Информационная поддержка школьников и студентов
Поиск по сайту

Какие интегралы вычисляют методом интегрирования по частям. Метод интегрирования неопределенного интеграла по частям. Применение метода интегрирования по частям

>> Методы интегрирования

Основные методы интегрирования

Определение интеграла, определенный и неопределенный интеграл, таблица интегралов, формула Ньютона-Лейбница, интегрирование по частям, примеры вычисления интегралов.

Неопределенный интеграл

Функция F(x), дифференцируемая в данном промежутке X, называется первообразной для функции f(x), или интегралом от f(x), если для всякого x ∈X справедливо равенство:

F " (x) = f(x). (8.1)

Нахождение всех первообразных для данной функции называется ее интегрированием. Неопределенным интегралом функции f(x) на данном промежутке Х называется множество всех первообразных функций для функции f(x); обозначение -

Если F(x) - какая-нибудь первобразная для функции f(x), то ∫ f(x)dx = F(x) + C, (8.2)

где С- произвольная постоянная.

Таблица интегралов

Непосредственно из определения получаем основные свойства неопределенного интеграла и список табличных интегралов:

1) d∫f(x)dx=f(x)

2)∫df(x)=f(x)+C

3) ∫af(x)dx=a∫f(x)dx (a=const)

4) ∫(f(x)+g(x))dx = ∫f(x)dx+∫g(x)dx

Список табличных интегралов

1. ∫x m dx = x m+1 /(m + 1) +C; (m ≠ -1)

3.∫a x dx = a x /ln a + C (a>0, a ≠1)

4.∫e x dx = e x + C

5.∫sin x dx = cosx + C

6.∫cos x dx = - sin x + C

7. = arctg x + C

8. = arcsin x + C

10. = - ctg x + C

Замена переменной

Для интегрирования многих функций применяют метод замены переменной или подстановки, позволяющий приводить интегралы к табличной форме.

Если функция f(z) непрерывна на [α,β], функция z =g(x) имеет на непрерывную производную и α ≤ g(x) ≤ β, то

∫ f(g(x)) g " (x) dx = ∫f(z)dz, (8.3)

причем после интегрирования в правой части следует сделать подстановку z=g(x).

Для доказательства достаточно записать исходный интеграл в виде:

∫ f(g(x)) g " (x) dx = ∫ f(g(x)) dg(x).

Например:

1)

2) .

Метод интегрирования по частям

Пусть u = f(x) и v = g(x) - функции, имеющие непрерывные . Тогда, по произведения,

d(uv))= udv + vdu или udv = d(uv) - vdu.

Для выражения d(uv) первообразной, очевидно, будет uv, поэтому имеет место формула:

∫ udv = uv - ∫ vdu (8.4.)

Эта формула выражает правило интегрирования по частям . Оно приводит интегрирование выражения udv=uv"dx к интегрированию выражения vdu=vu"dx.

Пусть, например, требуется найти ∫xcosx dx. Положим u = x, dv = cosxdx, так что du=dx, v=sinx. Тогда

∫xcosxdx = ∫x d(sin x) = x sin x - ∫sin x dx = x sin x + cosx + C.

Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Но есть целые классы интегралов, например,

∫x k ln m xdx, ∫x k sinbxdx, ∫ x k cosbxdx, ∫x k e ax и другие, которые вычисляются именно с помощью интегрирования по частям.

Определенный интеграл

Понятие определенного интеграла вводится следующим образом. Пусть на отрезке определена функция f(x). Разобьем отрезок [ a,b] на n частей точками a= x 0 < x 1 <...< x n = b. Из каждого интервала (x i-1 , x i) возьмем произвольную точку ξ i и составим сумму f(ξ i) Δx i где
Δ x i =x i - x i-1 . Сумма вида f(ξ i)Δ x i называется интегральной суммой , а ее предел при λ = maxΔx i → 0, если он существует и конечен, называется определенным интегралом функции f(x) от a до b и обозначается:

F(ξ i)Δx i (8.5).

Функция f(x) в этом случае называется интегрируемой на отрезке , числа a и b носят название нижнего и верхнего предела интеграла .

Для определенного интеграла справедливы следующие свойства:

4), (k = const, k∈R);

5)

6)

7) f(ξ)(b-a) (ξ∈).

Последнее свойство называется теоремой о среднем значении .

Пусть f(x) непрерывна на . Тогда на этом отрезке существует неопределенный интеграл

∫f(x)dx = F(x) + C

и имеет место формула Ньютона-Лейбница , cвязывающая определенный интеграл с неопределенным:

F(b) - F(a). (8.6)

Геометрическая интерпретация: определенный интеграл представляет собой площадь криволинейной трапеции, ограниченной сверху кривой y=f(x), прямыми x = a и x = b и отрезком оси Ox .

Несобственные интегралы

Интегралы с бесконечными пределами и интегралы от разрывных (неограниченных) функций называются несобственными. Несобственные интегралы I рода - это интегралы на бесконечном промежутке, определяемые следующим образом:

(8.7)

Если этот предел существует и конечен, то называется сходящимся несобственным интегралом от f(x) на интервале [а,+ ∞), а функцию f(x) называют интегрируемой на бесконечном промежутке [а,+ ∞). В противном случае про интеграл говорят, что он не существует или расходится .

Аналогично определяются несобственные интегралы на интервалах (-∞,b] и (-∞, + ∞):

Определим понятие интеграла от неограниченной функции. Если f(x) непрерывна для всех значений x отрезка , кроме точки с, в которой f(x) имеет бесконечный разрыв, то несобственным интегралом II рода от f(x) в пределах от a до b называется сумма:

если эти пределы существуют и конечны. Обозначение:

Примеры вычисления интегралов

Пример 3.30. Вычислить ∫dx/(x+2).

