Информационная поддержка школьников и студентов
Поиск по сайту

Арксинус, арккосинус - свойства, графики, формулы. Выразим через все обратные тригонометрические функции Arctg формулы приведения

Обра́тные тригонометри́ческие фу́нкции-это математические функции, являющиеся обратными тригонометрическим функциям.

Функция y=arcsin(x)

Арксинусом числа α называют такое число α из промежутка [-π/2;π/2], синус которого равен α.
График функции
Функция у= sin⁡(x) на отрезке [-π/2;π/2], строго возрастает и непрерывна; следовательно, она имеет обратную функцию, строго возрастающую и непрерывную.
Функция, обратная для функции у= sin⁡(x), где х ∈[-π/2;π/2], называется арксинусом и обозначается y=arcsin(x),где х∈[-1;1].
Итак, согласно определению обратной функции, областью определения арксинуса является отрезок [-1;1], а множеством значений - отрезок [-π/2;π/2].
Отметим, что график функцииy=arcsin(x),где х ∈[-1;1].симметричен графику функции у= sin(⁡x), где х∈[-π/2;π/2],относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcsin(x).

Пример№1.

Найти arcsin(1/2)?

Так как область значений функцииarcsin(x)принадлежит промежутку [-π/2;π/2], то подходит только значениеπ/6 .Следовательноarcsin(1/2) =π/6.
Ответ:π/6

Пример №2.
Найти arcsin(-(√3)/2)?

Так как область значений arcsin(x) х ∈[-π/2;π/2], то подходит только значение -π/3.Следовательноarcsin(-(√3)/2) =- π/3.

Функция y=arccos(x)

Арккосинусом числа α называют такое число α из промежутка , косинус которого равен α.

График функции

Функция у= cos(⁡x) на отрезке , строго убывает и непрерывна; следовательно, она имеет обратную функцию, строго убывающую и непрерывную.
Функция, обратная для функции у= cos⁡x, где х ∈, называется арккосинусом и обозначается y=arccos(x),где х ∈[-1;1].
Итак, согласно определению обратной функции, областью определения арккосинуса является отрезок [-1;1], а множеством значений - отрезок .
Отметим, что график функцииy=arccos(x),где х ∈[-1;1] симметричен графику функции у= cos(⁡x), где х ∈,относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arccos(x).

Пример №3.

Найти arccos(1/2)?


Так как область значений arccos(x) х∈, то подходит только значение π/3.Следовательно arccos(1/2) =π/3.
Пример №4.
Найти arccos(-(√2)/2)?

Так как область значений функции arccos(x) принадлежит промежутку , то подходит только значение 3π/4.Следовательноarccos(-(√2)/2) =3π/4.

Ответ: 3π/4

Функция y=arctg(x)

Арктангенсом числа α называют такое число α из промежутка [-π/2;π/2], тангенс которого равен α.

График функции

Функция тангенс непрерывная и строго возрастающая на интервале(-π/2;π/2); следовательно, она имеет обратную функцию, которая непрерывна и строго возрастает.
Функция, обратная для функции у= tg⁡(x), где х∈(-π/2;π/2); называется арктангенсом и обозначается y=arctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арктангенса является интервал(-∞;+∞), а множеством значений - интервал
(-π/2;π/2).
Отметим, что график функции y=arctg(x),где х∈R, симметричен графику функции у= tg⁡x, где х ∈ (-π/2;π/2), относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arctg(x).

Пример№5?

Найти arctg((√3)/3).

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение π/6 .Следовательноarctg((√3)/3) =π/6.
Пример№6.
Найти arctg(-1)?

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение -π/4 .Следовательноarctg(-1) = - π/4.

Функция y=arcctg(x)


Арккотангенсом числа α называют такое число α из промежутка (0;π), котангенс которого равен α.

