Информационная поддержка школьников и студентов
Поиск по сайту

Самый большой коллайдер в мире. Зачем на самом деле нужен адронный коллайдер? Вопросы, на которые не отвечают

БАК (Большой адронный коллайдер, LHC) - это самый крупный в мире ускоритель частиц, расположенный на франко-швейцарской границе в Женеве и принадлежащий концерну CERN. Основной задачей строительства Большого адронного коллайдера был поиск бозона Хиггса, неуловимой частицы, последнего элемента Стандартной модели. Задачу коллайдер выполнил: физики действительно обнаружили элементарную частицу на предсказанных энергиях. Далее БАК будет вести работу в этом диапазоне светимости и работать, как обычно функционируют спецобъекты: по желанию ученых. Вспомните, полуторамесячная миссия марсохода «Оппортьюнити» затянулась на 10 лет.

Большой Адронный Коллайдер — это одно из самых удивительных изобретений человечества, ответственное за открытие многочисленных субатомных частиц, включая неуловимый бозон Хиггса. И в последнее время новые данные намекают на новые открытия за пределами Стандартной модели. И это очень удивительно, ведь, как утверждают ученые, мы можем расшифровать менее 1% данных от ускорителя. Поэтому открытия БАК можно назвать «большим везением». Или же все-таки нет?

Дата публикации: 17.09.2012

Что такое Большой Адронный Коллайдер? Зачем он нужен? Может ли он стать причиной конца света? Давайте разложим всё «по полочкам».

Что такое БАК?

Это огромный кольцеобразный тоннель, похожий на трубу для разгона частиц. Находится он на глубине около 100 метров под территорией Франции и Швейцарии. В его постройке участвовали учёные со всего мира.

БАК был построен для того, чтобы найти бозон Хиггса - механизм, наделяющий частицы массой. Второстепенной целью также является изучение кварков - фундаментальных частиц, из которых состоят адроны (отсюда и название «адронный» коллайдер).

Многие наивно полагают, что БАК - это единственный ускоритель частиц в мире. Однако по всему миру, начиная с 50х годов, был построен не один десяток коллайдеров. БАК считается самым большим - его длина 25,5 км. К тому же в его структуру входит ещё один, меньший по диаметру, ускоритель.

БАК и СМИ

С момента начала постройки, появилось множество статей о дороговизне и опасности ускорителя. Большинство людей считают, что деньги были потрачены зря, и не понимают, зачем нужно было тратить столько денег и сил для того, чтобы найти какую-то частицу.

Во-первых, БАК - это не самый дорогой научный проект в истории. На юге Франции находится научный центр Кадараш с дорогим термоядерным реактором. Кадараш был построен при поддержке 6 стран (в том числе и России); на данный момент в него уже вложено порядка 20 миллиардов долларов. Во-вторых, открытие бозона Хиггса принесёт миру множество революционных технологий. К тому же, когда изобрели первый сотовый телефон, люди тоже встретили его изобретение негативно…

Как работает БАК?

БАК сталкивает на больших скоростях пучки частиц и следит за последующим их поведением и взаимодействием. Как правило, один пучок частиц разгоняется сначала на вспомогательном кольце, а потом уже отправляется в основное кольцо.

Множество сильнейших магнитов удерживают частицы внутри коллайдера. А высокоточные приборы фиксируют перемещения частиц, так как столкновение происходит за доли секунды.

Организацией работы коллайдера занимается ЦЕРН (организация по ядерным исследованиям).

В итоге, после огромных трудов и денежных вложений, 4 июля 2012 года ЦЕРН официально объявило о том, что бозон Хиггса найден. Конечно, некоторые свойства бозона, обнаруженные на практике, отличаются от теоретических аспектов, однако сомнений у учёных в «реальности» бозона Хиггса нет.

Зачем нужен БАК?

Чем же полезен БАК для обычных людей? Научные открытия, связанные с открытием бозона Хиггса и изучением кварков, в перспективе могут привести к новой научно-технической революции.

