Информационная поддержка школьников и студентов
Поиск по сайту

Исследовать функцию онлайн с подробным решением. Задачи из сборника Кузнецова Л. А. Применим эту схему для функции

Опорными точками при исследовании функций и построения их графиков служат характерные точки – точки разрыва, экстремума, перегиба, пересечения с осями координат. С помощью дифференциального исчисления можно установить характерные особенности изменения функций: возрастание и убывание, максимумы и минимумы, направление выпуклости и вогнутости графика, наличие асимптот.

Эскиз графика функции можно (и нужно) набрасывать уже после нахождения асимптот и точек экстремума, а сводную таблицу исследования функции удобно заполнять по ходу исследования.

Обычно используют следующую схему исследования функции.

1. Находят область определения, интервалы непрерывности и точки разрыва функции .

2. Исследуют функцию на чётность или нечётность (осевая или центральная симметрия графика.

3. Находят асимптоты (вертикальные, горизонтальные или наклонные).

4. Находят и исследуют промежутки возрастания и убывания функции, точки её экстремума.

5. Находят интервалы выпуклости и вогнутости кривой, точки её перегиба .

6. Находят точки пересечения кривой с осями координат, если они существуют.

7. Составляют сводную таблицу исследования.

8. Строят график, учитывая исследование функции, проведённое по вышеописанным пунктам.

Пример. Исследовать функцию

и построить её график.

7. Составим сводную таблицу исследования функции, куда внесём все характерные точки и интервалы между ними. Учитывая чётность функции, получаем следующую таблицу:

Особенности графика

[-1, 0[

Возрастает

Выпуклый

(0; 1) – точка максимума

]0, 1[

Убывает

Выпуклый

Точка перегиба, образует с осью Ox тупой угол

Решебник Кузнецова.
III Графики

Задание 7. Провести полное исследование функции и построить её график.

        Прежде, чем Вы начнёте скачивать свои варианты, попробуйте решить задачу по образцу, приведённому ниже для варианта 3. Часть вариантов заархивированы в формате.rar

        7.3 Провести полное исследование функции и построить её график

Решение.

        1) Область определения:         или        , то есть        .
.
Таким образом:         .

        2) Точек пересечения с осью Ox нет. Действительно, уравнение         не имеет решений.
Точек пересечения с осью Oy нет, так как        .

        3) Функция ни чётная, ни нечётная. Симметрии относительно оси ординат нет. Симметрии относительно начала координат тоже нет. Так как
.
Видим, что         и        .

        4) Функция непрерывна в области определения
.

; .

; .
Следовательно, точка         является точкой разрыва второго рода (бесконечный разрыв).

5) Вертикальные асимптоты:        

Найдём наклонную асимптоту        . Здесь

;
.
Следовательно, имеем горизонтальную асимптоту: y=0 . Наклонных асимптот нет.

        6) Найдём первую производную. Первая производная:
.
И вот почему
.
Найдём стационарные точки, где производная равна нулю, то есть
.

        7) Найдём вторую производную. Вторая производная:
.
И в этом легко убедится, так как

Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:

    Область существования функции.

Это понятие включает в себя и область значений и область определения функции.

    Точки разрыва. (Если они имеются).

    Интервалы возрастания и убывания.

    Точки максимума и минимума.

    Максимальное и минимальное значение функции на ее области определения.

    Области выпуклости и вогнутости.

    Точки перегиба.(Если они имеются).

    Асимптоты.(Если они имеются).

    Построение графика.

Применение этой схемы рассмотрим на примере.

Пример. Исследовать функцию и построить ее график.

Находим область существования функции. Очевидно, что областью определения функции является область (-; -1)  (-1; 1)  (1; ).

В свою очередь, видно, что прямые х = 1, х = -1 являются вертикальными асимптотами кривой.

Областью значений данной функции является интервал (-; ).

Точками разрыва функции являются точки х = 1, х = -1.

Находим критические точки .

Найдем производную функции

Критические точки: x = 0; x = -;x = ;x = -1; x = 1.

