Информационная поддержка школьников и студентов
Поиск по сайту

Уравнение с модулем и корнем. Что такое модуль числа в математике. Защита персональной информации

Инструкция

Если модуль представлен в виде непрерывной функции, то значение ее аргумента может быть как положительным, так и отрицательным: |х| = х, х ≥ 0; |х| = - х, х

Модуль нулю, а модуль любого положительного числа – ему . Если аргумент отрицательный, то после раскрытия скобок его знак меняется с минуса на плюс. На основании этого вытекает вывод, что модули противоположных равны: |-х| = |х| = х.


Модуль комплексного числа находится по формуле: |a| = √b ² + c ², а |a + b| ≤ |a| + |b|. Если в аргументе присутствует в виде множителя положительное число, то его можно вынести за знак скобки, например: |4*b| = 4*|b|.



Если аргумент представлен в виде сложного числа, то для удобства вычислений допускается порядка членов выражения, заключенного в прямоугольные скобки: |2-3| = |3-2| = 3-2 = 1, поскольку (2-3) меньше нуля.


Возведенный в степень аргумент одновременно находится под знаком корня того же порядка – он решается при помощи : √a² = |a| = ±a.


Если перед вами задача, в которой не указано условие раскрытия скобок модуля, то избавляться от них не нужно – это и будет конечный результат. А если требуется их раскрыть, то необходимо указать знак ±. Например, нужно найти значение выражения √(2 * (4-b)) ². Его решение выглядит следующим образом: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * |4-b|. Поскольку знак выражения 4-b неизвестен, то его нужно оставить в скобках. Если добавить дополнительное условие, например, |4-b| >

Модуль нуля равен нулю, а модуль любого положительного числа – ему самому. Если аргумент отрицательный, то после раскрытия скобок его знак меняется с минуса на плюс. На основании этого вытекает вывод, что модули противоположных чисел равны: |-х| = |х| = х.

Модуль комплексного числа находится по формуле: |a| = √b ² + c ², а |a + b| ≤ |a| + |b|. Если в аргументе присутствует в виде множителя целое положительное число, то его можно вынести за знак скобки, например: |4*b| = 4*|b|.

Отрицательным модуль быть не может, поэтому любое отрицательное число преобразуется в положительное: |-x| = x, |-2| = 2, |-1/7| = 1/7, |-2,5| = 2,5.

Если аргумент представлен в виде сложного числа, то для удобства вычислений допускается изменение порядка членов выражения, заключенного в прямоугольные скобки: |2-3| = |3-2| = 3-2 = 1, поскольку (2-3) меньше нуля.

Если перед вами задача, в которой не указано условие раскрытия скобок модуля, то избавляться от них не нужно – это и будет конечный результат. А если требуется их раскрыть, то необходимо указать знак ±. Например, нужно найти значение выражения √(2 * (4-b)) ². Его решение выглядит следующим образом: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * |4-b|. Поскольку знак выражения 4-b неизвестен, то его нужно оставить в скобках. Если добавить дополнительное условие, например, |4-b| > 0, то в итоге получится 2 * |4-b| = 2 *(4 - b). В качестве неизвестного элемента также может быть задано конкретное число, которое следует принимать во внимание, т.к. оно будет влиять на знак выражения.

Одна из самых сложных тем для учащихся – это решение уравнений, содержащих переменную под знаком модуля. Давайте разберемся для начала с чем же это связано? Почему, например, квадратные уравнения большинство детей щелкает как орешки, а с таким далеко не самым сложным понятием как модуль имеет столько проблем?

На мой взгляд, все эти сложности связаны с отсутствием четко сформулированных правил для решения уравнений с модулем. Так, решая квадратное уравнение, ученик точно знает, что ему нужно сначала применять формулу дискриминанта, а затем формулы корней квадратного уравнения. А что делать, если в уравнении встретился модуль? Постараемся четко описать необходимый план действий на случай, когда уравнение содержит неизвестную под знаком модуля. К каждому случаю приведем несколько примеров.

