Информационная поддержка школьников и студентов
Поиск по сайту

Для анализа шкалы отношений используют виды статистики. Типы статистических шкал: номинальная шкала, порядковая шкала, интервальная шкала, шкала отношений. Номинальная шкала. Виды шкал и типы шкалирования

Применение тех или других статистических методов определяет тем, к какой статистической шкале относится полученный материал. Л.С. Стивенс предложил различать четыре статистические шкалы:

1) шкалу наименований (или номинальную);

2) шкалу порядка;

3) шкалу интервалов;

4) шкалу отношений.

Зная типические особенности каждой шкалы, нетрудно установить, к какой из них следует отнести подлежащий статистической обработке материал.

Шкала наименований. К этой шкале относятся материалы, в которых изучаемые объекты отличаются друг от друга по их качеству.

При обработке таких материалов нет никакой нужды в том, чтобы располагать эти объекты в каком-то порядке, исходя из их характеристик. В принципе, объекты можно располагать в любой последовательности.

Вот пример: изучается состав международной научной конференции. Среди участников есть французы, англичане, датчане, немцы и русские. Имеет ли значение порядок, в котором будут расположены участники при изучении состава конференции? Можно расположить их по алфавиту, это удобно, но ясно, что никакого принципиального значения в этом расположении нет. При переводе этих материалов на другой язык (а значит и на другой алфавит) этот порядок будет нарушен. Можно расположить национальные группы по числу участников. Но при сравнении этого материала с материалом другой конференции найдем, что вряд ли этот порядок окажется таким же. Отнесенные к шкале наименований объекты можно размещать в любой последовательности в зависимости от цели исследования.

При статистической обработке такого рода материалов нужно считаться с тем, каким числом единиц представлен каждый объект. Имеются весьма эффективные статистические методы, позволяющие по этим числовым данным прийти к научно значимым выводам (например, метод хи-квадрат).

Шкала порядка. Если в шкале наименований порядок следования изучаемых объектов практически не играет никакой роли, то в шкале порядка – это видно из ее названия – именно на эту последовательность переключается все внимание.

К этой шкале в статистике относят такие исследовательские материалы, в которых рассмотрению подлежат объекты, принадлежащие к одному или нескольким классам, но отличающиеся при их сравнении одного с другим «больше-меньше», «выше-ниже» и т.п.

Проще всего показать типические особенности шкалы порядка, если обратиться к публикуемым итогам любых спортивных соревнований. В этих итогах последовательно перечисляются участники, занявшие соответственно первое, второе, третье и следующие по порядку места. Но в этой информации об итогах соревнований нередко отсутствуют или отходят на второй план сведения о фактических достижениях спортсменов, а на первый план ставятся их порядковые места.


Допустим, шахматист Д. занял в соревнованиях первое место. Каковы же его достижения? Оказывается, он набрал 12 очков. Шахматист Е. занял второе место. Его достижение – 10 очков. Третье место занял Ж. с восемью очками, четвертое – З. с шестью очками и т.д. В сообщениях о соревновании разница в достижениях при размещении шахматистов отходит на второй план, а на первом остаются их порядковые места. В том, что именно порядковому месту отводится главное значение, есть свой смысл. В самом деле, в нашем примере З. набрал шесть, а Д., 12 очков. Это абсолютные их достижения – выигранные ими пари. Если попытаться истолковать эту разницу в достижениях чисто арифметически, то пришлось бы признать, что З. играет вдвое хуже, чем Д. этим нельзя согласиться. Обстоятельства соревнований не всегда просты, как не всегда просто и то, как провел их тот или другой участник. Поэтому, воздерживаясь от арифметической абсолютизации, ограничиваются тем, что устанавливают: шахматист З. отстает от занявшего первое место Д. на три порядковых места.

Шкала интервалов. К ней относятся такие материалы, в которых дана количественная оценка изучаемого объекта в фиксированных единицах.