Найдем вторую производную функции

Определим выпуклость и вогнутость кривой на промежутках.

- < x < -,y < 0, кривая выпуклая

-

1 < x < 0, y > 0, кривая вогнутая

0 < x < 1, y < 0, кривая выпуклая

1 < x < ,y > 0, кривая вогнутая

< x < , y > 0, кривая вогнутая

Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.

- < x < -,y > 0, функция возрастает

-

1 < x < 0, y < 0, функция убывает

0 < x < 1, y < 0, функция убывает

1 < x < ,y < 0, функция убывает

< x < , y > 0, функция возрастает

Видно, что точка х = -является точкоймаксимума , а точка х = является точкойминимума . Значения функции в этих точках равны соответственно 3/2 и -3/2.

Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты .

Итого, уравнение наклонной асимптоты – y = x.

Построим график функции:

Ниже рассмотрим несколько примеров исследования методами дифференциального исчисления различных типов функций.

Пример: Методами дифференциального исчисления

1. Областью определения данной функции являются все действительные числа (-; ).

3. Точки пересечения с координатными осями: c осью Оу: x = 0; y = 1;

с осью Ох: y = 0; x = 1;

4. Точки разрыва и асимптоты: Вертикальных асимптот нет.

Наклонные асимптоты: общее уравнение y = kx + b;

Итого: у = -х – наклонная асимптота.

5. Возрастание и убывание функции, точки экстремума.

Видно, что у 0 при любом х  0, следовательно, функция убывает на всей области определения и не имеет экстремумов. В точке х = 0 первая производная функции равна нулю, однако в этой точке убывание не сменяется на возрастание, следовательно, в точке х = 0 функция скорее всего имеет перегиб. Для нахождения точек перегиба, находим вторую производную функции.

y = 0 при х =0 и y =  при х = 1.

Точки (0,1) и (1,0) являются точками перегиба, т.к. y(1-h) < 0; y(1+h) >0; y(-h) > 0; y(h) < 0 для любого h > 0.

6. Построим график функции.

Пример: Исследовать функцию и построить ее график.

1. Областью определения функции являются все значения х, кроме х = 0.

2. Функция является функцией общего вида в смысле четности и нечетности.

3. Точки пересечения с координатными осями: c осью Ох: y = 0; x =

с осью Оу: x = 0; y – не существует.

4. Точка х = 0 является точкой разрыва , следовательно, прямая х = 0 является вертикальной асимптотой.

Наклонные асимптоты ищем в виде: y = kx + b.

Наклонная асимптота у = х.

5. Находим точки экстремума функции.

; y = 0 при х = 2, у =  при х = 0.

y > 0 при х  (-, 0) – функция возрастает,

y < 0 при х  (0, 2) – функция убывает,

у > 0 при х  (2, ) – функция возрастает.

Таким образом, точка (2, 3) является точкой минимума.

Для определения характера выпуклости/вогнутости функции находим вторую производную.

> 0 при любом х  0, следовательно, функция вогнутая на всей области определения.

6. Построим график функции.

Пример: Исследовать функцию и построить ее график.

    Областью определения данной функции является промежуток х  (-, ).

    В смысле четности и нечетности функция является функцией общего вида.

    Точки пересечения с осями координат: с осью Оу: x = 0, y = 0;

с осью Ох: y = 0, x = 0, x = 1.

    Асимптоты кривой.

Вертикальных асимптот нет.

Попробуем найти наклонные асимптоты в виде y = kx + b.

- наклонных асимптот не существует.

    Находим точки экстремума.

Для нахождения критических точек следует решить уравнение 4х 3 – 9х 2 +6х –1 = 0.

Для этого разложим данный многочлен третьей степени на множители.

Подбором можно определить, что одним из корней этого уравнения является число

х = 1. Тогда:

4x 3 – 9x 2 + 6x – 1 x - 1

 4x 3 – 4x 2 4x 2 – 5x + 1

Тогда можно записать (х – 1)(4х 2 – 5х + 1) = 0. Окончательно получаем две критические точки: x = 1 и x = ¼.