Решение. Обозначим t = x+2, тогда dx = dt, ∫dx/(x+2) = ∫dt/t = ln|t| + C = ln|x+2| + C .

Пример 3.31 . Найти ∫ tgxdx.

Решение. ∫ tgxdx = ∫sinx/cosxdx = - ∫dcosx/cosx. Пусть t=cosx, тогда ∫ tgxdx = -∫ dt/t = - ln|t| + C = -ln|cosx|+C.

Пример 3.32 . Найти ∫dx/sinx

Решение.

Пример 3.33. Найти .

Решение. =

.

Пример 3.34 . Найти ∫arctgxdx.

Решение. Интегрируем по частям. Обозначим u=arctgx, dv=dx. Тогда du = dx/(x 2 +1), v=x, откуда ∫arctgxdx = xarctgx - ∫ xdx/(x 2 +1) = xarctgx + 1/2 ln(x 2 +1) +C; так как
∫xdx/(x 2 +1) = 1/2 ∫d(x 2 +1)/(x 2 +1) = 1/2 ln(x 2 +1) +C.

Пример 3.35 . Вычислить ∫lnxdx.

Решение. Применяя формулу интегрирования по частям, получим:
u=lnx, dv=dx, du=1/x dx, v=x. Тогда ∫lnxdx = xlnx - ∫x 1/x dx =
= xlnx - ∫dx + C= xlnx - x + C.

Пример 3.36 . Вычислить ∫e x sinxdx.

Решение. Обозначим u = e x , dv = sinxdx, тогда du = e x dx, v =∫sinxdx= - cosx → ∫ e x sinxdx = - e x cosx + ∫ e x cosxdx. Интеграл ∫e x cosxdx также интегрируем по частям: u = e x , dv = cosxdx, du=e x dx, v=sinx. Имеем:
∫ e x cosxdx = e x sinx - ∫ e x sinxdx. Получили соотношение ∫e x sinxdx = - e x cosx + e x sinx - ∫ e x sinxdx, откуда 2∫e x sinx dx = - e x cosx + e x sinx + С.

Пример 3.37. Вычислить J = ∫cos(lnx)dx/x.

Решение. Так как dx/x = dlnx, то J= ∫cos(lnx)d(lnx). Заменяя lnx через t, приходим к табличному интегралу J = ∫ costdt = sint + C = sin(lnx) + C.

Пример 3.38 . Вычислить J = .

Решение. Учитывая, что = d(lnx), производим подстановку lnx = t. Тогда J = .

Что такое интегрирование по частям? Чтобы освоить этот вид интегрирования, давайте для начала вспомним производную произведения:

${{\left(f\cdot g \right)}^{\prime }}={f}"\cdot g+f\cdot {g}"$

Спрашивается: ну и при чем тут интегралы? А давайте теперь проинтегрируем обе стороны этого уравнения. Так и запишем:

$\int{{{\left(f\cdot g \right)}^{\prime }}\text{d}x=}\int{{f}"\cdot g\,\text{d}x+\int{f\cdot {g}"\,\text{d}x}}$

Но что такое первообразная от штриха? Это просто сама функция, которая стоит внутри штриха. Так и запишем:

$f\cdot g=\int{{f}"\cdot g\,\text{d}x+\int{f\cdot {g}"\,\text{d}x}}$

В данном уравнении предлагаю выразить слагаемое. Имеем:

$\int{{f}"\cdot g\,\text{d}x=f\cdot g-\int{f\cdot {g}"\,\text{d}x}}$

Это и есть формула интегрирования по частям . Таким образом, мы, по сути, меняем местами производную и функцию. Если изначально у нас был интеграл от штриха, умноженной на что-либо, то затем получается интеграл от нового чего-либо, умноженной на штрих. Вот и все правило. На первый взгляд данная формула может показаться сложной и бессмысленной, но, на самом деле, она может значительно упрощать вычисления. Сейчас посмотрим.

Примеры вычисления интегралов

Задача 1. Вычислите:

\[\int{\ln x\,\text{d}x}\]\[\]

Перепишем выражение, добавив перед логарифмом 1:

\[\int{\ln x\,\text{d}x}=\int{1\cdot \ln x\,\text{d}x}\]

Мы имеем право сделать это, потому что ни число, ни функция не изменятся. Теперь сравним это выражение с тем, что у нас написано в формуле. В роли ${f}"$ выступает 1, так и запишем:

$\begin{align}& {f}"=1\Rightarrow f=x \\& g=\ln x\Rightarrow {g}"=\frac{1}{x} \\\end{align}$

Все эти функции есть в таблицах. Теперь, когда мы расписали все элементы, которые входят в наше выражение, перепишем данный интеграл по формуле интегрирования по частям:

\[\begin{align}& \int{1\cdot \ln x\,\text{d}x}=x\ln x-\int{x\cdot \frac{1}{x}\text{d}x}=x\ln x-\int{\text{d}x}= \\& =x\ln x-x+C=x\left(\ln x-1 \right)+C \\\end{align}\]

Все, интеграл найден.

Задача 2. Вычислите:

$\int{x{{\text{e}}^{-x}}\,\text{d}x=\int{x\cdot {{e}^{-x}}\,\text{d}x}}$

Если в роли производной, от которой нам нужно будет сейчас найти первообразную, мы возьмем $x$, то получим${{x}^{2}}$, и итоговое выражение будет содержать ${{x}^{2}}{{\text{e}}^{-x}}$.