Вернемся к опытам, которые провел психолог с Сашей. В опытах учитывалось, сколько точек могут поставить, работая с максимально доступной им скоростью, сам Саша и каждый из его сверстников. Оценочными единицами в опытах служило число точек. Подсчитав их, исследовал получил то абсолютное число точек, которое оказалось возможным поставить за отведенное время каждому участнику опытов. Главная трудность при отнесении материалов к шкале интервалов состоит в том, нужно располагать такой единицей, которая была бы при всех повторных измерениях тождественной самой себе, т.е. одинаковой и неизменной. В примере с шахматистами (шкала порядка) такой единицы не существует.

В самом деле, учитывается число партий, выигранных каждым участником соревнований. Но ясно, что партии далеко не одинаковы, можно, что участник соревнований, занявший четвертое – он выиграл шесть партий, – выиграл труднейшую партию у самого лидера! Но в окончательных итогах как бы принимается, что все выигрышные партии одинаковы. В действительности же этой нет. Поэтому при работе с подобными материалами уместно их оценивать в соответствии с требованиями шкалы порядка, а не шкалы интервалов. Материалы, соответствующие шкале интервалов, должны иметь единицу измерения.

Шкала отношений. К этой шкале относятся материалы, учитываются не только число фиксированных единиц, как в шкале интервалов, но и отношения полученных суммарных итогов между собой. Чтобы работать с такими отношениями, нужно иметь некую абсолютную точку, от которой и ведется отсчет. При изучении психологических субъектов эта шкала практически неприменима.


5.2. Типы статистических шкал

В эмпирическом исследовании могут встречаться, к примеру, следующие переменные (указано их наиболее вероятное кодирование):

Пол 1 = мужской
2 = женский
Семейное положение 1 = холост/не замужем
2 = женат/замужем
3 = вдовец/вдова
4 = разведен(а)
Курение 1 = некурящий
2 = изредка курящий
3 = интенсивно курящий
4 = очень интенсивно курящий
Месячный доход 1 = до 3000 DM
2 = 3001 - 5000 DM
3 = более 5000 DM
Коэффициент интеллекта (I.Q.)
Возраст (лет)

Рассмотрим сначала графу "Пол" . Мы видим, что назначение соответствия цифр 1 и 2 обоим полам абсолютно произвольно, их можно было поменять местами или обозначить другими цифрами. Мы, конечно, не имеем в виду, что женщины стоят на ступеньку ниже мужчин, или мужчины значат меньше, чем женщины. Следовательно, отдельным числам не соответствует никакою эмпирического значения. В этом случае говорят о переменных, относящихся к номинальной шкале . В нашем примере рассматривается переменная с номинальной шкалой, имеющая две категории. Такая переменная имеет еще одно название - дихотомическая .

Такая же ситуация и с переменной "Семейное положение" . Здесь также соответствие - между числами и категориями семейного положения не имеет никакого эмпирического значения. Но в отличии от Пола, эта переменная не является дихотомической - у нее четыре категории вместо двух. Возможности обработки переменных, относящихся к номинальной шкале очень ограничены. Собственно говоря, можно провести только частотный анализ таких переменных. К примеру, расчет среднего значения для переменной Семейное положение, совершенно бессмысленен. Переменные, относящиеся к номинальной шкале часто используются для группировки, с помощью которых совокупная выборка разбивается по категориям этих переменных. В частичных выборках проводятся одинаковые статистические тесты, результаты которых затем сравниваются друг с другом.

В качестве следующего примера рассмотрим переменную "Курение" . Здесь кодовым цифрам присваивается эмпирическое значение в том порядке, в котором они расположены в списке. Переменная Курение, в итоге, сортирована в порядке значимости снизу вверх: умеренный курильщик курит больше, нежели некурящий, а сильно курящий - больше, чем умеренный курильщик и т.д. Такие переменные, для которых используются численные значения, соответствующие постепенному изменению эмпирической значимости, относятся к порядковой шкале .

