Информационная поддержка школьников и студентов
Поиск по сайту

Сообщение на тему правило левой руки. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. Простые приемы запоминания правил буравчика

Правило буравчика – упрощенная наглядная демонстрация при помощи одной руки правильного умножения двух векторов. Геометрия школьного курса подразумевает осведомленность учеников о скалярном произведении. В физике часто встречается векторное.

Понятие вектора

Полагаем, нет смысла истолковывать правило буравчика при отсутствии знания определения вектора. Требуется открыть бутылку — знание о правильных действиях поможет. Вектором называют математическую абстракцию, не существующую реально, выказывающую указанные признаки:

  1. Направленный отрезок, обозначаемый стрелкой.
  2. Точкой начала послужит точка действия силы, описываемой вектором.
  3. Длина вектора равна модулю силы, поля, прочих описываемых величин.

Не всегда затрагивают силу. Векторами описывается поле. Простейший пример показывают школьникам преподаватели физики. Подразумеваем линии напряженности магнитного поля. Вдоль обычно рисуются векторы по касательной. В иллюстрациях действия на проводник с током увидите прямые линии.

Правило буравчика

Векторные величины часто лишены места приложения, центры действия выбираются по договоренности. Момент силы исходит из оси плеча. Требуется для упрощения сложения. Допустим, на рычаги различной длины действуют неодинаковые силы, приложенные к плечам с общей осью. Простым сложением, вычитанием моментов найдем результат.

Векторы помогают решить многие обыденные задачи и, хотя выступают математическими абстракциями, действуют реально. На основе ряда закономерностей возможно вести предсказание будущего поведения объекта наравне со скалярными величинами: поголовье популяции, температура окружающей среды. Экологов интересуют направления, скорость перелета птиц. Перемещение является векторной величиной.

Правило буравчика помогает найти векторное произведение векторов. Это не тавтология. Просто результатом действия окажется тоже вектор. Правило буравчика описывает направление, куда станет указывать стрелка. Что касается модуля, нужно применять формулы. Правило буравчика – упрощенная чисто качественная абстракция сложной математической операции.

Аналитическая геометрия в пространстве

Каждому известна задачка: стоя на одном берегу реки, определить ширину русла. Кажется уму непостижимым, решается в два счета методами простейшей геометрии, которую изучают школьники. Проделаем ряд несложных действий:

  1. Засечь на противоположном берегу видный ориентир, воображаемую точку: ствол дерева, устье ручейка, впадающего в поток.
  2. Под прямым углом линии противоположного берега сделать засечку на этой стороне русла.
  3. Найти место, с которого ориентир виден под углом 45 градусов к берегу.
  4. Ширина реки равна удалению конечной точки от засечки.

Определение ширины реки методом подобия треугольников

Используем тангенс угла. Не обязательно равен 45 градусов. Нужна большая точность — угол лучше брать острым. Просто тангенс 45 градусов равен единице, решение задачки упрощается.

Аналогичным образом удается найти ответы на животрепещущие вопросы. Даже в микромире, управляемом электронами. Можно однозначно сказать одно: непосвященному правило буравчика, векторное произведение векторов представляются скучными, занудными. Удобный инструмент, помогающий в понимании многих процессов. Большинству будет интересным принцип работы электрического двигателя (безотносительно к конструкции). Легко может быть объяснен использованием правила левой руки.

Во многих отраслях науке бок-о-бок идут два правила: левой, правой руки. Векторное произведение иногда может описываться так или эдак. Звучит расплывчато, предлагаем немедленно рассмотреть пример:

  • Допустим, движется электрон. Отрицательно заряженная частица бороздит постоянное магнитное поле. Очевидно, траектория окажется изогнута благодаря силе Лоренца. скептики возразят, по утверждениям некоторых ученых электрон не частица, а скорее, суперпозиция полей. Но принцип неопределенности Гейзенберга рассмотрим в другой раз. Итак, электрон движется:

Расположив правую руку, чтобы вектор магнитного поля перпендикулярно входил в ладонь, вытянутые персты указывали направление полета частицы, отогнутый на 90 градусов в сторону большой палец вытянется в направлении действия силы. Правило правой руки, являющееся иным выражением правила буравчика. Слова-синонимы. Звучит по-разному, по сути – одно.