Очевидно, задача не упрощается, поэтому мы поменяем местами множители под знаком интеграла:

$\int{x\cdot {{\text{e}}^{-x}}\,\text{d}x}=\int{{{\text{e}}^{-x}}\cdot x\,\text{d}x}$

А вот теперь вводим обозначения:

${f}"={{\text{e}}^{-x}}\Rightarrow f=\int{{{\text{e}}^{-x}}\,\text{d}x}=-{{\text{e}}^{-x}}$

Дифференцируем ${{\text{e}}^{-x}}$:

${{\left({{\text{e}}^{-x}} \right)}^{\prime }}={{\text{e}}^{-x}}\cdot {{\left(-x \right)}^{\prime }}=-{{\text{e}}^{-x}}$

Другими словами, сначала добавляется «минус», а затем обе стороны интегрируются:

\[\begin{align}& {{\left({{\text{e}}^{-x}} \right)}^{\prime }}=-{{\text{e}}^{-x}}\Rightarrow {{\text{e}}^{-x}}=-{{\left({{\text{e}}^{-x}} \right)}^{\prime }} \\& \int{{{\text{e}}^{-x}}\,\text{d}x}=-\int{{{\left({{\text{e}}^{-x}} \right)}^{\prime }}\text{d}x}=-{{\text{e}}^{-x}}+C \\\end{align}\]

Теперь разберёмся с функцией$g$:

$g=x\Rightarrow {g}"=1$

Считаем интеграл:

$\begin{align}& \int{{{\text{e}}^{-x}}\cdot x\,\text{d}x}=x\cdot \left(-{{\text{e}}^{-x}} \right)-\int{\left(-{{\text{e}}^{-x}} \right)\cdot 1\cdot \text{d}x}= \\& =-x{{\text{e}}^{-x}}+\int{{{\text{e}}^{-x}}\,\text{d}x}=-x{{\text{e}}^{-x}}-{{\text{e}}^{-x}}+C=-{{\text{e}}^{-x}}\left(x+1 \right)+C \\\end{align}$

Итак, мы выполнили второе интегрирование по частям.

Задача 3. Вычислите:

$\int{x\cos 3x\,\text{d}x}$

Что в этом случае брать за${f}"$ , а что за$g$? Если в роли производной будет выступать$x$ , то при интегрировании возникнет$\frac{{{x}^{2}}}{2}$, и никуда у нас первый множитель не пропадет — будет $\frac{{{x}^{2}}}{2}\cdot \cos 3x$. Поэтому опять поменяем множители местами:

$\begin{align}& \int{x\cos 3x\,\text{d}x}=\int{\cos 3x\cdot x\,\text{d}x} \\& {f}"=\cos 3x\Rightarrow f=\int{\cos 3x\,\text{d}x}=\frac{\sin 3x}{3} \\& g=x\Rightarrow {g}"=1 \\\end{align}$

Переписываем наше исходное выражение и раскладываем его по формуле интегрирования по частям:

\[\begin{align}& \int{\cos 3x\cdot x\ \text{d}x}=\frac{\sin 3x}{3}\cdot x-\int{\frac{\sin 3x}{3}\text{d}x}= \\& =\frac{x\sin 3x}{3}-\frac{1}{3}\int{\sin 3x\,\text{d}x}=\frac{x\sin 3x}{3}+\frac{\cos 3x}{9}+C \\\end{align}\]

Все, третья задача решена.

В заключение еще раз взглянем на формулу интегрирования по частям . Как мы выбираем, какой из множителей будет производной, а какой будет настоящей функцией? Критерий здесь всего один: элемент, который мы будем дифференцировать, должен давать либо «красивое» выражение, которое потом сократится, либо при дифференцировании вообще исчезать. На этом урок закончен.

Неопределенный интеграл

1Первообразная и неопределенный интеграл 1

2Простейшие свойства неопределенного интеграла. 3

Таблица основных интегралов 3

2.1Дополнительная таблица интегралов 4

3Замена переменной в неопределённом интеграле 5

3.1Метод интегрирования функций вида и (a≠ 0). 6

4Интегрирование по частям в неопределённом интеграле 7

4.1Метод интегрирования функций вида. 7

4.2Метод интегрирования функций вида: 8

5Интегрирование рациональных дробей 8

5.1Метод интегрирования простейших дробей 4 типа. 11

6Интегрирование иррациональных выражений 12

6.1Интегрирование тригонометрических выражений 14

  1. Первообразная и неопределенный интеграл

Решаем дифференциальное уравнение

на интервале , т.е. находим такую функцию , что . Так как , то уравнение (1) можно переписать в дифференциалах:

Любое решение такого уравнения называется первообразной функции . Итак, функция называется первообразной функции на интервале , если для всех . Случаи и/или не исключаются. Ясно, что если первообразная, то и также первообразная. Наша задача – найти все решения уравнения (1). Функция двух переменных называется общим решением уравнения (1) или, по-другому, неопределенным интегралом функции , если при подстановке вместо любого числа получаем частное решение уравнения (1) и любое частное решение уравнения (1) получается таким образом.

Неопределённый интеграл обозначается . Функция называется подинтегральной, дифференциал называется подинтегральным выражением, а -- знак интеграла (растянутая латинская буква S, первая буква слова Sum – сумма). Возникает вопрос о существовании первообразной и неопределенного интеграла. В разделе «Определенный интеграл», § Формула Ньютона-Лейбница будет доказано, что первообразная непрерывной функции всегда существует.

Лемма. Пусть тождественно для всех . Тогда -- константа на этом интервале.

Доказательство. Обозначим для какой-либо точки . Возьмём произвольную точку и к разности применим теорему Лагранжа: для некоторой точки . Отсюда и лемма доказана.□

Теорема о первообразных. Две первообразных одной и той же функции, определенной на интервале, отличаются на константу.

Доказательство. Пусть и -- первообразные функции . Тогда откуда, по лемме -- константа. Следовательно, . □

Следствие. Если -- первообразная функции , то .