Во-первых, так как масса - это энергия в состоянии покоя (грубо говоря), есть возможность в будущем преобразовывать материю в энергию. Тогда проблем с энергией не будет, а значит, появится возможность путешествовать к далёким планетам. А это шаг к межзвёздным путешествиям…

Во-вторых, изучение квантовой гравитации позволит, в будущем, управлять гравитацией. Однако это случится ещё не скоро, так как гравитоны пока ещё не очень хорошо изучены, а потому устройство, контролирующее гравитацию, может быть непредсказуемым.

В-третьих, есть возможность подробнее понять М-теорию (производная от теории струн). Данная теория утверждает, что мироздание состоит из 11 измерений. М-теория претендует на звание «теории всего», а значит, её изучение позволит нам гораздо лучше понять строение Вселенной. Кто знает, быть может, в будущем человек научится перемещаться и воздействовать на другие измерения.

БАК и Конец Света

Многие люди утверждают, что работа БАК может уничтожить человечество. Как правило, говорят об этом люди, которые плохо разбираются в физике. Запуск БАК много раз откладывался, но 10 сентября 2008 года он, всё же, был запущен. Однако стоит обратить внимание, что БАК ещё ни разу не разгоняли на полную мощь. Учёные планируют запустить БАК на полную мощность в декабре 2014 года. Давайте рассмотрим возможные причины конца света и другие слухи…

1. Создание чёрной дыры

Чёрная дыра, это звезда с огромной гравитацией, которая притягивает не только материю, но и свет, и даже время. Чёрная дыра не может появиться из ниоткуда, а потому учёные из ЦЕРН считают, что шансы появления устойчивой чёрной дыры крайне малы. Однако, это возможно. При столкновении частиц может быть создана микроскопическая чёрная дыра, размеров которой хватит, чтобы уничтожить нашу планету за пару лет (или быстрее). Но бояться человечеству не стоит, так как, благодаря излучению Хокинга, чёрные дыры быстро теряют свою массу и энергию. Хотя и среди учёных есть пессимисты, которые считают, что сильное магнитное поле внутри коллайдера не позволит чёрной дыре распасться. В итоге, шанс, что создастся чёрная дыра, которая уничтожит планету, очень мал, но такая вероятность есть.

2. Образование «тёмной материи»

Она же - «странная материя», страпелька (странная капелька), «странглет». Это материя, которая при столкновении с другой материей, превращают её в подобную себе. Т.е. при столкновении странглета и обычного атома, образуются два странглета, порождая цепную реакцию. Если такая материя появится в коллайдере, то человечество будет уничтожено за считанные минуты. Однако шанс, что это произойдёт, также мал, как и образование чёрной дыры.

3. Антивещество

Версия, связанная с тем, что при работе коллайдера может появиться такое количество антивещества, которое уничтожит планету, выглядит самой бредовой. И суть даже не в том, что шансы на образование антиматерии очень малы, а в том, что на земле уже есть образцы антиматерии, хранящиеся в специальных ёмкостях, где отсутствует гравитация. На Земле вряд ли появится такое количество антивещества, которое будет способно уничтожить планету.

Выводы

Многие жители России даже не знают, как правильно написать фразу «большой адронный коллайдер», чего уж говорить об их знании его предназначения. А некоторые псевдопророки утверждают, что во Вселенной нет разумных цивилизацией потому, что каждая цивилизация, достигнув научного прогресса, создаёт коллайдер. Тогда образуется чёрная дыра, уничтожающая цивилизацию. Отсюда они объясняют и большое количество массивных чёрных дыр в центре галактик.

Однако есть и такие люди, которые считают, что мы должны побыстрее уже запустить БАК, иначе в момент прилёта инопланетян, они нас захватят, так как посчитают нас дикарями.

В итоге, единственный шанс узнать о том, что принесёт нам БАК - это просто ждать. Рано или поздно мы всё-таки узнаем, что нас ждёт: уничтожение или прогресс.