  • Приведем фразу Википедии, отдающую странностью. При отражении в зеркале правая тройка векторов становится левой, тогда нужно применять правило левой руки вместо правой. Летел электрон в одну сторону, по методикам, принятым в физике, ток движется в противоположном направлении. Словно отразился в зеркале, поэтому сила Лоренца определяется уже правилом левой руки:

Если расположить левую руку, чтобы вектор магнитного поля перпендикулярно входил в ладонь, вытянутые персты указывали направление течения электрического тока, отогнутый на 90 градусов в сторону большой палец вытянется, указывая вектор действия силы.

Видите, ситуации похожие, правила просты. Как запомнить, которое применять? Главный принцип неопределенности физики. Векторное произведение вычисляется во многих случаях, причем правило применяется одно.

Какое правило применить

Слова синонимы: рука, винт, буравчик

Вначале разберем слова-синонимы, многие начали спрашивать себя: если тут повествование должно затрагивать буравчик, почему текст постоянно касается рук. Введем понятие правой тройки, правой системы координат. Итого, 5 слов-синонимов.

Потребовалось выяснить векторное произведение векторов, оказалось: в школе это не проходят. Проясним ситуацию любознательным школьникам.

Декартова система координат

Школьные графики на доске рисуют в декартовой системе координат Х-Y. Горизонтальная ось (положительная часть) направлена вправо – надеемся, вертикальная — указывает вверх. Делаем один шаг, получая правую тройку. Представьте: из начала отсчета в класс смотрит ось Z. Теперь школьники знают определение правой тройки векторов.

В Википедии написано: допустимо брать левые тройки, правые, вычисляя векторное произведение, несогласны. Усманов в этом плане категоричен. С разрешения Александра Евгеньевича приведем точное определение: векторным произведением векторов называют вектор, удовлетворяющий трем условиям:

  1. Модуль произведения равен произведению модулей исходных векторов на синус угла меж ними.
  2. Вектор результата перпендикулярен исходным (вдвоем образуют плоскость).
  3. Тройка векторов (по порядку упоминания контекстом) правая.

Правую тройку знаем. Итак, если ось Х – первый вектор, Y – второй, Z будет результатом. Почему назвали правой тройкой? По-видимому, связано с винтами, буравчиками. Если закручивать воображаемый буравчик по кратчайшей траектории первый вектор-второй вектор, поступательное движение оси режущего инструмента станет происходить в направлении результирующего вектора:

  1. Правило буравчика применяется к произведению двух векторов.
  2. Правило буравчика качественно указывает направление результирующего вектора этого действия. Количественно длина находится выражением, упомянутым (произведение модулей векторов на синус угла меж ними).

Теперь каждому понятно: сила Лоренца находится согласно правилу буравчика с левосторонней резьбой. Векторы собраны левой тройкой, если взаимно ортогональны (перпендикулярны один другому), образуется левая система координат. На доске ось Z смотрела бы в направлении взгляда (от аудитории за стену).

Простые приемы запоминания правил буравчика

Люди забывают, что силу Лоренца проще определять правилом буравчика с левосторонней резьбой. Желающий понять принцип действия электрического двигателя должен как дважды два щелкать подобные орешки. В зависимости от конструкции число катушек ротора бывает значительным, либо схема вырождается, становясь беличьей клеткой. Ищущим знания помогает правило Лоренца, описывающее магнитное поле, где движутся медные проводники.

Для запоминания представим физику процесса. Допустим, движется электрон в поле. Применяется правило правой руки для нахождения направления действия силы. Доказано: частица несет отрицательный заряд. Направление действия силы на проводник находится правилом левой руки, вспоминаем: физики совершенно с левых ресурсов взяли, что электрический ток течет в направлении противоположном тому, куда направились электроны. И это неправильно. Поэтому приходится применять правило левой руки.

Не всегда следует идти такими дебрями. Казалось бы, правила больше запутывают, не совсем так. Правило правой руки часто применяется для вычисления угловой скорости, которая является геометрическим произведением ускорения на радиус: V = ω х r. Многим поможет визуальная память:

  1. Вектор радиуса круговой траектории направлен из центра к окружности.
  2. Если вектор ускорения направлен вверх, тело движется против часовой стрелки.