График функции

На интервале (0;π),функция котангенс строго убывает; кроме того,она непрерывна в каждой точке этого интервала; следовательно, на интервале (0;π), эта функция имеет обратную функцию, которая является строго убывающей и непрерывной.
Функция, обратная для функции у=ctg(x), где х ∈(0;π), называется арккотангенсом и обозначается y=arcctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арккотангенса будет R,а множеством значений –интервал (0;π).График функции y=arcctg(x),где х∈R симметричен графику функции y=ctg(x) х∈(0;π),относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcctg(x).




Пример№7.
Найти arcctg((√3)/3)?


Так как область значений arcctg(x) х ∈(0;π), то подходит только значение π/3.Следовательно arccos((√3)/3) =π/3.

Пример№8.
Найти arcctg(-(√3)/3)?

Так как область значений arcctg(x) х∈(0;π), то подходит только значение 2π/3.Следовательноarccos(-(√3)/3) =2π/3.

Редакторы: Агеева Любовь Александровна, Гаврилина Анна Викторовна

На этом уроке мы рассмотрим особенности обратных функций и повторим обратные тригонометрические функции . Отдельно будут рассмотрены свойства всех основных обратных тригонометрических функций: арксинуса, арккосинуса, арктангенса и арккотангенса.

Данный урок поможет Вам подготовиться к одному из типов задания В7 и С1 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 9. Обратные тригонометрические функции.

Теория

Конспект урока

Вспомним, когда мы встречаемся с таким понятием как обратная функция. Например, рассмотрим функцию возведения в квадрат. Пусть у нас есть квадратная комната со сторонами по 2 метра и мы хотим вычислить ее площадь. Для этого по формуле пощади квадрата возводим двойку в квадрат и в результате получаем 4 м 2 . Теперь представим себе обратную задачу: мы знаем площадь квадратной комнаты и хотим найти длины ее сторон. Если мы знаем, что площадь равна все тем же 4 м 2 , то выполним обратное действие к возведению в квадрат - извлечение арифметического квадратного корня, который нам даст значение 2 м.

Таким образом, для функции возведения числа в квадрат обратной функцией является извлечение арифметического квадратного корня.

Конкретно в указанном примере у нас не возникло проблем с вычислением стороны комнаты, т.к. мы понимаем, что это положительное число. Однако если оторваться от этого случая и рассмотреть задачу более общим образом: «Вычислить число, квадрат которого равен четырем», мы столкнемся с проблемой - таких чисел два. Это 2 и -2, т.к. тоже равна четырем. Получается, что обратная задача в общем случае решается неоднозначно, и действие определения числа, которое в квадрате дало известное нам число? имеет два результата. Это удобно показать на графике:

А это значит, что такой закон соответствия чисел мы не можем назвать функцией, поскольку для функции одному значению аргумента соответствует строго одно значение функции.

Для того чтобы ввести именно обратную функцию к возведению в квадрат и было предложено понятие арифметического квадратного корня, который дает только неотрицательные значения. Т.е. для функции обратной функцией считается .

Аналогично существуют и функции, обратные к тригонометрическим, их называют обратными тригонометрическими функциями . К каждой из рассмотренных нами функций существует своя обратная, их называют: арксинус, арккосинус, арктангенс и арккотангенс .

Эти функции решают задачу вычисления углов по известному значению тригонометрической функции. Например, с использованием таблицы значений основных тригонометрических функций можно вычислить синус какого угла равен . Находим это значение в строке синусов и определяем, какому углу оно соответствует. Первое, что хочется ответить, что это угол или , но если у вас в распоряжении таблица значений до , вы тут же заметите еще одного претендента на ответ, - это угол или . А если мы вспомним о периоде синуса, то поймем, что углов, при которых синус равен , бесконечное множество. И такое множество значений углов, соответствующих данному значению тригонометрической функции, будет наблюдаться и для косинусов, тангенсов и котангенсов, т.к. все они обладают периодичностью.