Однако эмпирическая значимость этих переменных не зависит от разницы между соседними численными значениями. Так, несмотря на то, что разница между значениями кодовых чисел для некурящего и изредка курящего и изредка курящего и интенсивно курящего в обоих случаях равна единице, нельзя утверждать, что фактическое различие между некурящим и изредка курящим и между изредка курящим и интенсивно курящим одинаково. Для этого данные понятия слишком расплывчаты.

К классическими примерами переменных с порядковой шкалой относятся также переменные, полученные в результате объединения величин в классы, как "Месячный доход" в нашем примере.

Кроме частотного анализа, переменные с порядковой шкалой допускают также вычисление определенных статистических характеристик, таких как медианы. В некоторых случаях возможно вычисление среднего значения. Если должна быть установлена связь (корреляция) с другими переменными такого рода, для этой цели можно использовать коэффициент ранговой корреляции .

Для сравнения различных выборок переменных, относящихся к порядковой шкале, могут применяться непараметрические тесты , формулы которых оперируют рангами.

Рассмотрим теперь "Коэффициент интеллекта (IQ) ". Не только его абсолютные значения отображают порядковое отношение между респондентами, но и разница между двумя значениями также имеет эмпирическую значимость. Например, если у Ганса IQ равен 80, у Фрица - 120 и у Отто - 160, можно сказать, что Фриц в сравнении с Гансом настолько же интеллектуальнее насколько Отто в сравнении с Фрицем (а именно - на 40 единиц IQ). Однако, основываясь только на том, что значение IQ у Ганса в два раза меньше, чем у Отто, исходя из определения IQ нельзя сделать вывод, что Отто вдвое умнее Ганса.

Такие переменные, у которых разность (интервал) между двумя значениями имеет эмпирическую значимость, относятся к интервальной шкале . Они могут обрабатываться любыми статистическим методами без ограничений. Так, к примеру, среднее значение является полноценным статистическим показателем для характеристики таких переменных.

Наконец, мы достигли наивысшей статистической шкалы, на которой эмпирическую значимость приобретает и отношение двух значений. Примером переменной, относящейся к такой шкале является "Возраст ": если Максу 30 лет, а Морицу 60, можно сказать, что Мориц вдвое старше Макса. Шкала, к которой относятся данные называется шкалой отношений . К этой шкале относятся все интервальные переменные, которые имеют абсолютную нулевую точку. Поэтому переменные относящиеся к интервальной шкале, как правило, имеют и шкалу отношений.

Подводя итоги, можно сказать, что существует четыре вида статистических шкал, на которых могут сравниваться численные значения:

На практике, в том числе в SPSS, различие между переменными, относящимися к интервальной шкале и шкале отношений обычно несущественно. То есть в дальнейшем практически всегда речь будет идти о переменных, относящихся к интервальной шкале .

Страница 1

Применение тех или других статистических методов определяется тем, к какой статистической шкале относится полученный материал. С. Стивенс предложил различать четыре статистические шкалы:

1. шкалу наименований (или номинальную);

2. шкалу порядка;

3. шкалу интервалов;

4. шкалу отношений.

Зная типические особенности каждой шкалы, нетрудно установить, к какой из них следует отнести подлежащий статистической обработ­ке материал.

Шкала наименований. К этой шкале относятся материалы, в ко­торых изучаемые объекты отличаются друг от друга по их качеству.

При обработке таких материалов нет никакой нужды в том, чтобы располагать эти объекты в каком-то порядке, исходя из их характери­стик. В принципе, объекты можно располагать в любой последователь­ности.

Вот пример: изучается состав международной научной конференции. Среди участников есть французы, англичане, датчане, немцы и русские. Имеет ли значение порядок, в котором будут расположены участники при изучении состава конференции? Можно расположить их по алфавиту, это удобно, но ясно, что никакого принципиального значения в этом распо­ложении нет. При переводе этих материалов на другой язык (а значит и на другой алфавит) этот порядок будет нарушен. Можно расположить национальные группы по числу участников. Но при сравнении этого ма­териала с материалом другой конференции найдем, что вряд ли этот порядок окажется таким же. Отнесенные к шкале наименований объек­ты можно размещать в любой последовательности в зависимости от цели исследования.

