Информационная поддержка школьников и студентов
Поиск по сайту

Решение определенных интегралов методом симпсона. Оценка точности вычисления «неберущихся» интегралов. Остаточный член формулы Симпсона равен

Метод трапеций

Разобьем отрезок на равных частей при помощи точек:

Метод трапеций заключается в замене интеграла суммой:


Абсолютная погрешность приближения, полученного по формуле трапеций, оценивается с помощью формулы, где.

Метод парабол (метод Симпсона)

а) Через любые три точки с координатами проходит только одна парабола.

б) Выразим площадь под параболой на отрезке через:

Учитывая значения и из пункта а) следует:

в) Разобьем отрезок на равных частей при помощи точек:

Метод парабол заключается в замене интеграла суммой:

Для приближенных практических расчетов применяется формула:


Абсолютная погрешность вычисления по формуле (4) оценивается соотношением, где.

Оценка точности вычисления «неберущихся» интегралов

В данной работе вычисление абсолютной и относительной погрешности проводится при условии, что известно точное значение определенного интеграла. Однако не всякая первообразная, даже тогда, когда она существует, выражается в конечном виде через элементарные функции. Таковы первообразные, выраженные интегралами, и т.д. Во всех подобных случаях первообразная представляет собой некоторую новую функцию, которая не сводится к комбинации конечного числа элементарных функций.

Определенные интегралы от таких функций можно вычислить только приближенно. Для оценки точности вычисления в таких случаях используют, например, правило Рунге. В данном случае интеграл вычисляется по выбранной формуле (прямоугольников, трапеций, парабол Симпсона) при числе шагов, равном n, а затем при числе шагов, равном. Погрешность вычисления значения интеграла при числе шагов, равном, вычисляется по формуле Рунге:, для формул прямоугольников и трапеций, а для формулы Сипсона. Таким образом, интеграл вычисляется для последовательных значений числа шагов, ..., где - начальное число шагов. Процесс вычислений заканчивается, когда для очередного значения будет выполнено условие, где - заданная точность.

Для того чтобы не вычислять один и тот же интеграл по нескольку раз для разных разбиений отрезка интегрирования, можно вычислить шаг интегрирования заранее.

Пример. Выбрать шаг интегрирования для вычисления интеграла с точностью 0,01 пользуясь квадратурными формулами прямоугольников, трапеций, Симпсона.

Квадратурная формула прямоугольников.

Вычислим, при каком шаге погрешность будет составлять 0,01:

подынтегральный трапеция парабола неберущийся

Поскольку, то.

При шаге отрезок разбивается на равностоящих узлов.

Квадратурная формула трапеций.

Поскольку, .

При шаге,отрезок разбивается на равностоящих узлов.

Квадратурная формула Симпсона.

Вычислим, при каком шаге погрешность составит 0,01:

При шаге, отрезок разбивается на равностоящих узлов.

Как и следовало ожидать, наименьшее количество равностоящих узлов получается при вычислении интеграла по квадратурной формуле Симпсона.

Студенту предлагается работа, состоящая из четырех этапов:

  • 1 этап - точное вычисление определенного интеграла.
  • 2 этап - приближенное вычисление определенного интеграла одним из методов: прямоугольников или трапеций.
  • 3 этап - приближенное вычисление определенного интеграла методом парабол.

4 этап - расчет и сравнение абсолютной и относительной ошибок приближенных методов: , где - точное решение интеграла, - значение интеграла, полученное с помощью приближенных методов.

Построение графика подынтегральной функции.

Варианты и образец выполнения РГР приведены ниже.

Варианты

№ варианта

Образец выполнения РГР

Задание. Вычислить интеграл

1. Точное вычисление:


2. Приближенное вычисление с помощью формул прямоугольников:

Составим таблицу:

По первой формуле прямоугольников получаем:

0,1 = 0,1·3,062514 = 0,306251.

По второй формуле прямоугольников получаем:

0,1 = 0,1· 4,802669 = 0,480267.

В данном случае первая формула дает значение интеграла с недостатком, вторая - с избытком.

3. Приближенное вычисление по формуле трапеций:

В нашем случае получаем:

0,1 = =0,1 = 0,1·4,095562 = =0,409556.


Вычислим относительную и абсолютную погрешности.