Заметим, что если в качестве ОДЗ функции взять не интервал, а, например, такое несвязное множество как объединение двух интервалов , то любая функция вида

имеет нулевую производную, и тем самым лемма и теорема о первообразных перестает быть верной в этом случае.

  1. Простейшие свойства неопределенного интеграла.

1. Интеграл от суммы равен сумме интегралов:

2. Константу можно выносить за знак интеграла:

3. Производная от интеграла равна подинтегральной функции.

4. Дифференциал от интеграла равен подинтегральному выражению.

5. (Линейная замена переменных) Если , то (здесь ).

Таблица основных интегралов

В частности,

Для исключительного случая имеем:

    1. Дополнительная таблица интегралов

  1. Замена переменной в неопределённом интеграле

Определение неопределенного интеграла распространим на более общий случай: полагаем по определению . Таким образом, например

Теорема. Пусть -- дифференцируемая функция. Тогда

Доказательство. Пусть . Тогда

что и требовалось доказать.□

В частном случае, когда получаем линейную замену переменных (см. свойство 5, §1). Применение формулы (1) "слева на право" и будет означать замену переменной. Применение формулы (1) в обратном направлении, "справа налево" называется занесением под знак дифференциала.

Примеры. А.

1. Выделяем в числителе производную квадратного трехчлена:

3. Для вычисления первого интеграла в (2) применяем занесение под знак дифференциала:

Для вычисления второго интеграла выделяем в квадратном трехчлене полный квадрат и линейной заменой переменных сводим его к табличному.

Таким же методом вычисляются и интегралы вида

Примеры

  1. Интегрирование по частям в неопределённом интеграле

Теорема. Для дифференцируемых функций и имеет место соотношение

Доказательство. Интегрируя левую и правую часть формулы , получаем:

Так как по определению и , то формула (1) следует.□

Пример.

Для интегрирования таких функций заносим многочлен под знак дифференциала и применяем формулу интегрирования по частям. Процедуру повторяем k раз.

Пример.

  1. Интегрирование рациональных дробей

Рациональной дробью называется функция вида , где – многочлены. Если , то рациональную дробь называют правильной . В противном случае ее называют неправильной .

Следующие рациональные дроби называют простейшими

(2 тип)

(3 тип)

(4 тип) ,

Теорема 1. Любую дробь можно разложить в сумму многочлена и правильной рациональной дроби.

Доказательство. Пусть – неправильная рациональная дробь. Поделим числитель на знаменатель с остатком: Здесь -- многочлены, причем Тогда

Дробь правильная в силу неравенства . □

Теорема 2. Любую правильную рациональную дробь можно разложить в сумму простейших.

Алгоритм разложения.

а) Знаменатель правильной дроби раскладываем в произведение неприводимых многочленов (линейных и квадратичных с отрицательным дискриминантом):

Здесь и -- кратности соответствующих корней.

б) Раскладываем дробь в сумму простейших с неопределенными коэффициентами по следующим принципам:

Так мы поступаем для каждого линейного множителя и для каждого квадратичного множителя.

в) Получившееся разложение умножаем на общий знаменатель , и неопределенные коэффициенты отыскиваем из условия тождественности левой и правой части. Действуем комбинацией двух методов

??? – обоснование алгоритма

Примеры. А. Разложим в сумму простейших

Отсюда следует, что . Подставляя в это соотношение находим сразу . Итак

Б. Разложим рациональную дробь в сумму простейших. Разложение этой дроби с неопределенными коэффициентами имеет вид

Умножая на общий знаменатель, получаем соотношение

Подставляя сюда , находим , откуда . Подставляя находим . Приравнивая коэффициенты при получаем систему

Отсюда и . Складывая равенства последней системы, получаем и . Тогда и

Следовательно,

/**/ Задача. Обобщить результат примера А и доказать равенство

    1. Метод интегрирования простейших дробей 4 типа.

а) Выделяя в числителе производную знаменателя, разложим интеграл в сумму двух интегралов.

б) Первый из получившихся интегралов, после занесения под знак дифференциала, станет табличным.

в) Во втором в знаменателе выделяем полный квадрат и сводим вычисление к интегралу вида . К этому интегралу применяем следующую рекуррентную процедуру

К последнему интегралу применяем формулу интегрирования по частям:

Итак, если обозначить , то

Это представляет собой рекуррентную формулу вычисления интегралов c учетом начального значения .

Пример

  1. Интегрирование иррациональных выражений

Интегралы вида , где m/n,...,r/s -- рациональные числа с общим знаменателем k, сводятся к интегралу от рациональной функции заменой

Тогда суть рациональные выражения, следовательно, после подстановки, получается интеграл от рациональной дроби:

Вычислив этот интеграл (см. пар. 4) и сделав обратную замену , получим ответ.

Аналогично, интегралы вида

где ad-bc≠ 0, а k имеет тот же смысл как и выше, сводятся к интегралам от рациональной дроби заменой

Примеры . А. Вычислим интеграл

Б. Вычислим интеграл

Более простой метод интегрирования (но требующий догадки) этой же функции таков:

    1. Интегрирование тригонометрических выражений

Интегралы вида сводятся к интегралам от рациональной функции универсальной заменой

поэтому получаем интеграл от рационального выражения

В частных случаях  R(sin x) cos x dx,  R(cos x) sin x dx и R(sin 2 x, cos 2 x, tg x, ctg x) dx лучше пользоваться заменами соответственно.

Вычислить первообразные функции мы можем не всегда, но задача на дифференцирование может быть решена для любой функции. Именно поэтому единого метода интегрирования, который можно использовать для любых типов вычислений, не существует.

В рамках данного материала мы разберем примеры решения задач, связанных с нахождением неопределенного интеграла, и посмотрим, для каких типов подынтегральных функций подойдет каждый метод.