Т.е. мы сталкиваемся с той же проблемой, которая была для вычисления значения аргумента по значению функции для действия возведения в квадрат. И в данном случае для обратных тригонометрических функций было введено ограничение области значений, которые они дают при вычислении. Это свойство таких обратных функций называют сужением области значений , и оно необходимо для того, чтобы их можно было называть функциями.

Для каждой из обратных тригонометрических функций диапазон углов, которые она возвращает, выбран свой, и мы их рассмотрим отдельно. Например, арксинус возвращает значения углов в диапазоне от до .

Умение работать с обратными тригонометрическими функциями нам пригодится при решении тригонометрических уравнений.

Сейчас мы укажем основные свойства каждой из обратных тригонометрических функций. Кто захочет познакомиться с ними более подробно, обратитесь к главе «Решение тригонометрических уравнений» в программе 10 класса.

Рассмотрим свойства функции арксинус и построим ее график.

Определение. Арксинусом числа x

Основные свойства арксинуса:

1) при ,

2) при .

Основные свойства функции арксинус:

1) Область определения ;

2) Область значений ;

3) Функция нечетная Эту формулу желательно отдельно запомнить, т.к. она полезна для преобразований. Также отметим, что из нечетности следует симметричность графика функции относительно начала координат;

Построим график функции :

Обратим внимание, что никакой из участков графика функции не повторяется, а это означает, что арксинус не является периодической функцией, в отличие от синуса. То же самое будет относиться и ко всем остальным аркфункциям.

Рассмотрим свойства функции арккосинус и построим ее график.

Определение. Арккосинусом числа x называют такое значение угла y, для которого . Причем как ограничения на значения синуса, а как выбранный диапазон углов.

Основные свойства арккосинуса:

1) при ,

2) при .

Основные свойства функции арккосинус:

1) Область определения ;

2) Область значений ;

3) Функция не является ни четной ни нечетной, т.е. общего вида . Эту формулу тоже желательно запомнить, она пригодится нам позже;

4) Функция монотонно убывает.

Построим график функции :

Рассмотрим свойства функции арктангенс и построим ее график.

Определение. Арктангенсом числа x называют такое значение угла y, для которого . Причем т.к. ограничений на значения тангенса нет, а как выбранный диапазон углов.

Основные свойства арктангенса:

1) при ,

2) при .

Основные свойства функции арктангенс:

1) Область определения ;

2) Область значений ;

3) Функция нечетная . Эта формула тоже полезна, как и аналогичные ей. Как в случае с арксинусом, из нечетности следует симметричность графика функции относительно начала координат;

4) Функция монотонно возрастает.

Построим график функции :

В ряде задач математики и её приложений требуется по известному значению тригонометрической функции найти соответствующее значение угла, выраженное в градусной или в радианной мере. Известно, что одному и тому же значению синуса соответствует бесконечное множество углов, например, если $\sin α=1/2,$ то угол $α$ может быть равен и $30°$ и $150°,$ или в радианной мере $π/6$ и $5π/6,$ и любому из углов, который получается из этих прибавлением слагаемого вида $360°⋅k,$ или соответственно $2πk,$ где $k$ - любое целое число. Это становится ясным и из рассмотрения графика функции $y=\sin x$ на всей числовой прямой (см. рис. $1$): если на оси $Oy$ отложить отрезок длины $1/2$ и провести прямую, параллельную оси $Ox,$ то она пересечет синусоиду в бесконечном множестве точек. Чтобы избежать возможного разнообразия ответов, вводятся обратные тригонометрические функции, иначе называемые круговыми, или аркфункциями (от латинского слова arcus - «дуга»).