4. Приближенное вычисление по формуле Симпсона:

В нашем случае получаем:


Вычислим относительную и абсолютную погрешности.

В действительности, = 0,40631714.

Таким образом, при разбиении отрезка на 10 частей по формуле Симпсона мы получили 5 верных знаков; по формуле трапеций - три верных знака; по формуле прямоугольников мы можем ручаться только за первый знак.

Метод парабол (Симпсона)

Суть метода, формула, оценка погрешности.

Пусть функция y = f(x) непрерывна на отрезке и нам требуется вычислить определенный интеграл.

Разобьем отрезок на n элементарных

отрезков [;], i = 1., n длины 2*h = (b-a)/ n точками

a = < < < < = b. Пусть точки, i = 1., n являются серединами отрезков [;], i = 1., n соответственно. В этом случае все «узлы» определяются из равенства = a + i*h, i = 0,1., 2*n.

На каждом интервале [;], i = 1,2., n подынтегральная функция

приближается квадратичной параболой y = a* + b*x + c, проходящей через точки (; f ()), (; f ()), (; f ()). Отсюда и название метода - метод парабол.

Это делается для того, чтобы в качестве приближенного значения определенного интеграла взять, который мы можем вычислить по формуле Ньютона-Лейбница. В этом и заключается суть метода парабол .

Вывод Формулы Симпсона.

Для получения формулы метода парабол (Симпсона) нам осталось вычислить

Покажем, что через точки (; f ()), (; f ()), (; f ()) проходит только одна квадратичная парабола y = a* + b*x + c. Другими словами, докажем, что коэффициенты, определяются единственным образом.

Так как (; f ()), (; f ()), (; f ()) - точки параболы, то справедливо каждое из уравнений системы

Записанная система уравнений есть система линейных алгебраических уравнений относительно неизвестных переменных, . Определителем основной матрицы этой системы уравнений является определитель Вандермонда, а он отличен от нуля для несовпадающих точек,. Это указывает на то, что система уравнений имеет единственное решение (об этом говорится в статье решение систем линейных алгебраических уравнений), то есть, коэффициенты, определяются единственным образом, и через точки (; f ()), (; f ()), (; f ()) проходит единственная квадратичная парабола.

Перейдем к нахождению интеграла.

Очевидно:

f () = f(0) = + + =

f () = f(h) = + +

f () = f (2*h) = + +

Используем эти равенства, чтобы осуществить последний переход в следующей цепочке равенств:

= = (++) = h/3*(f ()+4*f ()+f ())

Таким образом, можно получить формулу метода парабол:

Пример метода Симпсона.

Вычислить приближенно определенный интеграл по формуле Симпсона с точностью до 0,001. Разбиение начать с двух отрезков

Интеграл, кстати, не берущийся.

Решение: Сразу обращаю внимание на тип задания - необходимо вычислить определенный интеграл с определенной точностью . Как и для метода трапеций, существует формула, которая сразу позволит определить нужное количество отрезков, чтобы гарантированно достичь требуемой точности. Правда, придётся находить четвертую производную и решать экстремальную задачу. На практике практически всегда используется упрощенный метод оценки погрешности.

Начинаю решать. Если у нас два отрезка разбиения, то узлов будет на один больше : , . И формула Симпсона принимает весьма компактный вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:

В верхнюю строку записываем «счётчик» индексов

Во второй строке сначала пишем нижний предел интегрирования a = = 1.2, а затем последовательно приплюсовываем шаг h = 0.4.

В третью строку заносим значения подынтегральной функции. Например, если = 1.6, то. Сколько оставлять знаков после запятой? Действительно, в условии опять об этом ничего не сказано. Принцип тот же, что и в методе трапеций, смотрим на требуемую точность: 0,001. И прибавляем дополнительно 2-3 разряда. То есть, округлять нужно до 5-6 знаков после запятой.

В результате:

Первичный результат получен. Теперь удваиваем количество отрезков до четырёх: . Формула Симпсона для данного разбиения принимает следующий вид:

Вычислим шаг разбиения:

Заполним расчетную таблицу:

Таким образом:

Оцениваем погрешность:


Погрешность больше требуемой точности: 0,002165 > 0,001, поэтому необходимо еще раз удвоить количество отрезков: .