Метод непосредственного интегрирования

Основной метод вычисления первообразной функции – это непосредственное интегрирование. Это действие основано на свойствах неопределенного интеграла, и для вычислений нам понадобится таблица первообразных. Прочие методы могут лишь помочь привести исходный интеграл к табличному виду.

Пример 1

Вычислите множество первообразных функции f (x) = 2 x + 3 2 · 5 x + 4 3 .

Решение

Для начала изменим вид функции на f (x) = 2 x + 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 .

Мы знаем, что интеграл суммы функций будет равен сумме этих интегралов, значит:

∫ f (x) d x = ∫ 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 d x = ∫ 3 2 · 5 x + 4 1 3 d x

Выводим за знак интеграла числовой коэффициент:

∫ f (x) d x = ∫ 2 x d x + ∫ 3 2 (5 x + 4) 1 3 d x = = ∫ 2 x d x + 2 3 · ∫ (5 x + 4) 1 3 d x

Чтобы найти первый интеграл, нам нужно будет обратиться к таблице первообразных. Берем из нее значение ∫ 2 x d x = 2 x ln 2 + C 1

Чтобы найти второй интеграл, потребуется таблица первообразных для степенной функции ∫ x p · d x = x p + 1 p + 1 + C , а также правило ∫ f k · x + b d x = 1 k · F (k · x + b) + C .

Следовательно, ∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

У нас получилось следующее:

∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

причем C = C 1 + 3 2 C 2

Ответ: ∫ f (x) d x = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

Непосредственному интегрированию с применением таблиц первообразных мы посвятили отдельную статью. Рекомендуем вам ознакомиться с ней.

Метод подстановки

Такой метод интегрирования заключается в выражении подынтегральной функции через новую переменную, введенную специально для этой цели. В итоге мы должны получить табличный вид интеграла или просто менее сложный интеграл.

Этот метод очень полезен, когда нужно интегрировать функции с радикалами или тригонометрические функции.

Пример 2

Вычислите неопределенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Добавим еще одну переменную z = 2 x - 9 . Теперь нам нужно выразить x через z:

z 2 = 2 x - 9 ⇒ x = z 2 + 9 2 ⇒ d x = d z 2 + 9 2 = z 2 + 9 2 " d z = 1 2 · z d z = z d z

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9

Берем таблицу первообразных и узнаем, что 2 ∫ d z z 2 + 9 = 2 3 a r c t g z 3 + C .

Теперь нам нужно вернуться к переменной x и получить ответ:

2 3 a r c t g z 3 + C = 2 3 a r c t g 2 x - 9 3 + C

Ответ: ∫ 1 x 2 x - 9 d x = 2 3 a r c t g 2 x - 9 3 + C .

Если нам приходится интегрировать функции с иррациональностью вида x m (a + b x n) p , где значения m , n , p являются рациональными числами, то важно правильно составить выражение для введения новой переменной. Подробнее об этом читайте в статье, посвященной интегрированию иррациональных функций.

Как мы говорили выше, метод подстановки удобно использовать, когда требуется интегрировать тригонометрическую функцию. Например, с помощью универсальной подстановки можно привести выражение к дробно рациональному виду.

Этот метод объясняет правило интегрирования ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C .

Добавляем еще одну переменную z = k · x + b . У нас получается следующее:

x = z k - b k ⇒ d x = d z k - b k = z k - b k " d z = d z k

Теперь берем получившиеся выражения и добавляем их в интеграл, заданный в условии:

∫ f (k · x + b) d x = ∫ f (z) · d z k = 1 k · ∫ f (z) d z = = 1 k · F z + C 1 = F (z) k + C 1 k

Если же мы примем C 1 k = C и вернемся к исходной переменной x , то у нас получится:

F (z) k + C 1 k = 1 k · F k x + b + C

Метод подведения под знак дифференциала

Это метод основывается на преобразовании подынтегрального выражения в функцию вида f (g (x)) d (g (x)) . После этого мы выполняем подстановку, вводя новую переменную z = g (x) , находим для нее первообразную и возвращаемся к исходной переменной.

∫ f (g (x)) d (g (x)) = g (x) = z = ∫ f (z) d (z) = = F (z) + C = z = g (x) = F (g (x)) + C

Чтобы быстрее решать задачи с использованием этого метода, держите под рукой таблицу производных в виде дифференциалов и таблицу первообразных, чтобы найти выражение, к которому надо будет приводится подынтегральное выражение.

Разберем задачу, в которой нужно вычислить множество первообразных функции котангенса.

Пример 3

Вычислите неопределенный интеграл ∫ c t g x d x .

Решение

Преобразуем исходное выражение под интегралом с помощью основных тригонометрических формул.

c t g x d x = cos s d x sin x

Смотрим в таблицу производных и видим, что числитель можно подвести под знак дифференциала cos x · d x = d (sin x) , значит:

c t g x d x = cos x d x sin x = d sin x sin x , т.е. ∫ c t g x d x = ∫ d sin x sin x .

Допустим, что sin x = z , в таком случае ∫ d sin x sin x = ∫ d z z . Согласно таблице первообразных, ∫ d z z = ln z + C . Теперь вернемся к исходной переменной ∫ d z z = ln z + C = ln sin x + C .

Все решение в кратком виде можно записать так:

∫ с t g x d x = ∫ cos x d x sin x = ∫ d sin x sin x = s i n x = t = = ∫ d t t = ln t + C = t = sin x = ln sin x + C

Ответ: ∫ с t g x d x = ln sin x + C

Метод подведения под знак дифференциала очень часто используется на практике, поэтому советуем вам прочесть отдельную статью, посвященную ему.