При статистической обработке такого рода материалов нужно счи­таться с тем, каким числом единиц представлен каждый объект. Име­ются весьма эффективные статистические методы, позволяющие по этим числовым данным прийти к научно значимым выводам (напри­мер, метод хи-квадрат).

Шкала порядка. Если в шкале наименований порядок следования изучаемых объектов практически не играет никакой роли, то в шкале порядка - это видно из ее названия - именно на эту последователь­ность переключается все внимание.

К этой шкале в статистике относят такие исследовательские ма­териалы, в которых рассмотрению подлежат объекты, принадлежа­щие к одному или нескольким классам, но отличающиеся при их сравне­нии одного с другим - «больше-меньше», «выше-ниже»- и т. п.

Проще всего показать типические особенности шкалы порядка, если об­ратиться к публикуемым итогам любых спортивных соревнований. В этих итогах последовательно перечисляются участники, занявшие соответ­ственно первое, второе, третье и следующие по порядку места. Но в этой информации об итогах соревнований нередко отсутствуют или отходят на второй план сведения о фактических достижениях спортсменов, а на первый план ставятся их порядковые места.

Допустим, шахматист Д. занял в соревнованиях первое место. Како­вы же его достижения? Оказывается, он набрал 12 очков. Шахматист Е. занял второе место. Его достижение - 10 очков. Третье место занял Ж. с восемью очками, четвертое - 3. с шестью очками и т. д. В сообщениях о соревновании разница в достижениях при размещении шахматистов отходит на второй план, а на первом остаются их порядковые места. В том, что именно порядковому месту отводится главное значение, есть свой смысл. В самом деле, в нашем примере З. набрал шесть, а Д. - 12 очков. Это абсолютные их достижения - выигранные ими партии. Если попытаться истолковать эту разницу в достижениях чисто арифме­тически, то пришлось бы признать, что 3. играет вдвое хуже, чем Д. Но с этим нельзя согласиться. Обстоятельства соревнований не всегда про­сты, как не всегда просто и то, как провел их тот или другой участник. Поэтому, воздерживаясь от арифметической абсолютизации, ограничи­ваются тем, что устанавливают: шахматист 3. отстает от занявшего пер­вое место Д. на три порядковых места.

Социально-психологические причины и факторы дезадаптации у подростков
Отклоняющееся поведение подростков нельзя назвать только психологической проблемой. Оно осмысливается как комплексная социальная проблема. Основные причины отклоняющегося поведения людей вообще и подростков, в частности, объясняют различн...

Сознание и бессознательное в личности человека
Сознание не является единственным уровнем, на котором представлены психические процессы, свойства и состояния человека, далеко не все, что воспринимается и управляет поведением человека, актуально осознается им. Кроме сознания, у человека...

Практические рекомендации по оптимизации учебной деятельности в классах разного профиля.
На основании проведённого анализа литературы и анализа полученных результатов, мы разработали следующие рекомендации, которые помогут создать старшекласснику благоприятные условия для развития, самоактуализации, личностного роста, а, след...

Каждое измерение над объектом производится в определенной шкале. Различные координаты одного вектора наблюдений могут быть выражены в разных шкалах. Так, в § 5.1 приведен пример вектора наблюдений (табл. 5.1), у которого первые координаты носят характер условных меток (социальная принадлежность семьи, пол и профессия главы семьи, качество жилищных условий), в то время как остальные выражаются числами (число членов семьи, количество детей, среднегодовой доход и т. п.). Свойства этих шкал сильно различаются между собой. Так, про пол главы семьи можно сказать только, что он или мужской или женский и что пол мужской отличается от пола женского; про жилищные условия - что они совпадают или отличаются и что в отдельных случаях одни жилищные условия лучше других; про расходы можно сказать, что расходы на питание одной семьи меньше, равны, больше расходов другой, можно оценить разность в расходах между семьями и подсчитать, во сколько раз расходы одной семьи отличаются от расходов другой.