Формула Симпсона становится больше:

Вычислим шаг:

И снова заполним расчетную таблицу:

Таким образом:


Заметим, что здесь вычисления желательно уже расписать более подробно, поскольку формула Симпсона достаточно громоздка:

Оцениваем погрешность:

Погрешность меньше требуемой точности: 0,000247 < 0,001. Осталось взять наиболее точное приближение, округлить его до трёх знаков после запятой и записать.

Кафедра «Высшей математики»

Выполнил: Матвеев Ф.И.

Проверила: Бурлова Л.В.

Улан-Удэ.2002

1.Численные методы интегрирования

2.Вывод формулы Симпсона

3.Геометрическая иллюстрация

4.Выбор шага интегрирования

5.Примеры

1. Численные методы интегрирования

Задача численного интегрирования заключается в вычислении интеграла

посредством ряда значений подынтегральной функции .

Задачи численного интегрирования приходится решать для функций, заданных таблично, функцией, интегралы от которых не берутся в элементарных функциях, и т.д. Рассмотрим только функции одной переменной.

Вместо функции, которую требуется проинтегрировать, проинтегрируем интерполяционный многочлен. Методы, основанные на замене подынтегральной функции интерполяционным многочленом, позволяют по параметрам многочлена оценить точность результата или же по заданной точности подобрать эти параметры.

Численные методы условно можно сгруппировать по способу аппроксимации подынтегральной функции.

Методы Ньютона-Котеса основаны на аппроксимации функции

полиномом степени . Алгоритм этого класса отличается только степенью полинома. Как правило, узлы аппроксимирующего полинома – равноотносящие.

Методы сплайн-интегрирования базируются на аппроксимации функции

сплайном-кусочным полиномом.

В методах наивысшей алгебраической точности (метод Гаусса) используются специально выбранные неравноотносящие узлы, обеспечивающие минимальную погрешность интегрирования при заданном (выбранном) количестве узлов.

Методы Монте-Карло используются чаще всего при вычислении кратных интегралов, узлы выбираются случайным образом, ответ носит вероятностный характер.


суммарная погрешность погрешность усечения

погрешность округления

Независимо от выбранного метода в процессе численного интегрирования необходимо вычислить приближенное значение интеграла и оценить погрешность. Погрешность уменьшается при увеличении n-количества

разбиений отрезка

. Однако при этом возрастает погрешность округления

за счет суммирования значений интегралов, вычисленных на частичных отрезках.

Погрешность усечения зависит от свойств подынтегральной функции и длины

частичного отрезка.

2. Вывод формулы Симпсона

Если для каждой пары отрезков

построить многочлен второй степени, затем проинтегрировать его и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона. Рассмотрим подынтегральную функцию на отрезке . Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с в точках :

Проинтегрируем

:

и называется формулой Симпсона.

Полученное для интеграла

значение совпадает с площадью криволинейной трапеции, ограниченной осью , прямыми , и параболой, проходящей через точки

Оценим теперь погрешность интегрирования по формуле Симпсона. Будем считать, что у

на отрезке существуют непрерывные производные . Составим разность

К каждому из этих двух интегралов уже можно применить теорему о среднем, поскольку

непрерывна на и функция неотрицательна на первом интервале интегрирования и неположительна на втором (то есть не меняет знака на каждом из этих интервалов). Поэтому:

(мы воспользовались теоремой о среднем, поскольку

- непрерывная функция; ).

Дифференцируя

дважды и применяя затем теорему о среднем, получим для другое выражение: , где

Из обеих оценок для

следует, что формула Симпсона является точной для многочленов степени не выше третьей. Запишем формулу Симпсона, напрмер, в виде: , .

Если отрезок

интегрирования слишком велик, то его разбивают на равных частей (полагая ), после чего к каждой паре соседних отрезков , ,..., применяют формулу Симпсона, именно:

Запишем формулу Симпсона в общем виде.

Использование трех точек для интерполирования подынтегрального выражения позволяет использовать параболическую функцию (полином второй степени). Это приводит к формуле Симпсона приближенного вычисления интеграла.