Посмотрите, здесь опять действует правило правой руки: если расположить ладонь так, чтобы вектор ускорения входил перпендикулярно в ладонь, персты вытянуть по направлению радиуса, отогнутый на 90 градусов большой палец укажет направление движения объекта. Достаточно однажды нарисовать на бумаге, запомнив минимум на половину жизни. Картинка действительно простая. Больше на уроке физики не придется ломать голову над простым вопросом — направление вектора углового ускорения.

Аналогичным образом определяется момент силы. Исходит перпендикулярно из оси плеча, совпадает направлением с угловым ускорением на рисунке, описанном выше. Многие спросят: зачем нужно? Почему момент силы не скалярная величина? Зачем направление? В сложных системах непросто проследить взаимодействия. Если много осей, сил, помогает векторное сложение моментов. Можно значительно упростить вычисления.

Благодаря сегодняшнему видеоуроку мы узнаем, как происходит обнаружение магнитного поля по его действию на электрический ток. Запомним правило левой руки. С помощью опыта мы узнаем, как происходит обнаружение магнитного поля по его воздействию на другой электрический ток. Изучим, в чём состоит правило левой руки.

На этом уроке мы обсудим вопрос, связанный с обнаружением магнитного поля по его действию на электрический ток, и познакомимся с правилом левой руки.

Обратимся к опыту. Первый подобный эксперимент по исследованию взаимодействия токов был проведен французским ученым Ампером в 1820 году. Эксперимент заключался в следующем: по параллельным проводникам пропускали электрический ток в одном направлении, затем в разных направлениях наблюдали взаимодействие этих проводников.

Рис. 1. Опыт Ампера. Сонаправленные проводники с током притягиваются, противонаправленные отталкиваются

Если взять два параллельных проводника, по которым проходит электрический ток в одном направлении, то в этом случае проводники будут друг к другу притягиваться. Когда в тех же самых проводниках электрический ток проходит в разных направлениях, проводники отталкиваются. Таким образом, мы наблюдаем силовое действие магнитного поля на электрический ток. Итак, можно сказать следующее: магнитное поле создается электрическим током и обнаруживается по его действию на другой электрический ток (сила Ампера).

Когда было проведено большое количество аналогичных экспериментов, то было получено правило, которое связывает между собой направление магнитных линий, направление электрического тока и силовое действие магнитного поля. Это правило получило название правило левой руки . Определение: левую руку нужно расположить таким образом, чтобы магнитные линии входили в ладонь, четыре вытянутых пальца указывали направление электрического тока - тогда отогнутый большой палец укажет направление действия магнитного поля.

Рис. 2. Правило левой руки

Обратите внимание: мы не можем говорить о том, что, куда направлена магнитная линия, туда и действует магнитное поле. Здесь взаимосвязь между величинами несколько сложнее, поэтому мы пользуемся правилом левой руки .

Вспомним, что электрический ток - это направленное движение электрических зарядов. Значит, магнитное поле действует на движущийся заряд. И мы можем воспользоваться в данном случае так же правилом левой руки для определения направления этого действия.

Обратите внимание на рисунок, на котором приведены различные случаи использования правила левой руки, и проанализируйте каждый случай самостоятельно.

Рис. 3. Различные случаи применения правила левой руки

Напоследок, еще один важный факт. Если электрический ток или скорость заряженной частицы направлены вдоль линий магнитного поля, то никакого действия магнитного поля на эти объекты не будет.

Список дополнительной литературы:

Асламазов Л.Г. Движение заряженных частиц в электрическом и магнитном полях // Квант. — 1984. — № 4. — С. 24-25. Мякишев Г.Я. Как работает электродвигатель? // Квант. — 1987. — № 5. — С. 39-41. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 2. - М., 1974. Яворский Б.М., Пинский А.А. Основы физики. Т.2. - М.: Физматлит, 2003.

С момента создания электричества было проделано много научной работы в физике по изучению его характеристик, особенностей и влияния на окружающую среду. Правило буравчика внесло свой значимый след в изучение магнитного поля, закон правой руки для цилиндрической обмотки провода позволяет глубже понять процессы, проходящие в соленоиде, а правило левой руки характеризует силы, влияющие на проводник с током. Благодаря правой и левой руке, а также мнемоническим приемам можно с легкостью эти закономерности изучить и понять.

Принцип буравчика

Достаточно долгое время магнитные и электрические характеристики поля изучались физикой раздельно. Однако в 1820 году совершенно случайно датский ученый Ханс Христиан Эрстед обнаружил магнитные свойства провода с электричеством во время проведения лекции по физике в университете. Также была обнаружена зависимость ориентации магнитной стрелки от направления протекания тока в проводнике.