Но для начала вспомним определение модуля . Итак, модулем числа a называется само это число, если a неотрицательно и -a , если число a меньше нуля. Записать это можно так:

|a| = a, если a ≥ 0 и |a| = -a, если a < 0

Говоря о геометрическом смысле модуля, следует помнить, что каждому действительному числу соответствует определенная точка на числовой оси – ее координата. Так вот, модулем или абсолютной величиной числа называется расстояние от этой точки до начала отсчета числовой оси. Расстояние всегда задается положительным числом. Таким образом, модуль любого отрицательного числа есть число положительное. Кстати, даже на этом этапе многие ученики начинают путаться. В модуле может стоять какое угодно число, а вот результат применения модуля всегда число положительное.

Теперь перейдем непосредственно к решению уравнений.

1. Рассмотрим уравнение вида |x| = с, где с – действительное число. Это уравнение можно решить с помощью определения модуля.

Все действительные числа разобьем на три группы: те, что больше нуля, те, что меньше нуля, и третья группа – это число 0. Запишем решение в виде схемы:

{±c, если с > 0

Если |x| = c, то x = {0, если с = 0

{нет корней, если с < 0

1) |x| = 5, т.к. 5 > 0, то x = ±5;

2) |x| = -5, т.к. -5 < 0, то уравнение не имеет корней;

3) |x| = 0, то x = 0.

2. Уравнение вида |f(x)| = b, где b > 0. Для решения данного уравнения необходимо избавиться от модуля. Делаем это так: f(x) = b или f(x) = -b. Теперь необходимо решить отдельно каждое из полученных уравнений. Если в исходном уравнении b< 0, решений не будет.

1) |x + 2| = 4, т.к. 4 > 0, то

x + 2 = 4 или x + 2 = -4

2) |x 2 – 5| = 11, т.к. 11 > 0, то

x 2 – 5 = 11 или x 2 – 5 = -11

x 2 = 16 x 2 = -6

x = ± 4 нет корней

3) |x 2 – 5x| = -8 , т.к. -8 < 0, то уравнение не имеет корней.

3. Уравнение вида |f(x)| = g(x). По смыслу модуля такое уравнение будет иметь решения, если его правая часть больше или равна нулю, т.е. g(x) ≥ 0. Тогда будем иметь:

f(x) = g(x) или f(x) = -g(x) .

1) |2x – 1| = 5x – 10. Данное уравнение будет иметь корни, если 5x – 10 ≥ 0. Именно с этого и начинают решение таких уравнений.

1. О.Д.З. 5x – 10 ≥ 0

2. Решение:

2x – 1 = 5x – 10 или 2x – 1 = -(5x – 10)

3. Объединяем О.Д.З. и решение, получаем:

Корень x = 11/7 не подходит по О.Д.З., он меньше 2, а x = 3 этому условию удовлетворяет.

Ответ: x = 3

2) |x – 1| = 1 – x 2 .

1. О.Д.З. 1 – x 2 ≥ 0. Решим методом интервалов данное неравенство:

(1 – x)(1 + x) ≥ 0

2. Решение:

x – 1 = 1 – x 2 или x – 1 = -(1 – x 2)

x 2 + x – 2 = 0 x 2 – x = 0

x = -2 или x = 1 x = 0 или x = 1

3. Объединяем решение и О.Д.З.:

Подходят только корни x = 1 и x = 0.

Ответ: x = 0, x = 1.

4. Уравнение вида |f(x)| = |g(x)|. Такое уравнение равносильно двум следующим уравнениям f(x) = g(x) или f(x) = -g(x).

1) |x 2 – 5x + 7| = |2x – 5|. Данное уравнение равносильно двум следующим:

x 2 – 5x + 7 = 2x – 5 или x 2 – 5x +7 = -2x + 5

x 2 – 7x + 12 = 0 x 2 – 3x + 2 = 0

x = 3 или x = 4 x = 2 или x = 1

Ответ: x = 1, x = 2, x = 3, x = 4.

5. Уравнения, решаемые методом подстановки (замены переменной). Данный метод решения проще всего объяснить на конкретном примере. Так, пусть дано квадратное уравнение с модулем:

x 2 – 6|x| + 5 = 0. По свойству модуля x 2 = |x| 2 , поэтому уравнение можно переписать так:

|x| 2 – 6|x| + 5 = 0. Сделаем замену |x| = t ≥ 0, тогда будем иметь:

t 2 – 6t + 5 = 0. Решая данное уравнение, получаем, что t = 1 или t = 5. Вернемся к замене:

|x| = 1 или |x| = 5

x = ±1 x = ± 5

Ответ: x = -5, x = -1, x = 1, x = 5.

