамики, это математический образ детерминированных непериодических процессов. Странные аттракторы структурированы и могут иметь весьма сложные и необычные конфигурации в трехмерном пространстве.

Рис. 1.

и фазовые портреты (нижний ряд) для трех различных систем

(Глейк, 2001)

Хотя в работах некоторых математиков ранее была установлена возможность существования странных аттракторов, впервые построение странного аттрактора (рис. 2) как решение системы дифференциальных уравнений осуществил в работе по компьютерному моделированию термоконвекции и турбулентности в атмосфере американский метеоролог Э. Лоренц (E.Lorentz, 1963). Конечное состояние системы Лоренца чрезвычайно чувствительно к начальному состоянию. Сам же термин «странный аттрактор» появился позже, в работе Д. Рюэлля и Ф. Такенса в (D.Ruelle, F. Takens, 1971: см. Рюэль, 2001) о природе турбуленции в жидкости; авторы отмечали, что размерность странного аттрактора отлична от обычной, или топологической.Позже Б. Мандельброт (B.Mandelbrot) отождествил странные аттракторы, траектории которых при последовательных вычислениях компьютера бесконечно расслаиваются, расщепляются, с фракталами.

Рис. 2. (Хаотические траектории в системе Лоренца). Аттрактор Лоренца (Кроновер, 2000)

Лоренц (Lorenz, 1963) обнаружил, что даже простая система из трех нелинейных дифференциальных уравнений может привести к хаотическим траекториям В свою очередь, движение воздушных потоков в плоском слое жидкости постоянной толщины при разложении скорости течения и температуры в двойные ряды Фурье с последующем усечением до первых-вторых гармоник:

где s, r и b -- некоторые положительные числа, параметры системы. Обычно исследования системы Лоренца проводят при s =10, r =28 и b =8/3 (значения параметров).

Таким образом, системы, поведение которых детерминируется правилами, не включающим случайность, с течением времени проявляют непредсказуемость за счет нарастания, усиления, амплификации малых неопределенностей, флуктуаций. Наглядный образ системы с нарастанием неопределенности - так называемый биллиард Я.Г. Синая: достаточно большая последовательность соударений шаров неизбежно ведет к нарастанию малых отклонений от исчисляемых траекторий (за счет не идеально сферической поверхности реальных шаров, не идеально однородной поверхности сукна) и непредсказуемости поведения системы.

В таких системах «случайность создается подобно тому, как перемешивается тесто или тасуется колода карт» (Кратчфилд и др., 1987). Так называемое «преобразование пекаря» с последовательным растягиванием и складыванием, бесконечным образованием складок - одна из моделей возникновения перехода от порядка к хаосу; при этом число преобразований может служить мерой хаоса. Есть Аттрактор Айдзавы, который является частным случаем аттрактора Лоренца.

где а = 0,95, B = 0,7, с = 0,6, d = 3,5, е = 0,25, F = 0,1. Каждая предыдущая координата вводится в уравнения, полученное в результате значение, умноженное на значения времени.

Примеры других странных аттракторов

Аттрактор ВангСун

Здeсь a, b, d, e?R, c> 0 и f< 0 являются константами, cf ? 0, и x, y, z а это переменные состояния.

Аттрактор Рёсслера

Где a,b,c= положительные постоянные. При значениях параметров a=b=0.2 и

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

“САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕСИТЕТ”

ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ

КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

ОТЧЕТ ПО ДИСЦИПЛИНЕ

«СИСТЕМНЫЙ АНАЛИЗ»

«Моделирование аттрактора Лоренца»

ВЫПОЛНИЛ СТУДЕНТЫ ГИП-105:

ЗАКОНОВ Н. И.

ПРЕПОДАВАТЕЛЬ:

ПИЯВСКИЙ С. А.

Задание

Запрограммировать на языке С# модель Лоренца с отображением в виде диаграмм хода процесса, проверить правильность программирования, получив «бабочку Лоренца» при стандартных значениях параметров.

Исходные данные

Наиболее яркий пример динамического хаоса обнаружил в 1963 году метеоролог Эдвард Лоренц, pешая задачу о тепловой конвекции жидкости.

Максимально упрощая уравнения, описывающие это явление, Лоренц случайно наткнулся на то, что даже сравнительно простая система из трех связанных нелинейных дифференциальных уравнений 1-го порядка может иметь решением совершенно хаотические тpаектоpии.