Метод интегрирования по частям

Этот метод основывается на преобразовании подынтегрального выражения в произведение вида f (x) d x = u (x) · v " x d x = u (x) · d (v (x)) , после чего применяется формула ∫ u (x) · d (v (x)) = u (x) · v (x) - ∫ v (x) · d u (x) . Это очень удобный и распространенный метод решения. Иногда частичное интегрирование в одной задаче приходится применять несколько раз до получения нужного результата.

Разберем задачу, в которой нужно вычислить множество первообразных арктангенса.

Пример 4

Вычислите неопределенный интеграл ∫ a r c t g (2 x) d x .

Решение

Допустим, что u (x) = a r c t g (2 x) , d (v (x)) = d x , в таком случае:

d (u (x)) = u " (x) d x = a r c t g (2 x) " d x = 2 d x 1 + 4 x 2 v (x) = ∫ d (v (x)) = ∫ d x = x

Когда мы вычисляем значение функции v (x) , прибавлять постоянную произвольную С не следует.

∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2

Получившийся интеграл вычисляем, используя метод подведения под знак дифференциала.

Поскольку ∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 , тогда 2 x d x = 1 4 d (1 + 4 x 2) .

∫ a r c t g (2 x) d x = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C 1 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C

Ответ: ∫ a r c t g (2 x) d x = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C .

Главная сложность применения такого метода – это необходимость выбирать, какую часть брать за дифференциал, а какую – за функцию u (x) . В статье, посвященной методу интегрирования по частям, даны некоторые советы по этому вопросу, с которыми следует ознакомиться.

Если нам требуется найти множество первообразных дробно рациональной функции, то нужно сначала представить подынтегральную функцию в виде суммы простейших дробей, а потом интегрировать получившиеся дроби. Подробнее см. статью об интегрировании простейших дробей.

Если мы интегрируем степенное выражение вида sin 7 x · d x или d x (x 2 + a 2) 8 , то нам будут полезны рекуррентные формулы, которые могут постепенно понижать степень. Они выводятся с помощью последовательного многократного интегрирования по частям. Советуем прочитать статью «Интегрирование с помощью рекуррентных формул.

Подведем итоги. Для решения задач очень важно знать метод непосредственного интегрирования. Другие методы (подведение под знак дифференциала, подстановка, интегрирование по частям) также позволяют упростить интеграл и привести его к табличному виду.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Метод интегрирования по частям используется тогда, когда нужно упростить имеющийся неопределенный интеграл или свести его к табличному значению. Чаще всего он применяется в случае наличия показательных, логарифмических, прямых и обратных тригонометрических формул и их сочетаний в подынтегральном выражении.

Основная формула, необходимая для использования этого метода, выглядит так:

∫ f (x) d x = ∫ u (x) d (v (x)) = u (x) v (x) - ∫ v (x) d (u (x))

Она означает, что нам нужно сначала представить выражение под интегралом в качестве произведения функции u (x) и дифференциала функции v (x) . После этого мы вычисляем значение функции v (x) каким-либо методом (чаще всего применяется метод непосредственного интегрирования), а полученные выражения подставляем в указанную формулу, сводя исходный интеграл к разности u (x) v (x) - ∫ v (x) d (u (x)) . Полученный в итоге интеграл также можно взять, используя любой метод интегрирования.

Рассмотрим задачу, в которой нужно найти множество первообразных функции логарифма.

Пример 1

Вычислите неопределенный интеграл ∫ ln (x) d x .

Решение

Используем метод интегрирования по частям. Для этого берем ln (x) как функцию u (x) , а остаток подынтегрального выражения – как d (v (x)) . В итоге получаем, что ln (x) d x = u (x) d (v (x)) , где u (x) = ln (x) , d (v (x)) = d x .

Дифференциалом функции u (x) является d (u (x)) - u " (x) d x = d x x , а функция v (x) может быть представлена как v (x) = ∫ d (v (x)) = ∫ d x = x

Важно: константа C при вычислении функции v (x) будет считаться равной 0 .

Подставим то, что у нас получилось, в формулу интегрирования по частям:

∫ ln (x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = ln (x) · x - ∫ x · d x x = ln (x) · x - ∫ d x = ln (x) · x - x + C 1 = = x (ln (x) - 1) + C

где C = - C 1

Ответ: ∫ ln (x) d x = x (ln (x) - 1) + C .

Наиболее сложным в применении данного метода является выбор, какую именно часть исходного выражения под интегралом взять в качестве u (x) , а какую – d (v (x)) .

Разберем несколько стандартных случаев.

Если у нас в условии стоят интегралы вида ∫ P n (x) · e a x d x , ∫ P n (x) · sin (a x) d x либо ∫ P n (x) · cos (a x) d x , где a является коэффициентом, а P n (x) – многочленом степени n , то в качестве функции u (x) нужно взять именно P n (x) .

Пример 2

Найдите множество первообразных функции f (x) = (x + 1) · sin (2 x) .

Решение

Мы можем взять по частям неопределенный интеграл ∫ (x + 1) · sin (2 x) d x . Берем x + 1 в качестве u (x) и sin (2 x) d x в качестве d (v (x)) , то есть d (u (x)) = d (x + 1) = d x .

Используя непосредственное интегрирование, получим:

v (x) = ∫ sin (2 x) d x = - 1 2 cos (2 x)

Подставляем в формулу интегрирования по частям:

∫ (x + 1) · sin (2 x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = (x + 1) · - 1 2 cos (2 x) - ∫ - 1 2 cos (2 x) d x = = - 1 2 (x + 1) · cos (2 x) + 1 2 ∫ cos (2 x) · d (x) = = - 1 2 (x + 1) · cos (2 x) + 1 4 sin (2 x) + C

Ответ: ∫ (x + 1) · sin (2 x) d x = - 1 2 (x + 1) · cos (2 x) + 1 4 sin (2 x) + C .