Примечание. Операции деления многочленов можно было избежать, если при нахождении производной воспользоваться формулой производной произведения:

Найдем вторую производную функции: 12x 2 – 18x + 6. Приравнивая к нулю, находим:

Систематизируем полученную информацию в таблице:

вып. вниз

возрастает

вып. вниз

возрастает

вып.вверх

возрастает

вып. вниз

    Построим график функции.


Стоит задача: провести полное исследование функции и построить ее график .

Каждый студент прошел через подобные задачи.

Дальнейшее изложение предполагает хорошее знание . Рекомендуем обращаться к этому разделу при возникновении вопросов.


Алгоритм исследования функции состоит из следующих шагов.

    Нахождение области определения функции.

    Это очень важный шаг исследования функции, так как все дальнейшие действия будут проводиться на области определения.

    В нашем примере нужно найти нули знаменателя и исключить их из области действительных чисел.

    (В других примерах могут быть корни, логарифмы и т.п. Напомним, что в этих случаях область определения ищется следующим образом:
    для корня четной степени, например, - область определения находится из неравенства ;
    для логарифма - область определения находится из неравенства ).

    Исследование поведения функции на границе области определения, нахождение вертикальных асимптот.

    На границах области определения функция имеет вертикальные асимптоты , если в этих граничных точках бесконечны.

    В нашем примере граничными точками области определения являются .

    Исследуем поведение функции при приближении к этим точкам слева и справа, для чего найдем односторонние пределы:

    Так как односторонние пределы бесконечны, то прямые являются вертикальными асимптотами графика.

    Исследование функции на четность или нечетность.

    Функция является четной , если . Четность функции указывает на симметрию графика относительно оси ординат.

    Функция является нечетной , если . Нечетность функции указывает на симметрию графика относительно начала координат.

    Если же ни одно из равенств не выполняется, то перед нами функция общего вида.

    В нашем примере выполняется равенство , следовательно, наша функция четная. Будем учитывать это при построении графика - он будет симметричен относительно оси oy .

    Нахождение промежутков возрастания и убывания функции, точек экстремума.

    Промежутки возрастания и убывания являются решениями неравенств и соответственно.

    Точки, в которых производная обращается в ноль, называют стационарными .

    Критическими точками функции называют внутренние точки области определения, в которых производная функции равна нулю или не существует.

    ЗАМЕЧАНИЕ (включать ли критические точки в промежутки возрастания и убывания).

    Мы будем включать критические точки в промежутки возрастания и убывания, если они принадлежат области определения функции.

    Таким образом, чтобы определить промежутки возрастания и убывания функции

    • во-первых, находим производную;
    • во-вторых, находим критические точки;
    • в-третьих, разбиваем область определения критическими точками на интервалы;
    • в-четвертых, определяем знак производной на каждом из промежутков. Знак «плюс» будет соответствовать промежутку возрастания, знак «минус» - промежутку убывания.

    Поехали!

    Находим производную на области определения (при возникновении сложностей, смотрите раздел ).

    Находим критические точки, для этого:

    Наносим эти точки на числовую ось и определяем знак производной внутри каждого полученного промежутка. Как вариант, можно взять любую точку из промежутка и вычислить значение производной в этой точке. Если значение положительное, то ставим плюсик над этим промежутком и переходим к следующему, если отрицательное, то ставим минус и т.д. К примеру, , следовательно, над первым слева интервалом ставим плюс.

    Делаем вывод:

    Схематично плюсами / минусами отмечены промежутки где производная положительна / отрицательна. Возрастающие / убывающие стрелочки показывают направление возрастания / убывания.

    Точками экстремума функции являются точки, в которых функция определена и проходя через которые производная меняет знак.

    В нашем примере точкой экстремума является точка х=0 . Значение функции в этой точке равно . Так как производная меняет знак с плюса на минус при прохождении через точку х=0 , то (0; 0) является точкой локального максимума. (Если бы производная меняла знак с минуса на плюс, то мы имели бы точку локального минимума).