Рассмотрим еще один пример:

x 2 + |x| – 2 = 0. По свойству модуля x 2 = |x| 2 , поэтому

|x| 2 + |x| – 2 = 0. Сделаем замену |x| = t ≥ 0, тогда:

t 2 + t – 2 = 0. Решая данное уравнение, получаем, t = -2 или t = 1. Вернемся к замене:

|x| = -2 или |x| = 1

Нет корней x = ± 1

Ответ: x = -1, x = 1.

6. Еще один вид уравнений – уравнения со «сложным» модулем. К таким уравнениям относятся уравнения, в которых есть «модули в модуле». Уравнения данного вида можно решать, применяя свойства модуля.

1) |3 – |x|| = 4. Будем действовать так же, как и в уравнениях второго типа. Т.к. 4 > 0, то получим два уравнения:

3 – |x| = 4 или 3 – |x| = -4.

Теперь выразим в каждом уравнении модуль х, тогда |x| = -1 или |x| = 7.

Решаем каждое из полученных уравнений. В первом уравнении нет корней, т.к. -1 < 0, а во втором x = ±7.

Ответ x = -7, x = 7.

2) |3 + |x + 1|| = 5. Решаем это уравнение аналогичным образом:

3 + |x + 1| = 5 или 3 + |x + 1| = -5

|x + 1| = 2 |x + 1| = -8

x + 1 = 2 или x + 1 = -2. Нет корней.

Ответ: x = -3, x = 1.

Существует еще и универсальный метод решения уравнений с модулем. Это метод интервалов. Но мы его рассмотрим в дальнейшем.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Модуль числа легко найти, и теория, которая лежит в его основе, важна при решении задач.

Свойства и правила раскрытия, используемые при решении упражнений и на экзаменах, будут полезны школьникам и студентам. Заработай деньги с помощью своих знаний на https://teachs.ru !

Что такое модуль в математике

Модуль числа описывает расстояние на числовой линии от нуля до точки без учета того, в каком направлении от нуля лежит точка. Математическое обозначение: |x|.

Иными словами, это абсолютная величина числа. Определение доказывает, что значение никогда не бывает отрицательным.

Свойства модуля

Важно помнить о следующих свойствах:

Модуль комплексного числа

Абсолютной величиной комплексного числа называют длину направленного отрезка, проведенного от начала комплексной плоскости до точки (a, b).

Этот направленный отрезок также является вектором, представляющим комплексное число a + bi , поэтому абсолютная величина комплексного числа – это то же самое, что и величина (или длина) вектора, представляющего a+ bi .

Как решать уравнения с модулем

Уравнение с модулем – это равенство, которое содержит выражение абсолютного значения. Если для действительного числа оно представляет его расстояние от начала координат на числовой линии, то неравенства с модулем являются типом неравенств, которые состоят из абсолютных значений.

Уравнения типа |x| = a

Уравнение |x| = a имеет два ответа x = a и x = –a , потому что оба варианта находятся на координатной прямой на расстоянии a от 0.

Равенство с абсолютной величиной не имеет решения, если величина отрицательная.

Если |x| < a представляет собой расстояние чисел от начала координат, это значит, что нужно искать все числа, чье расстояние от начала координат меньше a.

Уравнения типа |x| = |y|

Когда есть абсолютные значения по обе стороны уравнений, нужно рассмотреть обе возможности для приемлемых определений – положительные и отрицательные выражения.

Например, для равенства |x − a| = |x + b| есть два варианта: (x − a) = − (x + b) или (x − a) = (x + b).

Уравнения типа |x| = y

Уравнения такого вида содержат абсолютную величину выражения с переменной слева от нуля, а справа – еще одну неизвестную. Переменная y может быть как больше, так и меньше нуля.

Для получения ответа в таком равенстве нужно решить систему из нескольких уравнений, в которой нужно убедиться, что y – неотрицательная величина:

Решение неравенств с модулем

Чтобы лучше понять, как раскрыть модуль в разных типах равенств и неравенств, нужно проанализировать примеры.

Уравнения вида |x| = a

Пример 1 (алгебра 6 класс). Решить: |x| + 2 = 4.

Решение.

Такие уравнения решаются так же, как и равенства без абсолютных значений. Это означает, что, перемещая неизвестные влево, а константы – вправо, выражение не меняется.