Пример 3

Вычислите неопределенный интеграл ∫ (x 2 + 2 x) e x d x .

Решение

Берем многочлен второго порядка x 2 + 2 x в качестве u (x) и d (v (x)) - e x d x .

∫ x 2 + 2 x e x d x = u (x) = x 2 + 2 x , d (v (x)) = e x d x d (u (x)) = (2 x + 2) d x , v (x) = ∫ e x d x = e x = = u (x) v (x) - ∫ v (x) d (u (x)) = (x 2 + 2 x) e x - ∫ (2 x + 2) e x d x

К тому, что у нас получилось, надо опять применить метод интегрирования по частям:

∫ (2 x + 2) e x d x = (x 2 + 2 x) e x - ∫ 2 x + 2 e x d x = = u (x) = (2 x + 2) , d (v (x)) = e x d x d (u (x)) = 2 d x , v (x) = ∫ e x d x = e x = = (x 2 + 2 x) e x - (2 x + 2) e x - ∫ v (x) d (u (x)) = = (x 2 + 2 x) e x - (2 x + 2) e x - ∫ 2 e x d x = = (x 2 + 2 x - 2 x - 2) e x + 2 ∫ e x d x = (x 2 - 2) e x + 2 e x + C = x 2 e x + C

Ответ: ∫ (x 2 + 2 x) e x d x = x 2 e x + C .

Пример 4

Вычислите интеграл ∫ x 3 cos 1 3 x d x .

Решение

Согласно методу интегрирования по частям, берем u (x) = x 3 и d (v (x)) = cos 1 3 x d x .

В таком случае d (u (x)) = 3 x 2 d x и v (x) = ∫ cos 1 3 x d x = 3 sin 1 3 x .

Теперь подставим полученные выражения в формулу:

∫ x 3 cos 1 3 x d x = u (x) v (x) - ∫ v (x) d (u)) = = x 3 3 sin 1 3 x - ∫ 3 x 2 3 sin 1 3 x d x = = 3 x 3 sin 1 3 x - 9 ∫ x 2 sin 1 3 x d x

У нас получился неопределенный интеграл, который опять же нужно взять по частям:

∫ x 3 cos 1 3 x d x = 3 x 3 sin 1 3 x - 9 ∫ x 2 sin 1 3 x d x = = u (x) = x 2 , d (v (x)) = sin 1 3 x d x d (u (x)) = 2 x d x , v (x) = ∫ sin 1 3 x d x = - 3 cos 1 3 x = = 3 x 3 sin 1 3 x - 9 - 3 x 2 cos 1 3 x - ∫ - 3 cos 1 3 x · 2 x d x = = 3 x 3 sin 1 3 x + 27 x 2 · cos 1 3 x - 54 ∫ x cos 1 3 x d x

Выполняем частичное интегрирование еще раз:

∫ x 3 cos 1 3 x d x = 3 x 3 sin 1 3 x + 27 x 2 · cos 1 3 x - 54 ∫ x cos 1 3 x d x = = u (x) = x , d (v (x)) = cos 1 3 x d x d (u (x)) = d x , v (x) = ∫ cos 1 3 x d x = 3 sin 1 3 x = = 3 x 3 sin 1 3 x + 27 x 2 cos 1 3 x - 54 3 x sin 1 3 x - ∫ 3 sin 1 3 x d x = = 3 x 3 - 162 x sin 1 3 x + 27 x 2 cos 1 3 x + 162 ∫ sin 1 3 x d x = = (3 x 3 - 162 x) sin 1 3 x + 27 x 2 cos 1 3 x - 486 cos 1 3 x + C = = (3 x 3 - 162 x) sin 1 3 x + (27 x 2 - 486) cos 1 3 x + C

Ответ: ∫ x 3 cos 1 3 x d x = (3 x 3 - 162 x) sin 1 3 x + (27 x 2 - 486) cos 1 3 x + C .

Если же у нас в условии стоят интегралы вида ∫ P n (x) · ln (a x) d x , ∫ P n (x) · a r c sin (a x) d x , ∫ P n (x) · a r c cos (a x) d x , ∫ P n (x) · a r c t g (a x) d x , ∫ P n (x) · a r c c t g (a x) d x

то нам следует брать в качестве u (x) функции a r c t g (a x) , a r c c t g (x) , ln (a x) , a r c sin (a x) , a r cos (a x) .

Пример 5

Вычислите множество первообразных функции (x + 1) ln (2 x) .

Решение

Принимаем ln (2 x) в качестве u (x) , а (x + 1) d x – в качестве d (v (x)) . Получаем:

d (u (x)) = (ln (2 x)) " d x = 1 2 x (2 x) " d x = d x x v (x) = ∫ (x + 1) d x = x 2 2 + x

Подставим эти выражения в формулу:

∫ (x + 1) ln (2 x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = x 2 2 + x ln 2 x - ∫ x 2 2 + x d x x = = x 2 2 + x ln (2 x) - ∫ x 2 + 1 d x = x 2 2 + x ln 2 x - 1 2 ∫ x d x - ∫ d x = = x 2 2 + x ln (2 x) - x 2 4 - x + C

Ответ: ∫ (x + 1) ln (2 x) d x = x 2 2 + x ln (2 x) - x 2 4 - x + C .

Пример 6

Вычислите неопределенный интеграл ∫ x · a r c sin (2 x) d x .