    Нахождение промежутков выпуклости и вогнутости функции и точек перегиба.

    Промежутки вогнутости и выпуклости функции находятся при решениями неравенств и соответственно.

    Иногда вогнутость называют выпуклостью вниз, а выпуклость – выпуклостью вверх.

    Здесь также справедливы замечания, подобные замечаниям из пункта про промежутки возрастания и убывания.

    Таким образом, чтобы определить промежутки вогнутости и выпуклости функции :

    • во-первых, находим вторую производную;
    • во-вторых, находим нули числителя и знаменателя второй производной;
    • в-третьих, разбиваем область определения полученными точками на интервалы;
    • в-четвертых, определяем знак второй производной на каждом из промежутков. Знак «плюс» будет соответствовать промежутку вогнутости, знак «минус» - промежутку выпуклости.

    Поехали!

    Находим вторую производную на области определения.

    В нашем примере нулей числителя нет, нули знаменателя .

    Наносим эти точки на числовую ось и определяем знак второй производной внутри каждого полученного промежутка.

    Делаем вывод:

    Точка называется точкой перегиба , если в данной точке существует касательная к графику функции и вторая производная функции меняет знак при прохождении через .

    Другими словами, точками перегиба могут являться точки, проходя через которые вторая производная меняет знак, в самих точках либо равна нулю, либо не существует, но эти точки входят в область определения функции.

    В нашем примере точек перегиба нет, так как вторая производная меняет знак проходя через точки , а они не входят в область определения функции.

    Нахождение горизонтальных и наклонных асимптот.

    Горизонтальные или наклонные асимптоты следует искать лишь тогда, когда функция определена на бесконечности.

    Наклонные асимптоты ищутся в виде прямых , где и .

    Если k=0 и b не равно бесконечности, то наклонная асимптота станет горизонтальной .

    Кто такие вообще эти асимптоты?

    Это такие линии, к которым приближается график функции на бесконечности. Таким образом, они очень помогают при построении графика функции.

    Если горизонтальных или наклонных асимптот нет, но функция определена на плюс бесконечности и (или) минус бесконечности, то следует вычислить предел функции на плюс бесконечности и (или) минус бесконечности, чтобы иметь представление о поведении графика функции.

    Для нашего примера

    - горизонтальная асимптота.

    На этом с исследование функции завершается, переходим к построению графика.

    Вычисляем значения функции в промежуточных точках.

    Для более точного построения графика рекомендуем найти несколько значений функции в промежуточных точках (то есть в любых точках из области определения функции).

    Для нашего примера найдем значения функции в точках х=-2 , х=-1 , х=-3/4 , х=-1/4 . В силу четности функции, эти значения будут совпадать со значениями в точках х=2 , х=1 , х=3/4 , х=1/4.

    Построение графика.

    Сначала строим асимптоты, наносим точки локальных максимумов и минимумов функции, точки перегиба и промежуточные точки. Для удобства построения графика можно нанести и схематическое обозначение промежутков возрастания, убывания, выпуклости и вогнутости, не зря же мы проводили исследование функции =).

    Осталось провести линии графика через отмеченные точки, приближая к асимптотам и следуя стрелочкам.

    Этим шедевром изобразительного искусства задача полного исследования функции и построения графика закончена.

Графики некоторых элементарных функций можно строить с использованием графиков основных элементарных функций.

Полное исследование функций и построение их графиков удобно выполнять по следующей схеме:

1) найти область определения функции;

2) выяснить, не является ли функция чётной или нечётной, периодической;

3) исследовать непрерывность, найти точки разрыва и выяснить характер разрывов;

4) найти асимптоты графика функции;

5) исследовать монотонность функции и найти ее экстремумы;

6) найти точки перегиба, установить интервалы выпуклости и вогнутости графика функции;

7) обозначить дополнительные точки графика функции, например, точки его пересечения с осями координат.