После перемещения константы вправо получено: |x| = 2 .

Поскольку неизвестные связаны с абсолютным значением, это равенство имеет два ответа: 2 и −2 .

Ответ: 2 и −2 .

Пример 2 (алгебра 7 класс). Решить неравенство |x + 2| ≥ 1.

Решение.

Первое, что нужно сделать, это найти точки, где абсолютное значение изменится. Для этого выражение приравнивается к 0 . Получено: x = –2 .

Это означает, что –2 – поворотная точка.

Разделим интервал на 2 части:

  1. для x + 2 ≥ 0

[−1; + ∞).

  1. для х + 2 < 0

Общим ответом для этих двух неравенств является интервал (−∞; –3].

Окончательное решение объединение ответов отдельных частей:

x (–∞; –3] [–1; + ∞).

Ответ: x (–∞; –3] [–1; + ∞) .

Уравнения вида |x| = |y|

Пример 1 (алгебра 8 класс). Решить уравнение с двумя модулями: 2 * |x – 1| + 3 = 9 – |x – 1|.

Решение:

Ответ: x 1 = 3; x 2 = 1.

Пример 2 (алгебра 8 класс). Решить неравенство:

Решение:

Уравнения вида |x| = y

Пример 1 (алгебра 10 класс). Найти x:

Решение:

Очень важно провести проверку правой части, иначе можно написать в ответ ошибочные корни. Из системы видно, что не лежит в промежутке.

Ответ: x = 0 .

Модуль суммы

Модуль разности

Абсолютная величина разности двух чисел x и y равна расстоянию между точками с координатами X и Y на координатной прямой.

Пример 1.

Пример 2.

Модуль отрицательного числа

Для нахождения абсолютного значения числа, которое меньше нуля, нужно узнать, как далеко оно расположено от нуля. Поскольку расстояние всегда является положительным (невозможно пройти «отрицательные» шаги, это просто шаги в другом направлении), результат всегда положительный. То есть,

Проще говоря, абсолютная величина отрицательного числа имеет противоположное значение.

Модуль нуля

Известно свойство:

Вот почему нельзя сказать, что абсолютная величина – положительное число: ноль не является ни отрицательным, ни положительным.

Модуль в квадрате

Модуль в квадрате всегда равен выражению в квадрате:

Примеры графиков с модулем

Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.

Пример 1.

Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.

Решение:

Объяснение : из рисунка видно, что график симметричен относительно оси Y.

Пример 2 . Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.

Решение:

Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)) .

Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.

Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.

Метод интервалов в задачах с модулем

Метод интервалов – один из лучших способов найти ответ в задачах с модулем, особенно если в выражении их несколько.

Для использования метода нужно совершить следующие действия:

  1. Приравнять каждое выражение к нулю.
  2. Найти значения переменных.
  3. Нанести на числовую прямую точки, полученные в пункте 2.
  4. Определить на промежутках знак выражений (отрицательное или положительное значение) и нарисовать символ – или + соответственно. Проще всего определить знак с помощью метода подстановки (подставив любое значение из промежутка).
  5. Решить неравенства с полученными знаками.

Пример 1 . Решить методом интервалов.

Решение:

Не мы выбираем математику своей профессией, а она нас выбирает.

Российский математик Ю.И. Манин

Уравнения с модулем

Наиболее сложно решаемыми задачами школьной математики являются уравнения, содержащие переменные под знаком модуля. Для успешного решения таких уравнений необходимо знать определение и основные свойства модуля. Естественно, что учащиеся должны иметь навыки решения уравнений такого типа.

Основные понятия и свойства

Модуль (абсолютная величина) действительного числа обозначается и определяется следующим образом:

К простым свойствам модуля относятся следующие соотношения:

Отметим , что последние два свойства справедливы для любой четной степени.

Кроме того , если , где , то и

Более сложные свойства модуля , которые можно эффективно использовать при решении уравнений с модулями , формулируются посредством следующих теорем:

Теорема 1. Для любых аналитических функций и справедливо неравенство

Теорема 2. Равенство равносильно неравенству .

Теорема 3. Равенство равносильно неравенству .

Рассмотрим типовые примеры решения задач на тему «Уравнения , содержащие переменные под знаком модуля».