Последние советы раздела «Наука & Техника»:

Вам помог этот совет? Вы можете помочь проекту, пожертвовав на его развитие любую сумму по своему усмотрению. Например, 20 рублей. Или больше:)

Об этом загадочном устройстве ходит множество слухов, многие утверждают что он уничтожит Землю, создав искусственную черную дыру и положив конец существованию человечества. В реальности же это устройство может вывести человечество на совершенно новый уровень, благодаря исследованиям, проведенным учеными. В этой теме я попытался собрать всю необходимую информацию для того, чтоб у вас сложилось впечатление о том, что такое Большой адронный коллайдер (БАК)

Итак, в этой теме собрано все, что вам нужно знать об адронном коллайдере. 30 марта 2010 года в CERN (европейская организация ядерных исследований) произошло историческое событие - после нескольких неудачных попыток и множества модернизаций создание самой большой в мире машины для разрушения атомов было окончено. Предварительные тесты, инициирующие столкновения протонов на относительно низкой скорости проводились в течение 2009 и при этом не возникло никаких существенных проблем. Готовилась почва для экстраординарного эксперимента, который будет проведен весной 2010. У основной экспериментальной модели БАК в основе заложено столкновение двух протонных лучей, которые сталкиваются на максимальной скорости. Это мощнейшее столкновение разрушает протоны, создавая экстраординарные энергии и новые элементарные частицы. Эти новые атомные частицы чрезвычайно непостоянны и могут существовать лишь в течение доли секунды. Аналитический аппарат, входящий в состав БАК, может сделать запись этих событий и детально проанализировать. Таким образом ученые пытаются смоделировать возникновение черных дыр.

30 марта 2010, два луча протонов были выпущены в 27-километровый тоннель Большого Адронного Коллайдера в противоположных направлениях. Они были ускорены до скорости света, на которой и произошло столкновение. Была зарегистрирована побивающая рекорды энергия 7 TeV (7 тераэлектронвольт). Величина этой энергии рекордная и имеет очень важные значения. Теперь давайте познакомимся с самыми важными составляющими БАК - датчиками и детекторами, которые регистрируют происходящее во фракциях за те доли секунд, в течение которых происходит столкновение протонных лучей. Есть три датчика, выполняющие центральные роли во время столкновения 30 марта 2010 - это одни из важнейших частей коллайдера, играющие ключевую роль во время сложных экспериментов CERN. На диаграмме показано расположение четырех основных экспериментов (ALICE, ATLAS, CMS и LHCb), которые являются ключевыми проектами БАК. На глубине от 50 до 150 метров под землей были выкопаны огромные пещеры специально для гигантских датчиков-детекторов

Начнем с проекта под названием ALICE (аббревиатура от Большой экспериментальный ионный коллайдер). Это одна из шести экспериментальных установок, построенных на БАК. ALICE настроена для исследования столкновений тяжёлых ионов. Температура и плотность энергии образованной при этом ядерной материи достаточной для рождения глюонной плазмы. На фотографии детектор ALICE и все его 18 модулей

Внутренняя система слежения (ITS) в ALICE состоит из шести цилиндрических слоев кремниевых датчиков, окружающих пункт столкновения и измеряющих свойства и точные положения появляющихся частиц. Таким образом могут быть легко обнаружены частицы, содержащие тяжелый кварк

Одним из основных экспериментов БАК является также ATLAS. Эксперимент проводится на специальном детекторе, предназначенном для исследования столкновений между протонами. Длина ATLAS - 44 метра, 25 метров в диаметре и вес приблизительно 7000 тонн. В центре тоннеля сталкиваются лучи протонов, это самый большой и самый сложный из когда либо построенных датчиков такого типа. Датчик фиксирует все, что происходит во время и после столкновения протонов. Целью проекта является обнаружение частиц, до этого не зарегистрированных и не обнаруженных в нашей вселенной.

Открытие и подтверждение Бозона Хиггса - важнейший приоритет Большого Адронного Коллайдера, потому что это открытие подтвердило бы Стандартную Модель возникновения элементарных атомных частиц и стандартной материи. Во время запуска коллайдера на полную мощность целостность Стандартной Модели будет разрушена. Элементарные частицы, свойства которых мы понимаем лишь частично, не будут в состоянии поддерживать свою структурную целостность. У Стандартной Модели есть верхняя граница энергии 1 TeV, при увеличении которой частица распадается. При энергии в 7 TeV могли бы быть созданы частицы с массами, в десять раз больше чем ныне известные. Правда они будут очень непостоянны, но ATLAS разработан, чтобы обнаружить их в те доли секунды, прежде чем они "исчезнут"

Это фото считается самым лучшим из всех фотографий Большого Адронного Коллайдера:

Компактный мюонный соленоид (Compact Muon Solenoid ) является одним из двух огромных универсальных детекторов элементарных частиц на БАК. Около 3600 ученых из 183 лабораторий и университетов 38 стран, поддерживают работу CMS, которая построила этот детектор и работает с ним. Соленоид расположен под землей в Цесси на территории Франции, близ границы со Швейцарией. На схеме показано устройство CMS, о котором мы и расскажем подробнее

Самый внутренний слой — основанный на кремнии трекер. Трекер — самый большой в мире кремниевый датчик. У этого есть 205 m2 кремниевых датчиков (приблизительно область теннисного корта), включающих 76 миллионов каналов. Трекер позволяет измерять следы заряженных частиц в электромагнитном поле

На втором уровне находиться Электромагнитный калориметр. Адронный Калориметр, находящийся на следующем уровне, измеряет энергию отдельных адронов, произведенных в каждом случае

Следующий слой CMS Большого Адронного Коллайдера - огромный магнит. Большой Соленоидный Магнит составляет 13 метров в длину и имеет 6-метровый диаметр. Состоит он из охлаждаемых катушек, сделанных из ниобия и титана. Этот огромный соленоидный магнит работает на полную силу, чтоб максимизировать время существования частиц

5 слой — Мюонные детекторы и ярмо возврата. CMS предназначен для исследования различных типов физики, которые могли бы быть обнаружены в энергичных столкновениях LHC. Некоторые из этих исследований заключаются в подтверждении или улучшенных измерениях параметров Стандартной Модели, в то время как многие другие — в поисках новой физики.

Очень немного информации доступно об эксперименте 30 марта 2010, Но один факт известен точно. CERN сообщила, что был зарегистрирован беспрецедентный выброс энергии на третьей попытке запуска коллайдера, когда лучи протонов мчались вокруг 27-километрового тоннеля и затем столкнулись на скорости света. Рекордный зарегистрированный уровень энергии был зафиксирован на максимуме, который может выдать в его текущей конфигурации - приблизительно 7 TeV. Именно такое количество энергии было характерно для первых секунд начала Большого Взрыва, давшего начало существованию нашей вселенной. Изначально такой уровень энергии не ожидался, но результат превзошел все ожидания

На схеме показано, как ALICE фиксирует рекордный выброс энергии в 7 TeV:

Этот эксперимент будет повторен сотни раз в течение 2010 года. Чтобы вы поняли, насколько сложен этот процесс, можно привести аналогию разгону частиц в коллайдере. По сложности это равнозначно например выстрелу иголками с острова Ньюфаундленд с такой идеальной точностью, чтобы эти иглы столкнулись где-нибудь в Атлантике, облетев весь Земной шар. Главная цель - обнаружение элементарной частицы - Бозона Хиггса, которая лежит в основе Стандартной Модели построения вселенной

При удачном исходе всех этих экспериментов мир самых тяжелых частиц в 400 ГэВ (так называемая Темная Материя)может наконец быть открыт и исследован.

Определение большого адронного коллайдера звучит так: БАК является ускорителем заряженных частиц, и создан он с целью разгона тяжелых ионов и протонов свинца, и исследования тех процессов, которые происходят при их столкновении. Но зачем это нужно? Таит ли в себе это какую-то опасность? В этой статье мы и будем отвечать на эти вопросы, и попробуем понять, зачем нужен большой адронный коллайдер.

Что собой представляет БАК

Большой адронный коллайдер – это огромнейший тоннель кольцеобразной формы. Он похож на большую трубу, которая разгоняет частицы. Находится БАК под территорией Швейцарии и Франции, на глубине 100 метров. Ученые всего мира принимали участие в его создании.

Цель его постройки:

  • Найти бозон Хиггса. Это механизм, который наделяет частицы массой.
  • Изучение кварков – это фундаментальные частицы, которые входят в состав адронов. Поэтому и название коллайдера «адронный».

Многие думают, что БАК является единственным ускорителем в мире. Но это далеко не так. Начиная с 50-х годов 20 века в мире построен не один десяток подобных коллайдеров. Но большой адронный коллайдер считается самым масштабным сооружением, длина его составляет 25,5 км. Кроме этого, в него входит еще один ускоритель, меньший по размеру.