Основным четырем тригонометрическим функциям $\sin x,$ $\cos x,$ $\mathrm{tg}\,x$ и $\mathrm{ctg}\,x$ соответствуют четыре аркфункции $\arcsin x,$ $\arccos x,$ $\mathrm{arctg}\,x$ и $\mathrm{arcctg}\,x$ (читается: арксинус, арккосинус, арктангенс, арккотангенс). Рассмотрим функции \arcsin x и \mathrm{arctg}\,x, поскольку две другие выражаются через них по формулам:

$\arccos x = \frac{π}{2} − \arcsin x,$ $\mathrm{arcctg}\,x = \frac{π}{2} − \mathrm{arctg}\,x.$

Равенство $y = \arcsin x$ по определению означает такой угол $y,$ выраженный в радианной мере и заключенный в пределах от $−\frac{π}{2}$ до $\frac{π}{2},$ синус которого равен $x,$ т. е. $\sin y = x.$ Функция $\arcsin x$ является функцией, обратной функции $\sin x,$ рассматриваемой на отрезке $\left[−\frac{π}{2},+\frac{π}{2}\right],$ где эта функция монотонно возрастает и принимает все значения от $−1$ до $+1.$ Очевидно, что аргумент $y$ функции $\arcsin x$ может принимать значения лишь из отрезка $\left[−1,+1\right].$ Итак, функция $y=\arcsin x$ определена на отрезке $\left[−1,+1\right],$ является монотонно возрастающей, и её значения заполняют отрезок $\left[−\frac{π}{2},+\frac{π}{2}\right].$ График функции показан на рис. $2.$

При условии $−1 ≤ a ≤ 1$ все решения уравнения $\sin x = a$ представим в виде $x=(−1)^n \arcsin a + πn,$ $n=0,±1,± 2,… .$ Например, если

$\sin x = \frac{\sqrt{2}}{2}$ то $x = (−1)^n \frac{π}{4}+πn,$ $n = 0, ±1, ±2, … .$

Соотношение $y=\mathrm{arcctg}\,x$ определено при всех значениях $x$ и по определению означает, что угол $y,$ выраженный в радианной мере, заключей в пределах

$−\frac{π}{2}

и тангенс этого угла равен x, т. е. $\mathrm{tg}\,y = x.$ Функция $\mathrm{arctg}\,x$ определена на всей числовой прямой, является функцией, обратной функции $\mathrm{tg}\,x$, которая рассматривается лишь на интервале

$−\frac{π}{2}

Функция $у = \mathrm{arctg}\,x$ монотонно возрастающая, её график дан на рис. $3.$

Все решения уравнения $\mathrm{tg}\,x = a$ могут быть записаны в виде $x=\mathrm{arctg}\,a+πn,$ $n=0,±1,±2,… .$

Заметим, что обратные тригонометрические функции широко используются в математическом анализе. Например, одной из первых функций, для которых было получено представление бесконечным степенным рядом, была функция $\mathrm{arctg}\,x.$ Из этого ряда Г. Лейбниц при фиксированном значении аргумента $x=1$ получил знаменитое представление числа к бесконечным рядом

Задания, связанные с обратными тригонометрическими функциями, часто предлагаются на школьных выпускных экзаменах и на вступительных экзаменах в некоторых ВУЗах. Подробное изучение этой темы может быть достигнуто только на факультативных занятиях или на элективных курсах. Предлагаемый курс призван как можно полнее развить способности каждого ученика, повысить его математическую подготовку.

Курс рассчитан на 10 часов:

1.Функции arcsin x, arccos x, arctg x, arcctg x (4 ч.).

2.Операции над обратными тригонометрическими функциями (4 ч.).

3.Обратные тригонометрические операции над тригонометрическими функциями (2 ч.).

Урок 1 (2 ч.) Тема: Функции y = arcsin x, y = arccos x, y = arctg x, y = arcctg x.

Цель: полное освещение данного вопроса.

1.Функция y = arcsin х.

а) Для функции y = sin x на отрезке существует обратная (однозначная) функция, которую условились называть арксинусом и обозначать так: y = arcsin x. График обратной функции симметричен с графиком основной функции относительно биссектрисы I - III координатных углов.

Свойства функции y = arcsin x .