Решение уравнений с модулем

Наиболее распространенным в школьной математике методом решения уравнений с модулем является метод , основанный на раскрытии модулей. Этот метод является универсальным , однако в общем случае его применение может привести к весьма громоздким вычислениям. В этой связи учащиеся должны знать и другие , более эффективные методы и приемы решения таких уравнений. В частности , необходимо иметь навыки применения теорем , приведенных в настоящей статье.

Пример 1. Решить уравнение . (1)

Решение. Уравнение (1) будем решать «классическим» методом –методом раскрытия модулей. Для этого разобьем числовую ось точками и на интервалы и рассмотрим три случая.

1. Если , то , , , и уравнение (1) принимает вид . Отсюда вытекает . Однако здесь , поэтому найденное значение не является корнем уравнения (1).

2. Если , то из уравнения (1) получаем или .

Так как , то корень уравнения (1).

3. Если , то уравнение (1) принимает вид или . Отметим , что .

Ответ: , .

При решении последующих уравнений с модулем будем активно использовать свойства модулей с целью повышения эффективности решения подобных уравнений.

Пример 2. Решить уравнение .

Решение. Так как и , то из уравнения следует . В этой связи , , , и уравнение принимает вид . Отсюда получаем . Однако , поэтому исходное уравнение корней не имеет.

Ответ: корней нет.

Пример 3. Решить уравнение .

Решение. Так как , то . Если , то , и уравнение принимает вид .

Отсюда получаем .

Пример 4. Решить уравнение .

Решение. Перепишем уравнение в равносильном виде . (2)

Полученное уравнение относится к уравнениям типа .

Принимая во внимание теорему 2, можно утверждать, что уравнение (2) равносильно неравенству . Отсюда получаем .

Ответ: .

Пример 5. Решить уравнение .

Решение. Данное уравнение имеет вид . Поэтому , согласно теореме 3 , здесь имеем неравенство или .

Пример 6. Решить уравнение .

Решение. Положим , что . Так как , то заданное уравнение принимает вид квадратного уравнения , (3)

где . Поскольку уравнение (3) имеет единственный положительный корень и , то . Отсюда получаем два корня исходного уравнения: и .

Пример 7. Решить уравнение . (4)

Решение. Так как уравнение равносильно совокупности двух уравнений: и , то при решении уравнения (4) необходимо рассмотреть два случая.

1. Если , то или .

Отсюда получаем , и .

2. Если , то или .

Так как , то .

Ответ: , , , .

Пример 8. Решить уравнение . (5)

Решение. Так как и , то . Отсюда и из уравнения (5) следует, что и , т.е. здесь имеем систему уравнений

Однако данная система уравнений является несовместной.

Ответ: корней нет.

Пример 9. Решить уравнение . (6)

Решение. Если обозначить , то и из уравнения (6) получаем

Или . (7)

Поскольку уравнение (7) имеет вид , то это уравнение равносильно неравенству . Отсюда получаем . Так как , то или .

Ответ: .

Пример 10. Решить уравнение . (8)

Решение. Согласно теореме 1 можно записать

(9)

Принимая во внимание уравнение (8), делаем вывод о том, что оба неравенства (9) обращаются в равенства, т.е. имеет место система уравнений

Однако по теореме 3 приведенная выше система уравнений равносильна системе неравенств

(10)

Решая систему неравенств (10) получаем . Так как система неравенств (10) равносильна уравнению (8), то исходное уравнение имеет единственный корень .

Ответ: .

Пример 11. Решить уравнение . (11)

Решение. Пусть и , тогда из уравнения (11) вытекает равенство .

Отсюда следует, что и . Таким образом, здесь имеем систему неравенств

Решением данной системы неравенств являются и .

Ответ: , .

Пример 12. Решить уравнение . (12)

Решение. Уравнение (12) будем решать методом последовательного раскрытия модулей. Для этого рассмотрим несколько случаев.

1. Если , то .

1.1. Если , то и , .

1.2. Если , то . Однако , поэтому в данном случае уравнение (12) корней не имеет.

2. Если , то .

2.1. Если , то и , .

2.2. Если , то и .

Ответ: , , , , .

Пример 13. Решить уравнение . (13)

Решение. Поскольку левая часть уравнения (13) неотрицательна, то и . В этой связи , и уравнение (13)

принимает вид или .