СМИ о БАК

В СМИ, еще с начала создания коллайдера, появилось огромное количество статей об опасности и дороговизне ускорителя. Основная масса людей считает, что деньги потрачены зря, они не могут понять, зачем тратить столько средств и сил на поиски какой-то частицы.

  • Большой адронный коллайдер не является самым дорогим научным проектом в истории.
  • Основная цель этой работы - бозон Хиггса, для открытия которого и созданадронный коллайдер. Результаты этого открытия принесут человечеству множество революционных технологий. Ведь изобретение сотового телефона тоже когда-то было встречено негативно.

Принцип работы БАК

Рассмотрим, как выглядит работа адронного коллайдера. Он на больших скоростях сталкивает пучки частиц, а затем следит за их последующим взаимодействием и поведением. Как правило, на вспомогательном кольце сначала разгоняется один пучок частиц, а уже после этого он отправляется в кольцо основное.

Внутри коллайдера частицы удерживают множество сильнейших магнитов. Так как столкновение частиц происходит за доли секунды, то их перемещение фиксируют высокоточные приборы.

Организацией, которая осуществляет работу коллайдера, является ЦЕРН. Именно она, 4 июля 2012 года, после огромных денежных вложений и трудов, официально объявила о том, что бозон Хиггса таки найден.

Зачем БАК нужен

Теперь необходимо понять, что же дает БАК обычным людям, зачем адронный коллайдер нужен.

Открытия, связанные с бозоном Хиггса и изучение кварков, могут привести в перспективе к новой волне научно-технического прогресса.

  • Грубо говоря, масса является энергией в состоянии покоя, а значит, в будущем есть возможность преобразовать материю в энергию. И, следовательно, не будет проблем с энергией и появится возможность межзвездных путешествий.
  • В будущем изучение квантовой гравитации позволит управлять гравитацией.
  • Это дает возможность подробнее изучить М-теорию, которая утверждает, что в мироздание входит 11 измерений. Это изучение позволит глубже понять строение Вселенной.

О надуманной опасности адронного коллайдера

Как правило, люди боятся всего нового. Опасения у них вызывает и адронный коллайдер. Опасность же его надумана и разжигается в СМИ людьми, не имеющими естественно-научного образования.

  • В БАК сталкиваются адроны, а не бозоны, как пишут некоторые журналисты, пугая людей.
  • Подобные приборы работают уже много десятилетий и приносят не вред, а пользу науке.
  • Предположение о столкновении протонов с высокими энергиями, в результате которых могут возникнуть черные дыры, опровергается квантовой теорией гравитации.
  • В черную дыру может коллапсировать только звезда в 3 раза тяжелее солнца. Так как в солнечной системе таких масс нет, то и черной дыре неоткуда возникнуть.
  • Из-за той глубины, на которой находится коллайдер под землей, его излучение не представляет опасности.

Мы узнали, что такое БАК и для чего нужен адронный коллайдер и поняли, что опасаться его не стоит, а лучше ждать открытий, которые сулят нам большой технический прогресс.

Большой адронный коллайдер (БАК) - это ускоритель заряженных частиц, с помощью которого физики смогут узнать о свойсвтах материи значительно больше, чем было известно раньше. Ускорители используются для получения заряженных элементарных частиц высоких энергий. В основе работы практически любого ускорителя лежит взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле напрямую совершает работу над частицей, то есть увеличивает её энергию, а магнитное поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Коллайдер (англ. collide - "сталкиваться") - ускоритель на встречных пучках, предназначенный для изучения продуктов их соударений. Позволяет придать элементарным частицам вещества высокую кинетическую энергию, направить их навстречу друг другу, чтобы произвести их столкновение.

Почему "большой адронный"

Большим коллайдер назван, собственно, из-за своих размеров. Длина основного кольца ускорителя составляет 26 659 м; адронным - из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков.

Построен БАК в научно-исследовательском центре Европейского совета ядерных исследований (ЦЕРН), на границе Швейцарии и Франции, недалеко от Женевы. На сегодняшний день БАК является самой крупной экспериментальной установкой в мире. Руководителем этого масштабного проекта является британский физик Лин Эванс, а в строительстве и исследованиях принимали и принимают участие более 10 тыс. учёных и инженеров из более чем 100 стран.