Ниже описываются основные типы шкал и математические приемы унификации данных, выраженных в разных шкалах, которые обычно предшествуют применению методов многомерного анализа.

10.2.1. Номинальная шкала.

Эта шкала используется только для того, чтобы отнести индивидуум, объект в определенный класс. Если описаны заранее возможные классы и правила отнесения объекта в них, то говорят о категоризованной шкале, если нет, то о некатегоризованной. Примером категоризованной шкалы является пол. В исследовании индивидууму приписывается одно из двух значений: буква М или Ж, специальный знак или число 1 или 2. В принципе можно было бы приписывать и другие буквы и цифры, важно только, чтобы сохранялось взаимно-однозначное соответствие между кодами. Для ввода категоризованных данных удобно использовать «меню», т. е. перечень возможных категорий с их кодами. Примерами некатегоризованных номинальных переменных являются имя, фамилия, место рождения.

Другой важный источник некатегоризованных номинальных данных указан в § 5.3. Это случай, когда наблюдение задается над парой объектов, и переменная указывает только, принадлежат ли объекты, к одному классу или нет, и не указывает, к каким классам они принадлежат.

Последнее обстоятельство не надо рассматривать в качестве курьеза. Конечно, если классы заранее определены и нетрудно каждый объект отнести в определенный класс, то это следует сделать и записать, к какому классу объект принадлежит. Но иногда классы заранее не описаны, создание их полной классификации как раз и является целью работы, а вместе с тем оценить принадлежность объектов одному классу можно. Например, можно говорить о «близком», «похожем» течении болезни у двух больных, хотя все варианты течения заболевания и не описаны. Более того, выделение эмпирически близких вариантов течения болезни может служить отправным пунктом для выделения и описания всех возможных вариантов развития патологического процесса. То же относится к выделению социально-экономических групп и т. п.

Одна и та же переменная может в зависимости от цели использования выступать в разных качествах. Так, например, некатегоризованная номинальная переменная - имя программы - служит только для индивидуализации программы и, если программ немного, может быть найдена прямым просмотром списка программ. Вместе с тем если имена программ в списке каким-либо образом упорядочить (например, в алфавитно-цифровом порядке), то имя программы как поисковый образ несет в себе элементы порядковой величины. Про каждые два имени можно сказать, что они или совпадают, или одно из них предшествует другому при принятом способе упорядочивания. При изменении способа упорядочивания меняется и отношение следования.

Арифметические операции над величинами, измеренными в номинальной шкале, лишены смысла. Следовательно, и медиана, и среднее арифметическое не могут быть использованы в качестве осмысленной меры центральной тенденции. Более подходящая статистика здесь мода.

10.2.2. Порядковая (ординальная) шкала.

В дополнение к функции отнесения объектов в определенный класс эта шкала также упорядочивает классы по степени выраженности заданного свойства. Каждому классу приписывается свой собственный символ таким образом, чтобы заранее установленный порядок символов соответствовал порядку классов. Так, если классам будут приписаны числовые значения, то классы будут упорядочены согласно числовой последовательности; если буквы, то классы будут упорядочены в алфавитном порядке, а если слова, то классы будут упорядочены согласно значениям слов.

Например, в § 5.3 приводится пример порядковой шкалы для описания качества жилищных условий с четырьмя градациями (классами): «плохое», «удовлетворительное», «хорошее», «очень хорошее». Естественно, что эти классы могли бы быть занумерованы числами 1,2,3,4, или 4,3,2,1, или буквами а,б,в,г и т. п.

Другими известными примерами порядковых шкал являются: в медицине - шкала стадий гипертонической болезни по Мясникову, шкала степеней сердечной недостаточности по Стражеско - Василенко - Лангу, шкала степени выраженности коронарной недостаточности по Фогельсону; в минералогии - шкала Мооса (тальк -1, гипс - 2, кальцит - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10), по которой минералы классифицируются согласно критерию твердости; в географии - бофортова шкала ветров («штиль», «слабый ветер», «умеренный ветер» и т. д.).