Известно , что уравнение равносильно совокупности двух уравнений и , решая которые получаем , . Так как , то уравнение (13) имеет один корень .

Ответ: .

Пример 14. Решить систему уравнений (14)

Решение. Так как и , то и . Следовательно, из системы уравнений (14) получаем четыре системы уравнений:

Корни приведенных выше систем уравнений являются корнями системы уравнений (14).

Ответ: ,, , , , , , .

Пример 15. Решить систему уравнений (15)

Решение. Так как , то . В этой связи из системы уравнений (15) получаем две системы уравнений

Корнями первой системы уравнений являются и , а из второй системы уравнений получаем и .

Ответ: , , , .

Пример 16. Решить систему уравнений (16)

Решение. Из первого уравнения системы (16) следует, что .

Так как , то . Рассмотрим второе уравнение системы. Поскольку , то , и уравнение принимает вид , , или .

Если подставить значение в первое уравнение системы (16) , то , или .

Ответ: , .

Для более глубокого изучения методов решения задач , связанных с решением уравнений , содержащих переменные под знаком модуля , можно посоветовать учебные пособия из списка рекомендуемой литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование , 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: задачи повышенной сложности. – М.: КД «Либроком» / URSS , 2017. – 200 с.

3. Супрун В.П. Математика для старшеклассников: нестандартные методы решения задач. – М.: КД «Либроком» / URSS , 2017. – 296 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

А вычисляется в соответствии с такими правилами:

Для краткости записи применяют |а| . Так, |10| = 10; - 1 / 3 = | 1 / 3 |; | -100| =100 и т. д.

Всякой величине х соответствует достаточно точная величина |х |. И значит тождество у = |х | устанавливает у как некоторую функцию аргумента х .

График этой функции представлен ниже.

Для x > 0 |x | = x , а для x < 0 |x |= -x ; в связи с этим линия у = |x | при x > 0 совмещена с прямой у =х (биссектриса первого координатного угла), а при х < 0 - с прямой у = -х (биссектриса второго координатного угла).

Отдельные уравнения включают в себя неизвестные под знаком модуля .

Произвольные примеры таких уравнений - |х — 1| = 2, |6 — 2х | =3х + 1 и т. д.

Решение уравнений содержащих неизвестную под знаком модуля базируется на том, что если абсолютная величина неизвестного числа х равняется положительному числу а, то само это число х равняется или а, или -а.

Например :, если |х | = 10, то или х =10, или х = -10.

Рассмотрим решение отдельных уравнений .

Проанализируем решение уравнения |х - 1| = 2.

Раскроем модуль тогда разность х - 1 может равняться или + 2, или - 2. Если х - 1 = 2, то х = 3; если же х - 1 = - 2, то х = - 1. Делаем подставновку и получаем, что оба эти значения удовлетворяют уравнению.

Ответ. Указанное уравнение имеет два корня: x 1 = 3, x 2 = - 1.

Проанализируем решение уравнения | 6 — 2х | = 3х + 1.

После раскрытия модуля получаем: или 6 - 2х = 3х + 1, или 6 - 2х = - (3х + 1).

В первом случае х = 1, а во втором х = - 7.

Проверка. При х = 1 |6 — 2х | = |4| = 4, 3x + 1 = 4; от суда следует, х = 1 - корен ь данного уравнения .

При x = - 7 |6 — 2x | = |20| = 20, 3x + 1= - 20; так как 20 ≠ -20, то х = - 7 не является корнем данного уравнения.

Ответ. У уравнения единственный корень: х = 1.

Уравнения такого типа можно решать и графически .

Так решим, например , графически уравнение |х- 1| = 2.

Первоначально выполним построение графика функции у = |x — 1|. Первым начертим график функции у =х- 1:

Ту часть этого графика , которая расположена выше оси х менять не будем. Для нее х - 1 > 0 и потому |х -1|=х -1.

Часть графика, которая расположена под осью х , изобразим симметрично относительно этой оси. Поскольку для этой части х - 1 < 0 и соответственно |х - 1|= - (х - 1). Образовавшаяся в результате линия (сплошная линия) и будет графиком функции у = |х —1|.

Эта линия пересечется с прямой у = 2 в двух точках: M 1 с абсциссой -1 и М 2 с абсциссой 3. И, соответственно, у уравнения |х - 1| =2 будет два корня: х 1 = - 1, х 2 = 3.