Результат каждого пункта должен сразу отражаться на графике и согласовываться с результатами исследования по предыдущим пунктам.

Пример 1 .

Провести полное исследование функции и построить график .

1. Функция определена в интервалах хÎ (-¥; 1) È (-1; +¥).

2. Функция не может быть четной или нечетной, т.к. ее область определения не является симметричной относительно 0. Следовательно, данная функция общего вида, т.е. свойством четности не обладает. Также функция не является периодической.

Напомним определения:

Функция называется четной , если выполняются два условия:

a) ее область определения симметрична относительно нуля,

b) для всех значений х из области определения выполняется равенство .

График четной функции имеет осевую симметрию относительно оси OY .

Функция называется нечетной , если

a) ее область определения функции симметрична относительно нуля,

b) при "х из области определения.

График нечетной функции имеет центральную симметрию относительно начала координат.

Функция называется периодической , если существует число Т > 0 , такое что выполняется равенство для "х из области определения.

Число Т называется периодом функции , а ее график достаточно построить на любом промежутке длиной Т , а затем периодически продолжить на всю область определения.

3. Функция является непрерывной при всех хÎ (-¥; -1) È (-1; +¥).

Данная функция является элементарной, которая образована делением двух непрерывных основных элементарных функций и . Поэтому, по свойствам непрерывных функций, данная функция непрерывна во всех точках, в которых она определена.

Точка х = -1 является точкой разрыва, т.к. в ней данная функция не определена. Чтобы определить характер (тип) разрыва, вычислим . Следовательно, при х = -1 функция имеет бесконечный разрыв (разрыв II рода).

4. Асимптоты графика функции.

Вертикальной асимптотой является прямая х = -1 (это следует из исследования разрыва функции).

Наклонные асимптоты ищем уравнением , где


Таким образом, - это уравнение наклонной асимптоты (при х® ±¥).

5. Монотонность и экстремумы функции определим с помощью ее первой производной:

Критические точки определяем из условий:

y max =y(-3)= .

6. Интервалы выпуклости и вогнутости графика функции, ее точки перегиба находим с помощью второй производной:

Подозрительные на перегиб точки определяем из условий:

Достаточные условия выпуклости, вогнутости и точек перегиба:

Точка О(0; 0) является точкой перегиба графика.

Часто результаты исследования функции с помощью первой и второй производной оформляют в виде общей таблицы, отражающей основные свойства графика функции:

x (-¥;-3) -3 (-3;-1) -1 (-1;0) (0;+¥)
+ - не существует + +
- - - не существует - +
возрастает, вогнута max Убывает, вогнута не существует возрастает, вогнута = 0 точка перегиба возрастает, выпукла

Все полученные результаты исследования функции отражаются ее графиком.

Пример 2 .

ООФ: хÎ (-¥; - ) È (- ; ) È ( ;+¥).

Функция является нечетной, так как ее область определения симметрична относительно нуля и для "х Î ООФ выполняется равенство:

Поэтому график функции имеет центральную симметрию относительно начала координат.

Функция является непрерывной при всех хÎ (-¥; - ) È (- ; ) È ( ; +¥), т.к. элементарная функция непрерывна на своей ООФ. Точки х=- и х= являются точками бесконечного разрыва, так как ,

Вертикальными асимптотами графика являются прямые х = - и х = .

Наклонные асимптоты: , где

= = 0 .

Это уравнение наклонной асимптоты.

Интервалы возрастания и убывания функции, ее экстремумы.

Необходимые условия экстремумов:

Þ х 1 = 0, х 2 = 3, х 3 = -3 - критические точки.

Достаточные условия монотонности и экстремумов:

y max =y(-3)= ;

y min =y(3)= .

Интервалы выпуклости, вогнутости графика функции и точки перегибов:

Точка х = 0 подозрительная на перегиб.

Достаточные условия:

Точка О(0; 0) является точкой перегиба.

Общую таблицу основных свойств графика для данной функции можно составить только для хÎ }