Небольшой экскурс в историю

В конце 60-х годов прошлого века физиками была разработана так называемая Стандартная модель. Она объединяет три из четырёх фундаментальных взаимодействий - сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах общей теориии относительности. То есть, на сегодняшний день фундаментальные взаимодействия описываются двумя общепринятыми теориями: общей теорией относительности и стандартной моделью.

Считается, что стандартная модель должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ(тераэлектронвольт). Главная задача Большого адронного коллайдера - получить хотя бы первые намеки на то, что это за более глубокая теория.

В число основных задач коллайдера входит также открытие и подтверждение Бозона Хиггса. Это открытие подтвердило бы Стандартную Модель возникновения элементарных атомных частиц и стандартной материи. Во время запуска коллайдера на полную мощность целостность Стандартной Модели будет разрушена. Элементарные частицы, свойства которых мы понимаем лишь частично, не будут в состоянии поддерживать свою структурную целостность. У Стандартной Модели есть верхняя граница энергии 1 ТэВ, при увеличении которой частица распадается. При энергии в 7 ТэВ могли бы быть созданы частицы с массами, в десять раз больше чем ныне известные.

Технические характеристики

Предполагается сталкивать в ускорителе протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109 электронвольт) на каждую пару сталкивающихся нуклонов.

Светимость БАК во время первых недель работы пробега была не более 1029 частиц/см²·с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7·1034 частиц/см²·с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle(KEK, Япония).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер, под землёй на территории Франции и Швейцарии. Глубина залегания туннеля - от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (−271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Детекторы БАК

На БАК работают 4 основных и 3 вспомогательных детектора:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward)
  • MoEDAL (Monopole and Exotics Detector At the LHC).

Первый из них настроен для исследования столкновений тяжёлых ионов. Температура и плотность энергии образованной при этом ядерной материи достаточной для рождения глюонной плазмы. Внутренняя система слежения (ITS) в ALICE состоит из шести цилиндрических слоев кремниевых датчиков, окружающих пункт столкновения и измеряющих свойства и точные положения появляющихся частиц. Таким образом могут быть легко обнаружены частицы, содержащие тяжелый кварк.

Второй предназначен для исследования столкновений между протонами. Длина ATLAS – 44 метра, 25 метров в диаметре и вес приблизительно 7000 тонн. В центре тоннеля сталкиваются лучи протонов, это самый большой и самый сложный из когда либо построенных датчиков такого типа. Датчик фиксирует все, что происходит во время и после столкновения протонов. Целью проекта является обнаружение частиц, до этого не зарегистрированных и не обнаруженных в нашей вселенной.

CMS - один из двух огромных универсальных детекторов элементарных частиц на БАК. Около 3600 ученых из 183 лабораторий и университетов 38 стран, поддерживают работу CMS (На рисунке - устройство CMS).


Самый внутренний слой - основанный на кремнии трекер. Трекер - самый большой в мире кремниевый датчик. У этого есть 205 m2 кремниевых датчиков (приблизительно область теннисного корта), включающих 76 миллионов каналов. Трекер позволяет измерять следы заряженных частиц в электромагнитном поле.

На втором уровне находиться Электромагнитный калориметр. Адронный Калориметр, находящийся на следующем уровне, измеряет энергию отдельных адронов, произведенных в каждом случае.

Следующий слой CMS Большого Адронного Коллайдера – огромный магнит. Большой Соленоидный Магнит составляет 13 метров в длину и имеет 6-метровый диаметр. Состоит он из охлаждаемых катушек, сделанных из ниобия и титана. Этот огромный соленоидный магнит работает на полную силу, чтоб максимизировать время существования частиц соленоидный магнит.

Пятый слой - мюонные детекторы и ярмо возврата. CMS предназначен для исследования различных типов физики, которые могли бы быть обнаружены в энергичных столкновениях LHC. Некоторые из этих исследований заключаются в подтверждении или улучшенных измерениях параметров Стандартной Модели, в то время как многие другие - в поисках новой физики.

О Большом адронном коллайдере можно рассказывать много и долго. Надеемся, что наша статья помогла разобраться в том, что же такое БАК и для чего он необходим учёным.