Эта система уравнений, ставшая теперь классической, имеет вид:

Решение этих уравнений - функции X(t), Y(t) и Z(t) - определяют в паpаметpическом виде тpаектоpию системы в тpехмеpном "фазовом" пpостpанстве X, Y,Z. Ввиду однозначности функций, стоящих в правых частях этих уравнений, тpаектоpия себя никогда не пересекает.

Лоpенц исследовал вид этих тpаектоpий пpи pазных начальных условиях пpи значениях паpаметpов r = 28 , у = 10 и b = 8/3 . Он обнаружил, что пpи этом тpаектоpия хаотическим образом блуждает из полупpостpанства x>0 в полупpостpанство x<0, фоpмиpуя две почти плоских, пеpепутанных сложным образом спивали. Эту я проинтегрировал при начальных данных X=3.05 ; Y=1.58 ; Z=15.62 (значения взяты лишь для удобства моделирования) и увидеть то, что показано дальше на Рисунке 1.

Поведение решения системы

Рассмотрим изменения в поведении решения системы Лоренца при различных значениях параметра r (мог быть взят любой другой параметр).

r < 1 - точками колебания является начало координат, других устойчивых точек нет.

Рисунок 2 – Модель системы при r < 1

r = 14 - траектория спирально приближаются к одной точке

Рисунок 3 – Модель системы при r = 14

14 < r < 24 - в зависимости от направления траектория приходит в одну из двух устойчивых точек

Рисунок 4 – Модель системы при 14 < r < 24

r > 24 - траектории теперь ведут не к устойчивым точкам, а асимптотически приближаются к неустойчивым предельным циклам - возникает собственно аттрактор Лоренца.

Рисунок 5 – Модель системы при r < 24

Вывод

Модель Лоренца является реальным физическим примером динамических систем с хаотическим поведением. Исследуя поведение системы при различных значениях набора параметров, можно убедиться в том, что существуют переходы между состояниями системы (графиками системы).

Наиболее интересно для меня является колебательная фаза, находясь в которой система колеблется между двумя статичными точками, но не достигает их.

Литература

1. Методические указания к выполнению лабораторных работ по дисциплине «Системный анализ» / ; Самарск. гос. арх.-строит. ун-т./ Самара, 20с.

До настоящего момента мы изучали фракталы, которые являются статическими фигурами. Наш подход вполне приемлем до тех пор, пока не возникает необходимость рассмотрения таких природных явлений, как падающие потоки воды, турбулентные завихрения дыма, метеосистемы и потоки на выходе реактивных двигателей. В этих случаях один-единственный фрактал соответствует моментальному снимку данного феномена. Структуры, изменяющиеся во времени, мы определяем как динамические системы. Интуитивно понятно, что динамической противоположностью фрактала является хаос. Это означает, что хаос описывает состояние крайней непредсказуемости, возникающей в динамической системе, в то время как фрактальность описывает крайнюю иррегулярность или изрезанность, присущую геометрической конфигурации.

Достаточно скоро стало ясно, что многие хаотические динамические системы, описыващие феномены окружащего нас мира, устроены очень сложно и не могут быть в полной мере представлены традиционными методами математического анализа. По-видимому, нет никакой возможности получить математические выражения для решений в замкнутом виде, даже если использовать бесконечные ряды или специальные функции.

Рассмотрим знаменитый пример, весьма наглядно демонстрирующий, что стоит за термином «хаотическая динамика». Эдвард Лоренц из Массачусетского технологического института в 1961 году занимался численными исследованиями метеосистем, в частности моделированием конвекционных токов в атмосфере.

Рис. 6.1. Аттрактор Лоренца

Он написал программу для решения следующей системы дифференциальных уравнений:

В дальнейших расчетах параметры постоянны и принимают значения

Согласно описанию эксперимента, принадлежащему самому Лоренцу, он вычислял значения решения в течение длительного времени, а затем остановил счет. Его заинтересовала некоторая особенность решения, которая возникала где-то в середине интервала счета, и поэтому он повторил вычисления с этого момента. Результаты повторного счета, очевидно, совпали бы с результатами первоначального счета, если бы начальные значения для повторного счета в точности были равны полученным ранее значениям для этого момента времени.

Рис. 6.2. Результаты численного эксперимента Лоренца

Лоренц слегка изменил эти значения, уменьшив число верных десятичных знаков. Ошибки, введенные таким образом, были крайне невелики. Но самое неожиданное было впереди. Вновь сосчитанное решение некоторое время хорошо согласовывалось со старым. Однако, по мере счета расхождение возрастало, и постепенно стало ясно, что новое решение вовсе не напоминает старое (см. рис. 6.1, 6.2).

Лоренц вновь повторял и проверял вычисления (вероятно, не доверяя компьютеру), прежде чем осознал важность эксперимента. То, что он наблюдал, теперь называется существенной зависимостью от начальных условий - основной чертой, присущей хаотической динамике. Существенную зависимость иногда называют эффектом бабочки. Такое название относится к невозможности делать долго статье «Предсказуемость: может ли взмах крылышек бабочки в Бразилии привести к образованию торнадо в опубликованной в 1979 году .

Несмотря на большую значимость эксперимента Лоренца, в настоящем тексте не будут рассматриваться модели, связанные с динамическими системами, описываемыми дифференциальными уравнениями. Напротив, мы будем рассматривать наиболее простые модели хаотической динамики. Это означает, что мы ограничимся изучением только дискретных динамических систем, а не непрерывных типа странного аттрактора Лоренца, описанного выше. Но не расстраивайтесь. Обнаружение хаотической динамики в поведении дискретных динамических систем столь же неожиданно, как и в непрерывном случае. Многие известные и эффектные графические примеры соответсвуют именно дискретным системам. В числе их можно упомянуть знаменитое и вездесущее множество Мандельброта и сопутствующие ему множества Жюлиа.


ЛОРЕНЦА СИСТЕМА

ЛОРЕНЦА СИСТЕМА

Система трёх нелинейных дифференц. ур-ний первого порядка:

решения к-рой в широкой области параметров являются нерегулярными ф-циями времени и по мн. своим характеристикам неотличимы от случайных. Л. с. была получена Э. Лоренцем (Е. Lorenz) из ур-ний гидродинамики как модель для описания тепловой конвекции в горизонтальном слое жидкости, подогреваемой снизу ( Р r - Прандтля число, - приведённое Р э -лея число, b - определяется выбором в Фурье-разложении поля скорости и темп-ры).


Рис. 1. Иллюстрация последовательных бифуркаций в системе Лоренца при увеличении параметра r : а) ; б) ; в) г) д) е)

Л. с.- один из примеров динамической системы, имеющей простой физ. смысл; она демонстрирует стохастич. поведение системы. В фазовом пространстве этой системы в области параметров, указанных на рис. 1, существует странный аттрактор, движение изображающей точки на к-ром соответствует "случайному" - турбулентному течению жидкости при тепловой конвекции.

Рис. 2. Конвективная петля - физическая модель, для которой выводятся уравнения Лоренца.

Л. с. (при b =l) описывает, в частности, движение жидкости в конвективной петле, расположенной в вертикальной плоскости в однородном тяжести тороидальной полости, заполненной жидкостью (рис. 2). На стенках полости поддерживается не зависящая от времени (но зависящая от угла ) темп-pa Т(); ниж. часть петли теплее верхней. Ур-ния движения жидкости в конвективной петле сводятся к Л. с., где x(t] - скорость движения жидкости, у (t) - темп-pa в точке N , a z(t) - темп-pa в точке М при больших t. С ростом г характер движения жидкости меняется: сначала (при г<1) неподвижна, далее (при ) устанавливается циркуляция с пост. скоростью (либо по часовой стрелке, либо против); при ещё больших r всё течение становится чувствительным к малым изменениям нач. условий, скорость циркуляции жидкости меняется уже нерегулярно: жидкость вращается иногда по часовой стрелке, иногда - против.

При обычно используемых значениях Pr =10, b= 8/3 Л. с. обладает . свойствами: ур-ния Л. с. инварианты относительно преобразования , фазовый объём сокращается с пост. скоростью

за единицу времени объём сокращается в 10 6 раз. С ростом г в Л. с. происходят след. осн. бифуркации. 1) При единственным состоянием равновесия является устойчивый узел в начале координат О (О, О, 0). 2) При , где r 1 =13,92, Л. с. кроме упомянутого тривиального ( О )имеет ещё два равновесия , . Состояние равновесия О является седлом, имеющим двумерное устойчивое и одномерное неустойчивое, состоящее из О и двух сепаратрис и , стремящихся к и (рис. 1, а). 3) При r =r 1 каждая из сепаратрис становится двоякоасимпто-тической к седлу О (рис. 1, б). При переходе r через r 1 из замкнутых петель сепаратрис рождаются неустойчивые (седловые) периодич. движения - предельные циклы L 1 и L 2 . Вместе с этими неустойчивыми циклами рождается и очень сложно организованное предельное ; оно, однако, не является притягивающим (аттрактором), и при (рис. 1, в), где r 2 =24,06, все траектории по-прежнему стремятся к . Эта ситуация отличается от предшествующей тем, что теперь сепаратрисы _ и идут к "не своим" состояниям равновесия и соответственно. 4) При , гдо = 24,74, в Л. с. наряду с устойчивыми состояниями равновесия существует ещё притягивающее множество, характеризующееся сложным поведением траекторий,- аттрактер Лоренца (рис. 1, д ирис. 3). 5) При седловые циклы L 1 и L 2 стягиваются к состояниям равновесия и , к-рые при теряют устойчивость, и при единственным притягивающим мно-

жеством Л. с. является аттрактор Лоренца. Т. о., если стремить к со стороны меньших значений, то стохастичность в Л. с. возникает сразу, скачком, т. е. имеет место жёсткое возникновение стохастичности.

Рис. 3. Траектория, воспроизводящая аттрактор Лоренца (выходит из начала координат); горизонтальная плоскость соответствует r = = 27, r =28.

К Л. с. сводятся не только ур-ния, описывающие конвективные движения жидкости, но и др. физ. модели (трёхуровневый , дисковое динамо и т. д.).

Лит.: Lorenz E., Deterministic nonperiodic flow, "J. Atmos. Sci.", 1963, v. 20, p. 130; в рус. пер., в кн.: Странные аттракторы, М., 1981, с. 88; Гапонов - Грехов А. В., Рабинович М. И., Хаотическая простых систем, "Природа", 1981, № 2, с. 54; Афраймович В. С., Быков В. В., Шильников Л. П., О притягивающих негрубых предельных множествах типа аттрактора Лоренца, "Тр. Московского матем. общества", 1982, т. 44, с. 150; Рабинович М. И., Трубецков Д. И., Введение в теорию колебаний и волн, М., 1984. В. Г. Шехов.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ЛОРЕНЦА СИСТЕМА" в других словарях:

    Фундам. ур ния классич. электродинамики, определяющие микроскопич. эл. магн. поля, создаваемые отдельными заряж. частицами. Л. М. у. лежат в основе электронной теории (классич. микроскопич. электродинамики), построенной X. А. Лоренцем в кон. 19… … Физическая энциклопедия

    Система отсчёта инерциальная - система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система… … Концепции современного естествознания. Словарь основных терминов

    - (в ф и з и к е) – система тел, по отношению к к рой определяются положения исследуемого тела (или места событий) и отмечаются моменты времени, соответствующие этим положениям. С этой целью с выбранной системой тел связывают обычно к. л. систему… … Философская энциклопедия

    СИСТЕМА ОТКЛОНЯЮЩАЯ - устройство между анодом и экраном электронно лучевого прибора, служащее для отклонения электронного луча млн. его перемещения по экрану (см.) в соответствии с некоторым законом. Для управления электронным лучом применяют магнитную,… … Большая политехническая энциклопедия

    Преобразованиями Лоренца в физике, в частности в специальной теории относительности (СТО), называются преобразования, которым подвергаются пространственно временные координаты (x,y,z,t) каждого события при переходе от одной инерциальной системы… … Википедия

    В специальной теории относительности преобразования координат и времени какого либо события при переходе от одной инерциальной системы отсчёта (См. Инерциальная система отсчёта) к другой. Получены в 1904 Х. А. Лоренцом как преобразования … Большая советская энциклопедия

    Компактное инвариантное множество Lв трехмерном фазовом пространстве гладкого потока {St}, к рое имеет указанную ниже сложную топологич. структуру и является асимптотически устойчивым (т. е. оно устойчиво по Ляпунову и все траектории из нек рой… … Математическая энциклопедия

    Сила (f), действующая на заряженную частицу, движущуюся в электромагнитном поле; выражается установленной Х. А. Лоренцем в конце XIX в. формулой: (в СГС системе единиц), где e, v заряд и скорость частицы, E напряжённость электрического поля, B … Энциклопедический словарь