1)Область определения: отрезок [-1; 1];

2)Область изменения: отрезок ;

3)Функция y = arcsin x нечетная: arcsin (-x) = - arcsin x;

4)Функция y = arcsin x монотонно возрастающая;

5)График пересекает оси Ох, Оу в начале координат.

Пример 1. Найти a = arcsin . Данный пример подробно можно сформулировать так: найти такой аргумент a , лежащий в пределах от до , синус которого равен .

Решение. Существует бесчисленное множество аргументов, синус которых равен , например: и т.д. Но нас интересует только тот аргумент, который находится на отрезке . Таким аргументом будет . Итак, .

Пример 2. Найти .Решение. Рассуждая так же, как и в примере 1, получим .

б) устные упражнения. Найти: arcsin 1, arcsin (-1), arcsin , arcsin (), arcsin , arcsin (), arcsin , arcsin (), arcsin 0. Образец ответа: , т.к. . Имеют ли смысл выражения: ; arcsin 1,5; ?

в) Расположите в порядке возрастания: arcsin, arcsin (-0,3), arcsin 0,9.

II. Функции y = arccos x, y = arctg x, y = arcctg x (аналогично).

Урок 2 (2 ч) Тема: Обратные тригонометрические функции, их графики.

Цель: на данном уроке необходимо отработать навыки в определении значений тригонометрических функций, в построении графиков обратных тригонометрических функций с использованием Д (у), Е (у) и необходимых преобразований.

На данном уроке выполнить упражнения, включающие нахождение области определения, области значения функций типа: y = arcsin , y = arccos (x-2), y = arctg (tg x), y = arccos .

Следует построить графики функций: а) y = arcsin 2x; б) y = 2 arcsin 2x; в) y = arcsin ;

г) y = arcsin ; д) y = arcsin ; е) y = arcsin ; ж) y = | arcsin | .

Пример. Построим график y = arccos

В домашнее задание можно включить следующие упражнения: построить графики функций: y = arccos , y = 2 arcctg x, y = arccos | x | .

Графики обратных функций

Урок № 3 (2 ч.) Тема:

Операции над обратными тригонометрическими функциями.

Цель: расширить математические познания (это важно для поступающих на специальности с повышенными требованиями к математической подготовке) путем введения основных соотношений для обратных тригонометрических функций.

Материал для урока.

Некоторые простейшие тригонометрические операции над обратными тригонометрическими функциями: sin (arcsin x) = x , i xi ? 1; cos (arсcos x) = x , i xi ? 1; tg (arctg x)= x , x I R; ctg (arcctg x) = x , x I R.

Упражнения.

а) tg (1,5 + arctg 5) = - ctg (arctg 5) = .

ctg (arctg x) = ; tg (arcctg x) = .

б) cos ( + arcsin 0,6) = - cos (arcsin 0,6). Пусть arcsin 0,6 = a , sin a = 0,6;

cos (arcsin x) = ; sin (arccos x) = .

Замечание: берем перед корнем знак “+” потому, что a = arcsin x удовлетворяет .

в) sin (1,5 + arcsin ).Ответ: ;

г) ctg ( + arctg 3).Ответ: ;

д) tg ( – arcctg 4).Ответ: .

е) cos (0,5 + arccos ) . Ответ: .

Вычислить:

a) sin (2 arctg 5) .

Пусть arctg 5 = a , тогда sin 2 a = или sin (2 arctg 5) = ;

б) cos ( + 2 arcsin 0,8).Ответ: 0,28.

в) arctg + arctg .

Пусть a = arctg , b = arctg ,

тогда tg (a + b) = .

г) sin (arcsin + arcsin ).

д) Доказать, что для всех x I [-1; 1] верно arcsin x + arccos x = .

Доказательство:

arcsin x = – arccos x

sin (arcsin x) = sin ( – arccos x)

x = cos (arccos x)

Для самостоятельного решения: sin (arccos ), cos (arcsin ) , cos (arcsin ()), sin (arctg (- 3)), tg (arccos ) , ctg (arccos ).