Рассмотрим произвольный интеграл

Воспользуемся заменой переменной таким образом, чтобы границы отрезка интегрирования вместо стали [-1,1], для этого введем переменную z:

Тогда и

Рассмотрим задачу интерполирования полиномом второй степени (параболой) подынтегральной функции, используя в качестве узлов три равноудаленные узловые точки – z = -1, z = 0, z = +1 (шаг равен 1, длина отрезка интегрирования равна 2). Обозначим соответствующие значения подынтегральной функции в узлах интерполяции

Система уравнений для нахождения коэффициентов полинома

Проходящего через три точки , и

примет вид

или

Коэффициенты легко могут быть получены

Вычислим теперь значение интеграла от интерполяционного многочлена

Путем обратной замены переменной вернемся к исходному интегралу. Учтем, что

Получим формулу Симпсона для произвольного интервала интегрирования:

При необходимости, исходный отрезок интегрирования может быть разбит на N сдвоенных отрезков, к каждому из которых применяется формула Симпсона. Шаг интерполирования при этом составит

Для первого отрезка интегрирования узлами интерполирования будут являться точки a, a+h, a+2h, для второго – a+2h, a+3h, a+4h, третьего a+4h, a+5h, a+6h и т.д. Приближенное значение интеграла получается суммированием N площадей:

В данную сумму входят одинаковые слагаемые (для внутренних узлов с четным значением индекса - 2i). Поэтому можно перегруппировать слагаемые в этой сумме таким образом

Что эквивалентно

Так как

Погрешность этого приближенного метода уменьшается пропорционально длине шага интегрирования в четвертой степени, т.е. при увеличении числа интервалов вдвое ошибка уменьшается в 16 раз

Увеличение точности

Здесь мы рассмотрим так называемый процесс Эйткена. Он дает возможность оценить погрешность метода и указывает алгоритм уточнения результатов. Расчет проводится последовательно три раза при различных шагах разбиения h 1 , h 2 , h 3 , причем их отношения постоянны: h 2 / h 1 = h 3 / h 2 = q (например, при делении шага пополам q=0.5). Пусть в результате численного интегрирования получены значения интеграла I 1 , I 2 , I 3 . Тогда уточненное значение интеграла вычисляется по формуле

а порядок точности используемого метода численного интегрирования определяется соотношением

.

Уточнение значения интеграла можно также проводить методом Рунге-Ромберга.

Из анализа погрешностей методов численного интегрирования следует, что точность получаемых результатов зависит как от характера изменения подынтегральной функции, так и от шага интегрирования. Будем считать, что величину шага мы задаем. При этом ясно, что для достижения сравнимой точности при интегрировании слабо меняющейся функции шаг можно выбирать большим, чем при интегрировании резко меняющихся функций.

На практике нередко встречаются случаи, когда подынтегральная функция меняется по-разному на отдельных участках отрезка интегрирования. Это обстоятельство требует такой организации экономичных численных алгоритмов, при которой они автоматически приспосабливались бы к характеру изменения функции. Такие алгоритмы называются адаптивными (приспосабливающимися). Они позволяют вводить разные значения шага интегрирования на отдельных участках отрезка интегрирования. Это дает возможность уменьшить машинное время без потери точности результатов расчета. Подчеркнем, что этот подход используется обычно при задании подынтегральной функции y=f(x) в виде формулы, а не в табличном виде.

Рассмотрим принцип работы адаптивного алгоритма. Первоначально отрезок разбиваем на n частей. В дальнейшем каждый такой элементарный отрезок делим последовательно пополам. Окончательное число шагов, их расположение и размеры зависят от подынтегральной функции и допустимой погрешности e .

К каждому элементарному отрезку применяем формулы численного интегрирования при двух различных его разбиениях. Получаем приближения для интеграла по этому отрезку:

Полученные значения сравниваем и проводим оценку их погрешности. Если погрешность находится в допустимых границах, то одно из этих приближений принимается за значение интеграла по этому элементарному отрезку. В противном случае происходит дальнейшее деление отрезка и вычисление новых приближений. С целью экономии времени точки деления располагаются таким образом, чтобы использовались вычисленные значения в точках предыдущего разбиения.

Процесс деления отрезка пополам и вычисления уточненных значений продолжается до тех пор, пока их разность станет не больше некоторой заданной величины d i, зависящей от e и h:

.