Структура порядковой шкалы не разрушается при любом взаимно-однозначном преобразовании кодов, которое сохраняет порядок. Так же, как и в случае номинальной шкалы, арифметические операции не сохраняют своего смысла при преобразовании порядковых шкал, поэтому желательно ими не пользоваться. Нетрудно показать, что если опираться только на свойства шкал и не привлекать дополнительных, внешних по отношению к шкалам соображений, то единственными разрешенными статистиками при использовании порядковых шкал являются члены вариационного ряда .

10.2.3. Количественные шкалы.

Шкала, в которой можно отразить, на сколько по степени выраженности заданного свойства один из объектов отличается от другого, называется интервальной. Для того чтобы задать интервальную шкалу, надо определить объекты, соответствующие начальной точке и единице измерения. И далее при измерении ставить в соответствие каждому объекту число, показывающее, на сколько единиц измерения этот объект отличается от объекта, принятого за начальную точку. Простейшим примером интервальной шкалы является температура в градусах Цельсия, где 0° - начальная точка и 1° - единица измерения.

Структура интервальной шкалы не меняется при линейных преобразованиях вида Эффект такого преобразования заключается в сдвиге начальной точки на b единиц и умножении единицы измерения на а.

Например, путем преобразования , где - температура в можно перейти к температуре в градусах Фаренгейта.

Если начало в интервальной шкале является абсолютной нулевой точкой, то возникает возможность отразить в шкале, во сколько раз одно измерение отличается от другого. Соответствующая шкала называется шкалой отношений. Шкала отношений допускает преобразования вида . Большинство шкал, используемых в физике, являются либо интервальными (для измерения температуры, потенциальной энергии), либо шкалами отношений (для измерения времени, массы тела, заряда, расстояния).

Поскольку количественные шкалы допускают арифметические преобразования, среднее арифметическое может использоваться для описания интегральной тенденции в группировке данных.

10.2.4. Унифицированное представление разнотипных данных.

Каждому типу шкалы соответствует своя статистическая техника. Так, для переменных, измеренных в номинальной шкале, можно использовать -критерий для полиномиальных распределений, -критерий для проверки отсутствия ассоциаций в таблицах сопряженности, критерии для проверки гипотез о вероятности в биномиальном распределении. Порядковой шкале отвечают методы, основанные на использовании рангов (ранговая корреляция, непараметрические критерии для проверки гипотез типа ) и т. п.). При интервальной шкале может быть использован весь арсенал статистических методов.

Более того, разработаны статистические процедуры для случаев, когда наблюдаются векторы, одни координаты которых измерены в одной шкале, а другие - в другой. Типичным примером является обычный дисперсионный анализ (см. § 3.5), в котором факторы измеряются в номинальной шкале, а соответствующие их комбинациям отклики - в интервальной.

Тем не менее в целом ряде статистических методов, особенно в современных методах многомерного анализа, предполагается, что данные измерены в однотипных шкалах. Чтобы иметь возможность применять эти методы в общем случае разнотипных данных, были предложены различные приемы унификации данных. Познакомимся с важнейшими из них.

Сведение к двоичным переменным. В основе этого метода лежит введение вместо каждой исходной случайной переменной серии случайных величин, принимающих только два значения: 0 и 1.

Для номинальной величины имеющей k градаций вводится k таких величин что когда когда

Этот же прием иногда используют и при сведении к двоичным переменным случайной величины, измеренной в порядковой шкале. Однако в ряде случаев оказывается удобным выделять не событие , а событие Для сравнения относительных достоинств этих двух способов рассмотрим следующую модельную задачу. Пусть - равномерно распределенная на отрезке случайная величина, - малое число;

Функция моделирует, очевидно, первый способ перехода к двоичным переменным, а функция - второй. После несложных подсчетов получаем:

Основной недостаток изложенной техники - это введение большого числа новых переменных и частичная потеря информации, содержащейся в данных, как из-за квантования, так и из-за искусственного снижения уровня используемой шкалы.