Для домашнего решения: 1) sin (arcsin 0,6 + arctg 0); 2) arcsin + arcsin ; 3) ctg ( – arccos 0,6); 4) cos (2 arcctg 5) ; 5) sin (1,5 – arcsin 0,8); 6) arctg 0,5 – arctg 3.

Урок № 4 (2ч.) Тема: Операции над обратными тригонометрическими функциями.

Цель: на данном уроке показать использование соотношений в преобразовании более сложных выражений.

Материал для урока.

УСТНО:

а) sin (arccos 0,6), cos (arcsin 0,8);

б) tg (arcсtg 5), ctg (arctg 5);

в) sin (arctg -3), cos (arcсtg());

г) tg (arccos ), ctg (arccos()).

ПИСЬМЕННО:

1) cos (arcsin + arcsin + arcsin ).

2) cos (arctg 5–arccos 0,8) = cos (arctg 5) cos (arccos 0,8) + sin (arctg 5) sin (arccos 0,8) =

3) tg ( - arcsin 0,6) = - tg (arcsin 0,6) =

4)

Самостоятельная работа поможет выявить уровень усвоения материала

1) tg (arctg 2 – arctg )

2) cos( - arctg2)

3) arcsin + arccos

1) cos (arcsin + arcsin )

2) sin (1,5 - arctg 3)

3) arcctg3 – arctg 2

Для домашнего задания можно предложить:

1) ctg (arctg + arctg + arctg ); 2) sin 2 (arctg 2 – arcctg ()); 3) sin (2 arctg + tg ( arcsin )); 4) sin (2 arctg ); 5) tg ( (arcsin ))

Урок № 5 (2ч) Тема: Обратные тригонометрические операции над тригонометрическими функциями.

Цель: сформировать представление учащихся об обратных тригонометрических операциях над тригонометрическими функциями, основное внимание уделить повышению осмысленности изучаемой теории.

При изучении данной темы предполагается ограничение объема теоретического материала, подлежащего запоминанию.

Материал для урока:

Изучение нового материала можно начать с исследования функции y = arcsin (sin x) и построения ее графика.

3. Каждому x I R ставится в соответствие y I , т.е. <= y <= такое, что sin y = sin x.

4. Функция нечетна: sin(-x) = - sin x ; arcsin(sin(-x)) = - arcsin(sin x).

6. График y = arcsin (sin x) на :

a) 0 <= x <= имеем y = arcsin(sin x) = x, ибо sin y = sin x и <= y <= .

б) <= x <= получим y = arcsin (sin x) = arcsin ( - x) = - x, ибо

sin y = sin ( – x) = sinx , 0 <= - x <= .

Итак,

Построив y = arcsin (sin x) на , продолжим симметрично относительно начала координат на [- ; 0], учитывая нечетность этой функции. Используя периодичность, продолжим на всю числовую ось.

Затем записать некоторые соотношения: arcsin (sin a) = a , если <= a <= ; arccos (cos a ) = a , если 0 <= a <= ; arctg (tg a) = a , если < a < ; arcctg (ctg a) = a , если 0 < a < .

И выполнить следующие упражнения:a) arccos(sin 2).Ответ: 2 - ; б) arcsin (cos 0,6).Ответ: - 0,1 ; в) arctg (tg 2).Ответ: 2 - ;

г) arcctg(tg 0,6).Ответ: 0,9 ; д) arccos (cos ( - 2)).Ответ:2 - ; е) аrcsin (sin ( - 0,6)). Ответ: - 0,6; ж) аrctg (tg 2) = arctg (tg (2 - )). Ответ:2 - ; з) аrcctg (tg 0,6). Ответ: - 0,6; - arctg x; д) arccos + arccos

Уроки 32-33. Обратные тригонометрические функции

09.07.2015 8936 0

Цель: рассмотреть обратные тригонометрические функции, их использование для записи решений тригонометрических уравнений.