Аналогичная процедура проводится для всех n элементарных отрезков. Величина принимается в качестве искомого значения интеграла. Условия и соответствующий выбор величин d i обеспечивают выполнение условия

Остаточный член квадратурной формулы Симпсона равен , где ξ∈(x 0 ,x 2) или

Назначение сервиса . Сервис предназначен для вычисления определенного интеграла по формуле Симпсона в онлайн режиме.

Инструкция . Введите подынтегральную функцию f(x) , нажмите Решить. Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .

Правила ввода функции

Примеры правильного написания F(x):
1) 10 x e 2x ≡ 10*x*exp(2*x)
2) x e -x +cos(3x) ≡ x*exp(-x)+cos(3*x)
3) x 3 -x 2 +3 ≡ x^3-x^2+3

Вывод формулы Симпсона

Из формулы
при n = 2 получаем

Т.к. x 2 -x 0 = 2h, то имеем . (10)
Это формула Симпсона . Геометрически это означает, что кривую y=f(x) мы заменяем параболой y=L 2 (x), проходящей через три точки: M 0 (x 0 ,y 0), M 1 (x 1 ,y 1), M 2 (x 2 ,y 2).

Остаточный член формулы Симпсона равен


Предположим, что y∈C (4) . Получим явное выражение для R . Фиксируя среднюю точку x 1 и рассматривая R=R(h) как функцию h, будем иметь:
.
Отсюда дифференцируя последовательно три раза по h , получим






Окончательно имеем
,
где ξ 3 ∈(x 1 -h,x 1 +h). Кроме того, имеем: R(0) = 0, R"(0)=0. R""(0)=0. Теперь, последовательно интегрируя R"""(h), используя теорему о среднем, получим


Таким образом, остаточный член квадратурной формулы Симпсона равен
, где ξ∈(x 0 ,x 2). (11)
Следовательно, формула Симпсона является точной для полиномов не только второй, но и третьей степени.
Получим теперь формулу Симпсона для произвольного интервала [a ,b ]. Пусть n = 2m есть четное число узлов сетки {x i }, x i =a+i·h, i=0,...,n, и y i =f(x i). Применяя формулу Симпсона (10) к каждому удвоенному промежутку , ,..., длины 2h , будем иметь


Отсюда получаем общую формулу Симпсона
.(12)
Ошибка для каждого удвоенного промежутка (k=1,...,m) дается формулой (11).

Т.к. число удвоенных промежутков равно m , то

С учетом непрерывности y IV на [a ,b ], можно найти точку ε, такую, что .
Поэтому будем иметь
. (13)
Если задана предельно допустимая погрешность ε, то, обозначив , получим для определения шага h
.
На практике вычисление R по формуле (13) бывает затруднительным. В этом случае можно поступить следующим образом. Вычисляем интеграл I(h)=I 1 с шагом h , I(2h)=I 2 с шагом 2h и т.д. и вычисляем погрешность Δ:
Δ = |I k -I k-1 | ≤ ε. (14)
Если неравенство (14) выполняется (ε - заданная погрешность), то за оценку интеграла берут I k = I(k·h).
Замечание. Если сетка неравномерная, то формула Симпсона приобретает следующий вид (получить самостоятельно)
.
Пусть число узлов n = 2m (четное). Тогда

где h i =x i -x i-1 .

Пример №1 . С помощью формулы Симпсона вычислить интеграл , приняв n = 10.
Решение: Имеем 2m = 10. Отсюда . Результаты вычислений даны в таблице:

i x i y 2i-1 y 2i
0 0 y 0 = 1.00000
1 0.1 0.90909
2 0.2 0.83333
3 0.3 0.76923
4 0.4 0.71429
5 0.5 0.66667
6 0.6 0.62500
7 0.7 0.58824
8 0.8 0.55556
9 0.9 0.52632
10 1.0 y n =0.50000
σ 1 σ 2

По формуле (12) получим .
Рассчитаем погрешность R=R 2 . Т.к. , то .
Отсюда max|y IV |=24 при 0≤x≤1 и, следовательно . Таким образом, I = 0.69315 ± 0.00001.

Пример №2 . В задачах вычислить определенный интеграл приближенно по формуле Симпсона, разбив отрезок интегрирования на 10 равных частей. Вычисления производить с округлением до четвертого десятичного знака.