Оцифровка номинальных и порядковых переменных. Этот метод прямо противоположен только что изложенному, в нем все переменные поднимаются, подтягиваются до уровня количественных путем приписывания их градациям числовых значений. Иногда приписываемые значения называют метками.

Выбор меток существенно зависит от цели, с которой производится оцифровка. Так, если изучается величина связи между двумя номинальными признаками, то метки можно выбрать из условия максимизации коэффициента корреляции между ними , . Если речь идет об отнесении наблюдений к одному из заранее определенных классов (дискриминантный анализ), то выбор меток можно связать с условием максимизации нормированного расстояния в многомерном выборочном пространстве между центрами изучаемых популяций (расстояния Махаланобиса). Иногда эту задачу упрощают и метки приписываются покоординатно так, чтобы максимизировать только нормированное расстояние между средними значениями данной координаты. Статистическое сравнение на примере одной частной задачи эффективности глобального и покоординатного подхода к оцифровке в дискриминантном анализе может быть найдено в .

Изложенные приемы оцифровки, когда метки выбираются из условия максимизации соответствующим образом подобранного функционала, укладываются в рамки упомянутого в § 1.2 экстремального подхода к формулировке основных проблем математической статистики.

В целом оцифровка качественных переменных является задачей сложной как в вычислительном, так и в чисто статистическом плане. Отдельные аспекты этой проблемы обсуждаются в работах .


В эмпирическом исследовании могут встречаться, к примеру, следующие переменные (указано их наиболее вероятное кодирование):

Рассмотрим сначала графу Пол. Мы видим, что назначение соответствия цифр 1 и 2 обоим полам абсолютно произвольно, их можно было поменять местами или обозначить другими цифрами.

Мы, конечно, не имеем в виду, что женщины стоят на ступеньку ниже мужчин, или:о мужчины значат меньше, чем женщины. Следовательно, отдельным числам не соответствует никакою эмпирического значения. В этом случае говорят о переменных, относящихся к номинальной шкале. В нашем примере рассматривается переменная с номинальной шкалой, имеющая две категории. Такая переменная имеет еще одно название - дихотомическая.

Такая же ситуация и с переменной Семейное положение. Здесь также соответствие -:жду числами и категориями семейного положения не имеет никакого эмпирического значения. Но в отличии от Пола, эта переменная не является дихотомической - у нее четыре категории вместо двух. Возможности обработки переменных, относящихся к номинальной шкале очень ограничены. Собственно говоря, можно провести только частотный анализ таких переменных. К примеру, расчет среднего значения для переменной Семейное положение, совершенно бессмысленен. Переменные, относящиеся к номинальной шкале часто используются для группировки, с помощью которых совокупная выборка разбивается по категориям этих переменных. В частичных выборках проводятся одинаковые статистические тесты, результаты которых затем сравниваются друг с другом.

В качестве следующего примера рассмотрим переменную Курение. Здесь кодовым цифрам присваивается эмпирическое значение в том порядке, в котором они расположены в списке. Переменная Курение, в итоге, сортирована в порядке значимости снизу вверх: умеренный курильщик курит больше, нежели некурящий, а сильно курящий - больше, чем умеренный курильщик и т.д. Такие переменные, для которых используются численные значения, соответствующие постепенному изменению эмпирической значимости, относятся к порядковой шкале.

Однако эмпирическая значимость этих переменных не зависит от разницы между соседними численными значениями. Так, несмотря на то, что разница между значениями кодовых чисел для некурящего и изредка курящего и изредка курящего и интенсивно курящего в обоих случаях равна единице, нельзя утверждать, что фактическое различие между некурящим и изредка курящим и между изредка курящим и интенсивно курящим одинаково. Для этого данные понятия слишком расплывчаты.