I. Сообщение темы и цели уроков

II. Изучение нового материала

1. Обратные тригонометрические функции

Рассмотрение этой темы начнем со следующего примера.

Пример 1

Решим уравнение: a ) sin x = 1/2; б) sin x = а.

а) На оси ординат отложим значение 1/2 и построим углы x 1 и х2, для которых sin x = 1/2. При этом х1 + х2 = π, откуда х2 = π – x 1 . По таблице значений тригонометрических функций найдем величину х1 = π/6, тогда Учтем периодичность функции синуса и запишем решения данного уравнения: где k ∈ Z .

б) Очевидно, что алгоритм решения уравнения sin х = а такой же, как и в предыдущем пункте. Разумеется, теперь по оси ординат откладывается величина а. Возникает необходимость каким-то образом обозначить угол х1. Условились такой угол обозначать символом arcsin а. Тогда решения данного уравнения можно записать в виде Эти две формулы можно объединить в одну: при этом

Аналогичным образом вводятся и остальные обратные тригонометрические функции.

Очень часто бывает необходимо определить величину угла по известному значению его тригонометрической функции. Такая задача является многозначной - существует бесчисленное множество углов, тригонометрические функции которых равны одному и тому же значению. Поэтому, исходя из монотонности тригонометрических функций, для однозначного определения углов вводят следующие обратные тригонометрические функции.

Арксинус числа a (arcsin , синус которого равен а, т. е.

Арккосинус числа a (arccos а) - такой угол а из промежутка , косинус которого равен а, т. е.

Арктангенс числа a (arctg а) - такой угол а из промежутка тангенс которого равен а, т. е. tg а = а.

Арккотангенс числа a (arcctg а) - такой угол а из промежутка (0; π), котангенс которого равен а, т. е. ctg а = а.

Пример 2

Найдем:

Учитывая определения обратных тригонометрических функций получим:


Пример 3

Вычислим

Пусть угол а = arcsin 3/5, тогда по определению sin a = 3/5 и . Следовательно, надо найти cos а. Используя основное тригонометрическое тождество, получим: Учтено, что и cos a ≥ 0. Итак,

Свойства функции

Функция

у = arcsin х

у = arccos х

у = arctg х

у = arcctg х

Область определения

х ∈ [-1; 1]

х ∈ [-1; 1]

х ∈ (-∞; +∞)

х ∈ (-∞ +∞)

Область значений

y ∈ [ -π/2 ; π /2 ]

y ∈

y ∈ (-π/2 ; π /2 )

y ∈ (0; π)

Четность

Нечетная

Ни четная, ни нечетная

Нечетная

Ни четная, ни нечетная

Нули функции (y = 0)

При х = 0

При х = 1

При х = 0

у ≠ 0

Промежутки знакопостоянства

у > 0 при х ∈ (0; 1],

у < 0 при х ∈ [-1; 0)

у > 0 при х ∈ [-1; 1)

у > 0 при х ∈ (0; +∞),

у < 0 при х ∈ (-∞; 0)

у > 0 при x ∈ (-∞; +∞)

Монотонность

Возрастает

Убывает

Возрастает

Убывает

Связь с тригонометрической функцией

sin у = х

cos у = х

tg у = х

ctg у = х

График



Приведем еще ряд типичных примеров, связанных с определениями и основными свойствами обратных тригонометрических функций.

Пример 4

Найдем область определения функции

Для того чтобы функция у была определена, необходимо выполнение неравенства которое эквивалентно системе неравенств Решением первого неравенства является промежуток х (-∞; +∞), второго - Этот промежуток и является решением системы неравенств, а следовательно, и областью определения функции

Пример 5

Найдем область изменения функции

Рассмотрим поведение функции z = 2х - х2 (см. рисунок).