Проведенный опыт доказывает наличие поля с магнитными характеристиками вокруг провода с током, на которое реагирует намагниченная стрелка или компас. Ориентация протекания «переменки» заставляет поворачиваться стрелку компаса в противоположные стороны, сама стрелка расположена по касательной электромагнитного поля.

Для выявления ориентации электромагнитных потоков применяют правило буравчика, или закон правого винта, которое гласит, что, ввинчивая шуруп по курсу протекания электротока в шунте, путь верчения рукоятки задаст ориентацию ЭМ потоков фона «переменки».

Также возможно использовать правило Максвелла правой руки: когда отодвинутый палец правой руки ориентируется по курсу протекания электричества, то остальные сжатые пальцы покажут ориентацию электромагнитной области.

Пользуясь этими двумя принципами, будет получен одинаковый эффект, используемый для определения электромагнитных потоков.

Закон правой руки для соленоида

Рассмотренный принцип винта или закономерность Максвелла для правой руки применим для прямолинейного провода с током. Однако в электротехнике встречаются устройства, у которых проводник расположен не прямолинейно, и для него закон винта не применим. В первую очередь, это касается катушек индуктивности и соленоидов. Соленоид, как разновидность катушки индуктивности, представляет собой цилиндрическую обмотку провода, длина которого во много раз больше диаметра соленоида. Дроссель индуктивности отличается от соленоида лишь длиной самого проводника, который может быть в разы меньше.

Французский специалист по математике и физике А-М. Ампер, благодаря своим опытам, узнал и доказал, что при прохождении по дросселю индуктивности электротока указатели компаса у торцов цилиндрической обмотки провода разворачивались обратными концами вдоль невидимых потоков ЭМ поля. Такие опыты доказали, что около катушки индуктивности с током образовывается магнитное поле, и цилиндрическая обмотка проволоки формирует магнитные полюса. Электромагнитное поле, возбуждаемое электротоком цилиндрической обмотки проволоки, подобно магнитному полю постоянного магнита – конец цилиндрической обмотки провода, из которого выходят ЭМ потоки, отображает полюс, являющийся северным, а противоположный конец является южным.

Для распознавания магнитных полюсов и ориентации ЭМ линий в дросселе с током употребляют правило правой руки для соленоида. Оно сообщает о том, что, если взять данную катушку рукой, разместить пальцы ладони прямо по курсу протекания электронов в витках, большой палец, отодвинутый на девяносто градусов, задаст ориентацию электромагнитного фона в середине соленоида – его северный полюс. Соответственно, зная позицию магнитных полюсов цилиндрической обмотки проволоки, можно определить трассу протекания электронов в витках.

Закон левой руки

Ханс Христиан Эрстед после открытия явления магнитного поля вблизи шунта в кратчайшие сроки поделился своими результатами с большинством ученых Европы. В результате этого Ампер А.-М., пользуясь своими методами, спустя короткий отрезок времени явил общественности эксперимент по специфическому поведению двух параллельных шунтов с электротоком. Формулировка опыта доказывала, что параллельно размещенные провода, по которым протекает электричество в одном направлении, взаимно придвигаются друг к другу. Соответственно, такие шунты будут взаимно отталкиваться при условии, что протекающая в них «переменка» будет распределяться в разные стороны. Эти эксперименты легли в основу законов Ампера.

Испытания позволяют озвучить главные выводы:

  1. Постоянный магнит, проводник с «переменкой», электрически заряженная движущаяся частица имеют вокруг себя ЭМ область;
  2. Заряженная частица, движущаяся в этой области, поддается некоторому воздействию со стороны ЭМ фона;
  3. Электрическая «переменка» является ориентированным перемещением заряженных частиц, соответственно, электромагнитный фон воздействует на шунт с электричеством.

ЭМ фон влияет на шунт с «переменкой» неким давлением, называемым силой Ампера. Указанную характеристику можно определить формулой:

FA=IBΔlsinα, где:

  • FA – сила Ампера;
  • I – интенсивность электричества;
  • B – вектор магнитной индукции по модулю;
  • Δl – размер шунта;
  • α – угол между направлением В и курсом электричества в проводе.