Решение

Решаем, какую часть взять за u (x) , а какую – за d (v (x)) . Согласно правилу, приведенному выше, в качестве первой функции нужно взять a r c sin (2 x) , а d (v (x)) = x d x . Получим:

d (u (x)) = (a r c sin (2 x) " d x = 2 x " d x 1 - (2 x) 2 = 2 d x 1 - (2 x) 2 , v (x) = ∫ x d x = x 2 2

Подставляем значения в формулу:

∫ x · a r c sin (2 x) d x = u (x) v (x) - ∫ v (x) d (u (x)) = = x 2 2 a r c sin (2 x) - ∫ x 2 2 - 2 d x 1 - (2 x) 2 = x 2 2 a r c sin (2 x) - ∫ x 2 d x 1 - 4 x 2

В итоге мы пришли к следующему равенству:

∫ x · a r c sin (2 x) d x = x 2 2 a r c sin (2 x) - ∫ x 2 d x 1 - 4 x 2

Теперь вычислим получившийся в итоге интеграл ∫ x 2 d x 1 - 4 x 2:

∫ x 2 d x 1 - 4 x 2 = ∫ x 2 d x 4 1 4 - x 2 = 1 2 ∫ x 2 d x 1 4 - x 2 = - 1 2 ∫ - x 2 d x 1 4 - x 2 = = - 1 2 ∫ 1 4 - x 2 - 1 4 1 4 - x 2 d x = - 1 2 1 4 - x 2 d x + 1 8 ∫ d x 1 4 - x 2 = = - 1 2 ∫ 1 4 - x 2 d x + 1 8 a r c sin (2 x)

Здесь можно применить метод интегрирования по частям и получить:

∫ x 2 d x 1 - 4 x 2 = - 1 2 ∫ 1 4 - x 2 d x + 1 8 a r c sin (2 x) = = u (x) = 1 4 - x 2 , d (v (x)) = d x d (u (x)) = 1 4 - x 2 " d x 2 1 4 - x 2 = - x d x 1 4 - x 2 , v (x) = ∫ d x = x = = - 1 2 u (x) v (x) - ∫ v (x) d (u (x)) + 1 8 a r c sin (2 x) = = - 1 2 x 1 4 - x 2 - ∫ - x 2 d x 1 4 - x 2 + 1 8 a r c sin (2 x) = = - 1 2 x 1 4 - x 2 - 1 2 ∫ x 2 d x 1 4 - x 2 + 1 8 a r c sin (2 x) = = - 1 2 x 1 4 - x 2 - ∫ x 2 d x 1 - 4 x 2 + 1 8 a r c sin (2 x)

Теперь наше равенство выглядит так:

∫ x 2 d x 1 - 4 x 2 = - 1 2 x 1 4 - x 2 - ∫ x 2 d x 1 - 4 x 2 + 1 8 a r c sin (2 x)

Мы видим, что интеграл справа аналогичен тому, что получился слева. Переносим его в другую часть и получаем:

2 ∫ x 2 d x 1 - 4 x 2 = - 1 2 x 1 4 - x 2 + 1 8 a r c sin (2 x) + C 1 ⇒ x 2 d x 1 - 4 x 2 = - 1 4 x 1 4 - x 2 + 1 16 a r c sin (2 x) + C 2 x 2 d x 1 - 4 x 2 = - 1 8 x 1 4 - x 2 + 1 16 a r c sin (2 x) + C 2

где C 2 = C 1 2

Вернемся к исходным переменным:

∫ x · a r c sin (2 x) d x = x 2 2 a r c sin (2 x) - ∫ x 2 d x 1 - 4 x 2 = = x 2 2 a r c sin (2 x) - - 1 8 x 1 - 4 x 2 + 1 16 a r c sin (2 x) + C 2 = = 1 2 x 2 - 1 8 a r c sin (2 x) + 1 8 x 1 - 4 x 2 + C

где С = - С 2

Ответ: ∫ x · a r c sin (2 x) d x = 1 2 x 2 - 1 8 a r c sin (2 x) + 1 8 x 1 - 4 x 2 + C .

Если же у нас в задаче стоит интеграл вида ∫ e a · x · sin (b x) d x либо ∫ e a · x · cos (b x) d x , то в качестве u (x) может быть выбрана любая функция.

Пример 7

Вычислите неопределенный интеграл ∫ e x · sin (2 x) d x .

Решение

∫ e x sin (2 x) d x = u (x) = sin (2 x) , d (v (x)) = e x d x d (u (x)) = 2 cos (2 x) d x , v (x) = ∫ e x d x = e x = = u (x) v (x) - ∫ v (x) d (u (x)) = sin (2 x) e x - ∫ e x · 2 cos 2 x d x = = sin (2 x) e x - 2 ∫ e x cos (2 x) d x = u (x) = cos (2 x) , d (v (x)) = e x d x d (u (x)) = - 2 sin (2 x) d x , v (x) = ∫ e x d x = e x = = sin (2 x) e x - 2 cos (2 x) e x - ∫ (e x (- 2 sin (2 x) d x)) = = sin (2 x) e x = 2 cos (2 x) e x - 4 ∫ e x sin (2 x) d x

В итоге у нас получится:

∫ e x sin (2 x) d x = sin (2 x) e x - 2 cos (2 x) e x - 4 ∫ e x sin (2 x) d x

Мы видим одинаковые интегралы слева и справа, значит, можем привести подобные слагаемые:

5 ∫ e x sin (2 x) d x = sin (2 x) e x - 2 cos (2 x) e x ⇒ ∫ e x sin (2 x) d x = 1 5 sin (2 x) e x - 2 5 cos (2 x) e x + C

Ответ: ∫ e x sin (2 x) d x = 1 5 sin (2 x) e x - 2 5 cos (2 x) e x + C

Этот способ решения является стандартным, и справа нередко получается интеграл, который идентичен исходному.

Мы рассмотрели наиболее типовые задачи, в которых можно точно определить, какую часть выражения взять за d (v (x)) , а какую за u (x) . В остальных случаях это приходится определять самостоятельно.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter