Information support for schoolchildren and students
Site search

Human central nervous system

With the evolutionary complication of multicellular organisms, the functional specialization of cells, the need arose for the regulation and coordination of life processes at the supracellular, tissue, organ, systemic and organismal levels. These new regulatory mechanisms and systems should have appeared along with the preservation and complication of the mechanisms for regulating the functions of individual cells with the help of signaling molecules. The adaptation of multicellular organisms to changes in the environment of existence could be carried out on the condition that new regulatory mechanisms would be able to provide fast, adequate, targeted responses. These mechanisms must be able to memorize and retrieve from the memory apparatus information about previous effects on the body, as well as have other properties that ensure effective adaptive activity of the body. They were the mechanisms of the nervous system that appeared in complex, highly organized organisms.

Nervous system is a set of special structures that unites and coordinates the activity of all organs and systems of the body in constant interaction with the external environment.

The central nervous system includes the brain and spinal cord. The brain is subdivided into the hindbrain (and the pons), the reticular formation, subcortical nuclei,. The bodies form the gray matter of the CNS, and their processes (axons and dendrites) form the white matter.

General characteristics of the nervous system

One of the functions of the nervous system is perception various signals (stimuli) of the external and internal environment of the body. Recall that any cells can perceive various signals of the environment of existence with the help of specialized cellular receptors. However, they are not adapted to the perception of a number of vital signals and cannot instantly transmit information to other cells that perform the function of regulators of integral adequate reactions of the body to the action of stimuli.

The impact of stimuli is perceived by specialized sensory receptors. Examples of such stimuli can be light quanta, sounds, heat, cold, mechanical influences (gravity, pressure change, vibration, acceleration, compression, stretching), as well as signals of a complex nature (color, complex sounds, words).

To assess the biological significance of the perceived signals and organize an adequate response to them in the receptors of the nervous system, their transformation is carried out - coding into a universal form of signals understandable to the nervous system - into nerve impulses, holding (transferred) which along the nerve fibers and pathways to the nerve centers are necessary for their analysis.

The signals and the results of their analysis are used by the nervous system to response organization to changes in the external or internal environment, regulation and coordination functions of cells and supracellular structures of the body. Such responses are carried out by effector organs. The most common variants of responses to influences are motor (motor) reactions of skeletal or smooth muscles, changes in the secretion of epithelial (exocrine, endocrine) cells initiated by the nervous system. Taking a direct part in the formation of responses to changes in the environment of existence, the nervous system performs the functions homeostasis regulation, ensure functional interaction organs and tissues and their integration into a single whole body.

Thanks to the nervous system, an adequate interaction of the organism with the environment is carried out not only through the organization of responses by effector systems, but also through its own mental reactions - emotions, motivations, consciousness, thinking, memory, higher cognitive and creative processes.

The nervous system is divided into central (brain and spinal cord) and peripheral - nerve cells and fibers outside the cranial cavity and spinal canal. The human brain contains over 100 billion nerve cells. (neurons). Accumulations of nerve cells that perform or control the same functions form in the central nervous system nerve centers. The structures of the brain, represented by the bodies of neurons, form the gray matter of the CNS, and the processes of these cells, uniting into pathways, form the white matter. In addition, the structural part of the CNS is glial cells that form neuroglia. The number of glial cells is about 10 times the number of neurons, and these cells make up the majority of the mass of the central nervous system.

According to the features of the functions performed and the structure, the nervous system is divided into somatic and autonomous (vegetative). Somatic structures include the structures of the nervous system, which provide the perception of sensory signals mainly from the external environment through the sense organs, and control the work of the striated (skeletal) muscles. The autonomic (vegetative) nervous system includes structures that provide the perception of signals mainly from the internal environment of the body, regulate the work of the heart, other internal organs, smooth muscles, exocrine and part of the endocrine glands.

In the central nervous system, it is customary to distinguish structures located at different levels, which are characterized by specific functions and a role in the regulation of life processes. Among them, the basal nuclei, brain stem structures, spinal cord, peripheral nervous system.

The structure of the nervous system

The nervous system is divided into central and peripheral. The central nervous system (CNS) includes the brain and spinal cord, and the peripheral nervous system includes the nerves extending from the central nervous system to various organs.

Rice. 1. The structure of the nervous system

Rice. 2. Functional division of the nervous system

Significance of the nervous system:

  • unites the organs and systems of the body into a single whole;
  • regulates the work of all organs and systems of the body;
  • carries out the connection of the organism with the external environment and its adaptation to environmental conditions;
  • forms the material basis of mental activity: speech, thinking, social behavior.

Structure of the nervous system

The structural and physiological unit of the nervous system is - (Fig. 3). It consists of a body (soma), processes (dendrites) and an axon. Dendrites strongly branch and form many synapses with other cells, which determines their leading role in the perception of information by the neuron. The axon starts from the cell body with the axon mound, which is the generator of a nerve impulse, which is then carried along the axon to other cells. The axon membrane in the synapse contains specific receptors that can respond to various mediators or neuromodulators. Therefore, the process of mediator release by presynaptic endings can be influenced by other neurons. Also, the membrane of the endings contains a large number of calcium channels through which calcium ions enter the ending when it is excited and activate the release of the mediator.

Rice. 3. Scheme of a neuron (according to I.F. Ivanov): a - structure of a neuron: 7 - body (pericaryon); 2 - core; 3 - dendrites; 4.6 - neurites; 5.8 - myelin sheath; 7- collateral; 9 - node interception; 10 — a kernel of a lemmocyte; 11 - nerve endings; b — types of nerve cells: I — unipolar; II - multipolar; III - bipolar; 1 - neuritis; 2 - dendrite

Usually, in neurons, the action potential occurs in the region of the axon hillock membrane, the excitability of which is 2 times higher than the excitability of other areas. From here, the excitation spreads along the axon and the cell body.

Axons, in addition to the function of conducting excitation, serve as channels for the transport of various substances. Proteins and mediators synthesized in the cell body, organelles and other substances can move along the axon to its end. This movement of substances is called axon transport. There are two types of it - fast and slow axon transport.

Each neuron in the central nervous system performs three physiological roles: it receives nerve impulses from receptors or other neurons; generates its own impulses; conducts excitation to another neuron or organ.

According to their functional significance, neurons are divided into three groups: sensitive (sensory, receptor); intercalary (associative); motor (effector, motor).

In addition to neurons in the central nervous system, there are glial cells, occupying half the volume of the brain. Peripheral axons are also surrounded by a sheath of glial cells - lemmocytes (Schwann cells). Neurons and glial cells are separated by intercellular clefts that communicate with each other and form a fluid-filled intercellular space of neurons and glia. Through this space there is an exchange of substances between nerve and glial cells.

Neuroglial cells perform many functions: supporting, protective and trophic role for neurons; maintain a certain concentration of calcium and potassium ions in the intercellular space; destroy neurotransmitters and other biologically active substances.

Functions of the central nervous system

The central nervous system performs several functions.

Integrative: The body of animals and humans is a complex highly organized system consisting of functionally interconnected cells, tissues, organs and their systems. This relationship, the unification of the various components of the body into a single whole (integration), their coordinated functioning is provided by the central nervous system.

Coordinating: the functions of various organs and systems of the body must proceed in a coordinated manner, since only with this way of life it is possible to maintain the constancy of the internal environment, as well as successfully adapt to changing environmental conditions. The coordination of the activity of the elements that make up the body is carried out by the central nervous system.

Regulatory: the central nervous system regulates all the processes occurring in the body, therefore, with its participation, the most adequate changes in the work of various organs occur, aimed at ensuring one or another of its activities.

Trophic: the central nervous system regulates trophism, the intensity of metabolic processes in the tissues of the body, which underlies the formation of reactions that are adequate to the ongoing changes in the internal and external environment.

Adaptive: the central nervous system communicates the body with the external environment by analyzing and synthesizing various information coming to it from sensory systems. This makes it possible to restructure the activities of various organs and systems in accordance with changes in the environment. It performs the functions of a regulator of behavior necessary in specific conditions of existence. This ensures adequate adaptation to the surrounding world.

Formation of non-directional behavior: the central nervous system forms a certain behavior of the animal in accordance with the dominant need.

Reflex regulation of nervous activity

The adaptation of the vital processes of an organism, its systems, organs, tissues to changing environmental conditions is called regulation. The regulation provided jointly by the nervous and hormonal systems is called neurohormonal regulation. Thanks to the nervous system, the body carries out its activities on the principle of a reflex.

The main mechanism of the activity of the central nervous system is the response of the body to the actions of the stimulus, carried out with the participation of the central nervous system and aimed at achieving a useful result.

Reflex in Latin means "reflection". The term "reflex" was first proposed by the Czech researcher I.G. Prohaska, who developed the doctrine of reflective actions. The further development of the reflex theory is associated with the name of I.M. Sechenov. He believed that everything unconscious and conscious is accomplished by the type of reflex. But then there were no methods for an objective assessment of brain activity that could confirm this assumption. Later, an objective method for assessing brain activity was developed by Academician I.P. Pavlov, and he received the name of the method of conditioned reflexes. Using this method, the scientist proved that the basis of the higher nervous activity of animals and humans are conditioned reflexes, which are formed on the basis of unconditioned reflexes due to the formation of temporary connections. Academician P.K. Anokhin showed that the whole variety of animal and human activities is carried out on the basis of the concept of functional systems.

The morphological basis of the reflex is , consisting of several nerve structures, which ensures the implementation of the reflex.

Three types of neurons are involved in the formation of a reflex arc: receptor (sensitive), intermediate (intercalary), motor (effector) (Fig. 6.2). They are combined into neural circuits.

Rice. 4. Scheme of regulation according to the reflex principle. Reflex arc: 1 - receptor; 2 - afferent path; 3 - nerve center; 4 - efferent path; 5 - working body (any organ of the body); MN, motor neuron; M - muscle; KN — command neuron; SN — sensory neuron, ModN — modulatory neuron

The receptor neuron's dendrite contacts the receptor, its axon goes to the CNS and interacts with the intercalary neuron. From the intercalary neuron, the axon goes to the effector neuron, and its axon goes to the periphery to the executive organ. Thus, a reflex arc is formed.

Receptor neurons are located on the periphery and in internal organs, while intercalary and motor neurons are located in the central nervous system.

In the reflex arc, five links are distinguished: the receptor, the afferent (or centripetal) path, the nerve center, the efferent (or centrifugal) path and the working organ (or effector).

The receptor is a specialized formation that perceives irritation. The receptor consists of specialized highly sensitive cells.

The afferent link of the arc is a receptor neuron and conducts excitation from the receptor to the nerve center.

The nerve center is formed by a large number of intercalary and motor neurons.

This link of the reflex arc consists of a set of neurons located in different parts of the central nervous system. The nerve center receives impulses from receptors along the afferent pathway, analyzes and synthesizes this information, and then transmits the generated action program along efferent fibers to the peripheral executive organ. And the working body carries out its characteristic activity (the muscle contracts, the gland secretes a secret, etc.).

A special link of reverse afferentation perceives the parameters of the action performed by the working organ and transmits this information to the nerve center. The nerve center is the action acceptor of the back afferent link and receives information from the working organ about the completed action.

The time from the beginning of the action of the stimulus on the receptor until the appearance of a response is called the reflex time.

All reflexes in animals and humans are divided into unconditioned and conditioned.

Unconditioned reflexes - congenital, hereditary reactions. Unconditioned reflexes are carried out through reflex arcs already formed in the body. Unconditioned reflexes are species-specific, i.e. common to all animals of this species. They are constant throughout life and arise in response to adequate stimulation of the receptors. Unconditioned reflexes are also classified according to their biological significance: food, defensive, sexual, locomotor, indicative. According to the location of the receptors, these reflexes are divided into: exteroceptive (temperature, tactile, visual, auditory, gustatory, etc.), interoceptive (vascular, cardiac, gastric, intestinal, etc.) and proprioceptive (muscular, tendon, etc.). By the nature of the response - to motor, secretory, etc. By finding the nerve centers through which the reflex is carried out - to the spinal, bulbar, mesencephalic.

Conditioned reflexes - reflexes acquired by the organism in the course of its individual life. Conditioned reflexes are carried out through newly formed reflex arcs on the basis of reflex arcs of unconditioned reflexes with the formation of a temporary connection between them in the cerebral cortex.

Reflexes in the body are carried out with the participation of endocrine glands and hormones.

At the heart of modern ideas about the reflex activity of the body is the concept of a useful adaptive result, to achieve which any reflex is performed. Information about the achievement of a useful adaptive result enters the central nervous system through the feedback link in the form of reverse afferentation, which is an essential component of reflex activity. The principle of reverse afferentation in reflex activity was developed by P.K. Anokhin and is based on the fact that the structural basis of the reflex is not a reflex arc, but a reflex ring, which includes the following links: receptor, afferent nerve pathway, nerve center, efferent nerve pathway, working organ , reverse afferentation.

When any link of the reflex ring is turned off, the reflex disappears. Therefore, the integrity of all links is necessary for the implementation of the reflex.

Properties of nerve centers

Nerve centers have a number of characteristic functional properties.

Excitation in the nerve centers spreads unilaterally from the receptor to the effector, which is associated with the ability to conduct excitation only from the presynaptic membrane to the postsynaptic one.

Excitation in the nerve centers is carried out more slowly than along the nerve fiber, as a result of slowing down the conduction of excitation through the synapses.

In the nerve centers, summation of excitations can occur.

There are two main ways of summation: temporal and spatial. At temporary summation several excitatory impulses come to the neuron through one synapse, are summed up and generate an action potential in it, and spatial summation manifests itself in the case of receipt of impulses to one neuron through different synapses.

In them, the rhythm of excitation is transformed, i.e. a decrease or increase in the number of excitation impulses leaving the nerve center compared to the number of impulses coming to it.

The nerve centers are very sensitive to the lack of oxygen and the action of various chemicals.

Nerve centers, unlike nerve fibers, are capable of rapid fatigue. Synaptic fatigue during prolonged activation of the center is expressed in a decrease in the number of postsynaptic potentials. This is due to the consumption of the mediator and the accumulation of metabolites that acidify the environment.

The nerve centers are in a state of constant tone, due to the continuous flow of a certain number of impulses from the receptors.

Nerve centers are characterized by plasticity - the ability to increase their functionality. This property may be due to synaptic facilitation - improved conduction in synapses after a short stimulation of the afferent pathways. With frequent use of synapses, the synthesis of receptors and mediator is accelerated.

Along with excitation, inhibitory processes occur in the nerve center.

CNS coordination activity and its principles

One of the important functions of the central nervous system is the coordination function, which is also called coordination activities CNS. It is understood as the regulation of the distribution of excitation and inhibition in neuronal structures, as well as the interaction between nerve centers, which ensure the effective implementation of reflex and voluntary reactions.

An example of the coordination activity of the central nervous system can be the reciprocal relationship between the centers of respiration and swallowing, when during swallowing the center of respiration is inhibited, the epiglottis closes the entrance to the larynx and prevents food or liquid from entering the airways. The coordination function of the central nervous system is fundamentally important for the implementation of complex movements carried out with the participation of many muscles. Examples of such movements can be the articulation of speech, the act of swallowing, gymnastic movements that require the coordinated contraction and relaxation of many muscles.

Principles of coordination activities

  • Reciprocity - mutual inhibition of antagonistic groups of neurons (flexor and extensor motoneurons)
  • End neuron - activation of an efferent neuron from different receptive fields and competition between different afferent impulses for a given motor neuron
  • Switching - the process of transferring activity from one nerve center to the antagonist nerve center
  • Induction - change of excitation by inhibition or vice versa
  • Feedback is a mechanism that ensures the need for signaling from the receptors of the executive organs for the successful implementation of the function
  • Dominant - a persistent dominant focus of excitation in the central nervous system, subordinating the functions of other nerve centers.

The coordination activity of the central nervous system is based on a number of principles.

Convergence principle is realized in convergent chains of neurons, in which the axons of a number of others converge or converge on one of them (usually efferent). Convergence ensures that the same neuron receives signals from different nerve centers or receptors of different modalities (different sense organs). On the basis of convergence, a variety of stimuli can cause the same type of response. For example, the watchdog reflex (turning the eyes and head - alertness) can be caused by light, sound, and tactile influences.