При условии, что угол α – девяносто градусов, то данная сила наибольшая. Соответственно, если данный угол равен нулю, то и сила нулевая. Контур этой силы выявляется по закономерности левой руки.

Если изучить правило буравчика и правило левой руки, получите все ответы на формирование ЭМ полей и их влияние на проводники. Благодаря этим правилам, есть возможность рассчитывать индуктивности катушек и при необходимости формировать противотоки. В основе принципа построения электродвигателей лежат силы Ампера в целом и правило левой руки в частности.

Видео

Из экспериментальных занятий по физике можно заключить, что магнитное поле оказывает воздействие на заряженные частицы, находящиеся в движении, а, следовательно, и на проводники с током. Сила воздействия магнитного поля на проводник с током, называется силой Ампера, а ее векторное направление устанавливает правило левой руки.

Сила Ампера находится в прямо пропорциональной зависимости от индукции магнитного поля, силы тока в проводнике, длины проводника и угла расположения вектора магнитного поля по отношению к проводнику. Математическое написание этой зависимости получило название закон Ампера:

F А =B*I*l*sinα

Исходя из этой формулы, можно сделать вывод о том, что при α=0° (параллельное положение проводника) сила F А будет равняться нулю, а при α=90° (перпендикулярное направление проводника) она будет максимальной.

Свойства силы, действующей на проводник с электрическим током в магнитном поле, были подробно описаны в трудах А. Ампера.

Если сила Ампера действует на весь проводник с проходящим током (поток заряженных частиц), то отдельная движущаяся положительно заряженная частица находится под влиянием силы Лоренца. Выразить силу Лоренца можно через F А, разделив эту величину на количество движущихся зарядов внутри проводника (концентрацию носителей заряда).

В магнитном поле под влиянием силы Лоренца заряд движется по окружности, при условии, что направление его движения перпендикулярно линиям индукции.

Сила Лоренца рассчитывается по следующей формуле:

F Л =q*v*B*sinα

Проведя серию физических экспериментов с использованием магнитных полюсов, как источника однородного магнитного поля. и рамки с током, можно наблюдать изменение поведения рамки (выталкивается или втягивается в зону распространения магнитного поля) при изменении не только направления заряженных частиц, но и при смене ориентации полюсов. Таким образом, вектор магнитной индукции, вектор скорости заряженных частиц (направление тока) и вектор силы находятся в тесном взаимодействии и ориентированны взаимно перпендикулярно.

Для определения направления работы сил Лоренца и Ампера следует пользоваться правилом левой руки: «Если ладонь левой руки развернуть таким образом, чтобы в нее под прямым углом входили линии магнитного поля, а вытянутые пальцы располагались по направлению электрического тока (направление движения частиц с положительным зарядом), то направление действия силы укажет перпендикулярно отодвинутый большой палец».

Такая упрощенная формулировка позволяет быстро и безошибочно определить направление любого неизвестного вектора: силы, тока или линий индукции магнитного поля.

Правило левой руки применимо в случаях, когда:

  • определяется направление действия силы на положительно заряженные частицы (для отрицательно заряженных частиц направление будет противоположным);
  • линии индукции магнитного поля и вектор скорости заряженных частиц образуют угол отличный от нуля (в противном случае сила не будет действовать на проводник).

В однородном магнитном поле рамка с током располагается так, что линии магнитного поля проходят через ее плоскость под прямым углом.

Если магнитное поле образуется вокруг линейного проводника с током, то оно считается неоднородным (переменным во времени и пространстве). В таком поле рамка с током будет не просто ориентироваться как-то определенно, но и притягиваться к проводнику с током или выталкиваться за пределы распространения магнитного поля. Поведение рамки определяется направлением токов в проводнике и рамке. Рамка с током всегда поворачивается вдоль радиуса линий индукции неоднородного магнитного поля.

Если рассмотреть два проводника с токами, движущимися в одном направлении, то с использованием правила левой руки можно установить, что сила, действующая на правый проводник, будет направлена влево, тогда как сила, действующая на левый проводник - вправо. Следовательно, получается что силы, воздействующие на проводники, направлены друг к другу. Именно этим заключением объясняется притягиванием проводников с однонаправленными токами.

Если же ток в двух параллельных проводниках будет идти в противоположных направлениях, то действующие силы будут направлены в разные стороны. Это приведет к отталкиванию двух проводников.