Видно, что z ∈ (-∞; 1]. Учитывая, что аргумент z функции арккотангенса меняется в указанных пределах, из данных таблицы получим, что Таким образом, область изменения

Пример 6

Докажем, что функция у = arctg х нечетная. Пусть Тогда tg а = -х или х = - tg а = tg (- a ), причем Следовательно, - a = arctg х или а = - arctg х. Таким образом, видим, что т. е. у(х) - функция нечетная.

Пример 7

Выразим через все обратные тригонометрические функции

Пусть Очевидно, что Тогда Так как

Введем угол Так как то

Аналогично поэтому и

Итак,

Пример 8

Построим график функции у = cos (arcsin х).

Обозначим а = arcsin x , тогда Учтем, что х = sin а и у = cos а, т. е. x 2 + у2 = 1, и ограничения на х (х [-1; 1]) и у (у ≥ 0). Тогда графиком функции у = cos (arcsin х) является полуокружность.

Пример 9

Построим график функции у = arccos (cos x ).

Так как функция cos х изменяется на отрезке [-1; 1], то функция у определена на всей числовой оси и изменяется на отрезке . Будем иметь в виду, что у = arccos (cos x ) = х на отрезке ; функция у является четной и периодической с периодом 2π. Учитывая, что этими свойствами обладает функция cos x , теперь легко построить график.


Отметим некоторые полезные равенства:

Пример 10

Найдем наименьшее и наибольшее значения функции Обозначим тогда Получим функцию Эта функция имеет минимум в точке z = π/4, и он равен Наибольшее значение функции достигается в точке z = -π/2, и оно равно Таким образом, и

Пример 11

Решим уравнение

Учтем, что Тогда уравнение имеет вид: или откуда По определению арктангенса получим:

2. Решение простейших тригонометрических уравнений

Аналогично примеру 1 можно получить решения простейших тригонометрических уравнений.

Уравнение

Решение

tgx = а

ctg х = а

Пример 12

Решим уравнение

Так как функция синус нечетная, то запишем уравнение в виде Решения этого уравнения: откуда находим

Пример 13

Решим уравнение

По приведенной формуле запишем решения уравнения: и найдем

Заметим, что в частных случаях (а = 0; ±1) при решении уравнений sin х = а и cos х = а проще и удобнее использовать не общие формулы, а записывать решения на основании единичной окружности:

для уравнения sin х = 1 решения

для уравнения sin х = 0 решения х = π k ;

для уравнения sin х = -1 решения

для уравнения cos х = 1 решения х = 2π k ;

для уравнения cos х = 0 решения

для уравнения cos х = -1 решения

Пример 14

Решим уравнение

Так как в данном примере имеется частный случай уравнения, то по соответствующей формуле запишем решение: откуда найдем

III. Контрольные вопросы (фронтальный опрос)

1. Дайте определение и перечислите основные свойства обратных тригонометрических функций.

2. Приведите графики обратных тригонометрических функций.

3. Решение простейших тригонометрических уравнений.

IV. Задание на уроках

§ 15, № 3 (а, б); 4 (в, г); 7 (а); 8 (а); 12 (б); 13 (а); 15 (в); 16 (а); 18 (а, б); 19 (в); 21;

§ 16, № 4 (а, б); 7 (а); 8 (б); 16 (а, б); 18 (а); 19 (в, г);

§ 17, № 3 (а, б); 4 (в, г); 5 (а, б); 7 (в, г); 9 (б); 10 (а, в).

V. Задание на дом

§ 15, № 3 (в, г); 4 (а, б); 7 (в); 8 (б); 12 (а); 13 (б); 15 (г); 16 (б); 18 (в, г); 19 (г); 22;

§ 16, № 4 (в, г); 7 (б); 8 (а); 16 (в, г); 18 (б); 19 (а, б);

§ 17, № 3 (в, г); 4 (а, б); 5 (в, г); 7 (а, б); 9 (г); 10 (б, г).

VI. Творческие задания

1. Найдите область определения функции:


Ответы :

2. Найдите область значений функции:

Ответы:

3. Постройте график функции:


VII. Подведение итогов уроков