The principle of a common final path follows from the principle of convergence and is close in essence. It is understood as the possibility of implementing the same reaction triggered by the final efferent neuron in the hierarchical nervous circuit, to which the axons of many other nerve cells converge. An example of a classic final pathway is the motoneurons of the anterior horns of the spinal cord or the motor nuclei of the cranial nerves, which directly innervate the muscles with their axons. The same motor response (for example, bending the arm) can be triggered by the receipt of impulses to these neurons from the pyramidal neurons of the primary motor cortex, neurons of a number of motor centers of the brain stem, interneurons of the spinal cord, axons of sensory neurons of the spinal ganglia in response to the action of signals perceived by different sense organs (to light, sound, gravitational, pain or mechanical effects).

Principle of divergence is realized in divergent chains of neurons, in which one of the neurons has a branching axon, and each of the branches forms a synapse with another nerve cell. These circuits perform the functions of simultaneously transmitting signals from one neuron to many other neurons. Due to divergent connections, signals are widely distributed (irradiated) and many centers located at different levels of the CNS are quickly involved in the response.

The principle of feedback (reverse afferentation) It consists in the possibility of transmitting information about the ongoing reaction (for example, about movement from muscle proprioceptors) back to the nerve center that triggered it, via afferent fibers. Thanks to feedback, a closed neural circuit (circuit) is formed, through which it is possible to control the progress of the reaction, adjust the strength, duration and other parameters of the reaction, if they have not been implemented.

The participation of feedback can be considered on the example of the implementation of the flexion reflex caused by mechanical action on skin receptors (Fig. 5). With reflex contraction of the flexor muscle, the activity of proprioreceptors and the frequency of sending nerve impulses along the afferent fibers to the a-motoneurons of the spinal cord, which innervate this muscle, change. As a result, a closed control loop is formed, in which the role of the feedback channel is played by afferent fibers that transmit information about the contraction to the nerve centers from the muscle receptors, and the role of the direct communication channel is played by the efferent fibers of motor neurons going to the muscles. Thus, the nerve center (its motor neurons) receives information about the change in the state of the muscle caused by the transmission of impulses along the motor fibers. Thanks to the feedback, a kind of regulatory nerve ring is formed. Therefore, some authors prefer to use the term "reflex ring" instead of the term "reflex arc".

The presence of feedback is important in the mechanisms of regulation of blood circulation, respiration, body temperature, behavioral and other reactions of the body and is discussed further in the relevant sections.

Rice. 5. Feedback scheme in neural circuits of the simplest reflexes

The principle of reciprocal relations is realized in the interaction between the nerve centers-antagonists. For example, between a group of motor neurons that control arm flexion and a group of motor neurons that control arm extension. Due to reciprocal relationships, excitation of neurons in one of the antagonistic centers is accompanied by inhibition of the other. In the given example, the reciprocal relationship between the flexion and extension centers will be manifested by the fact that during the contraction of the flexor muscles of the arm, an equivalent relaxation of the extensor muscles will occur, and vice versa, which ensures smooth flexion and extension movements of the arm. Reciprocal relations are carried out due to the activation of inhibitory interneurons by the neurons of the excited center, the axons of which form inhibitory synapses on the neurons of the antagonistic center.

Dominant principle is also realized on the basis of the features of interaction between nerve centers. The neurons of the dominant, most active center (center of excitation) have persistent high activity and suppress excitation in other nerve centers, subjecting them to their influence. Moreover, the neurons of the dominant center attract afferent nerve impulses addressed to other centers and increase their activity due to the receipt of these impulses. The dominant center can be in a state of excitement for a long time without signs of fatigue.

An example of a state caused by the presence of a dominant focus of excitation in the central nervous system is the state after an important event experienced by a person, when all his thoughts and actions somehow become connected with this event.

Dominant Properties

  • Hyperexcitability
  • Excitation persistence
  • Excitation inertia
  • Ability to suppress subdominant foci
  • Ability to sum excitations

The considered principles of coordination can be used, depending on the processes coordinated by the CNS, separately or together in various combinations.