На рамку с током, помещенную в неоднородное магнитное поле, оказывают действие силы разных направлений, заставляющие ее вращаться. На этом явлении и основан принцип действия электродвигателя.

Применение правила левой руки имеет большое практическое значение и является следствием многократных экспериментов, открывающих природу магнитного поля.

Видео про правило левой руки

Вступив во взрослую жизнь, мало кто вспоминает школьный курс физики. Однако иногда необходимо покопаться в памяти, ведь некоторые знания, полученные в юности, могут существенно облегчить запоминание сложных законов. Одним из таких является правило правой и левой руки в физике. Применение его в жизни позволяет понять сложные понятия (к примеру, определить направление аксиального вектора при известном базисном). Сегодня попробуем объяснить эти понятия, и как они действуют языком, доступным простому обывателю, закончившему учёбу давно и забывшему ненужную (как ему казалось) информацию.

Читайте в статье:

Формулировка правила буравчика

Пётр Буравчик – это первый физик, сформулировавший правило левой руки для различных частиц и полей. Оно применимо как в электротехнике (помогает определить направление магнитных полей), так и в иных областях. Оно поможет, к примеру, определить угловую скорость.


Правило буравчика (правило правой руки) – это название не связано с фамилией физика, сформулировавшего его. Больше название опирается на инструмент, имеющий определённое направление шнека. Обычно у буравчика (винта, штопора) т.н. резьба правая, входит в грунт бур по часовой стрелке. Рассмотрим применение этого утверждения для определения магнитного поля.


Нужно сжать правую руку в кулак, подняв вверх большой палец. Теперь немного разжимаем остальные четыре. Именно они указывают нам направление магнитного поля. Если же говорить кратко, правило буравчика имеет следующий смысл – вкручивая буравчик вдоль направления тока, увидим, что рукоять вращается по направлению линии вектора магнитной индукции.

Правило правой и левой руки: применение на практике

Рассматривая применение этого закона, начнём с правила правой руки. Если известно направление вектора магнитного поля, при помощи буравчика можно обойтись без знания закона электромагнитной индукции. Представим, что винт передвигается вдоль магнитного поля. Тогда направление течения тока будет «по резьбе», то есть вправо.


Обратим внимание на постоянный управляемый магнит, аналогом которого является соленоид. По своей сути он является катушкой с двумя контактами. Известно, что ток движется от «+» к «-». Опираясь на эту информацию, берём в правую руку соленоид в таком положении, чтобы 4 пальца указывали направление течения тока. Тогда вытянутый большой палец укажет вектор магнитного поля.


Правило левой руки: что можно определить, воспользовавшись им

Не стоит путать правила левой руки и буравчика – они предназначены для совершенно разных целей. При помощи левой руки можно определить две силы, вернее, их направление. Это:

  • сила Лоренца;
  • сила Ампера.

Попробуем разобраться, как это работает.


Правило левой руки для силы Ампера: в чём оно заключается

Расположим левую руку вдоль проводника так, чтобы пальцы были направлены в сторону протекания тока. Большой палец будет указывать в сторону вектора силы Ампера, а в направлении руки, между большим и указательным пальцем будет направлен вектор магнитного поля. Это и будет правило левой руки для силы ампера, формула которой выглядит так:

Правило левой руки для силы Лоренца: отличия от предыдущего

Располагаем три пальца левой руки (большой, указательный и средний) так, чтобы они находились под прямым углом друг к другу. Большой палец, направленный в этом случае в сторону, укажет направление силы Лоренца, указательный (направлен вниз) – направление магнитного поля (от северного полюса к южному), а средний, расположенный перпендикулярно в сторону от большого, – направление тока в проводнике.


Формулу расчёта силы Лоренца можно увидеть на рисунке ниже.

Заключение

Разобравшись один раз с правилами правой и левой руки, уважаемый читатель поймёт, насколько легко ими пользоваться. Ведь они заменяют знание многих законов физики, в частности, электротехники. Главное здесь – не забыть направление течения тока.


Надеемся, что сегодняшняя статья была полезна нашим уважаемым читателям. При возникновении вопросов их можно оставить в обсуждениях ниже. Редакция сайт с удовольствием на них ответит в максимально сжатые сроки. Пишите, общайтесь, спрашивайте. А мы, в свою очередь, предлагаем вам посмотреть короткое видео, которое поможет более полно понять тему нашего сегодняшнего разговора.