Информационная поддержка школьников и студентов
Поиск по сайту

Муравьиная кислота с хлорной водой. Карбоновые кислоты и их химические свойства. Номенклатура и изомерия

КАРБОНОВЫЕ КИСЛОТЫ.

Карбоновыми кислотами называются производные углеводородов, в молекуле которых содержится одна или несколько карбоксильных групп

Общая формула предельных одноосновных карбоновых кислот: С n H 2n O 2


Классификация карбоновых кислот.

1. По числу карбоксильных групп:

Одноосновные (монокарбоновые)


Многоосновные (дикарбоновые, трикарбоновые и т.д.).



  1. По характеру углеводородного радикала:

Предельные CH 3 -CH 2 -CH 2 -COOH ; бутановая кислота.


- непредельные CH 2 =CH-CH 2 -COOH ; бутен-3-овая кислота.
- ароматические

пара-метилбензойная кислота
НАЗВАНИЯ КАРБОНОВЫХ КИСЛОТ.


Название

Формула

кислоты


кислоты

её соли и

(эфиры)


муравьиная

метановая

формиат

HCOOH

уксусная

этановая

ацетат

CH 3 COOH

пропионовая

пропановая

пропионат

CH 3 CH 2 COOH

масляная

бутановая

бутират

CH 3 (CH 2) 2 COOH

валериановая

пентановая

валерат

CH 3 (CH 2) 3 COOH

капроновая

гексановая

гексанат

CH 3 (CH 2) 4 COOH

пальмитиновая

гексадекановая

пальмитат

С 15 Н 31 СООН

стеариновая

октадекановая

стеарат

С 17 Н 35 СООН

акриловая

пропеновая

акрилат

CH 2 =CH–COOH

олеиновая

цис -9-октадеценовая

олеат

СН 3 (СН 2) 7 СН=СН(СН 2) 7 СООН

бензойная

бензойная

бензоат

C 6 H 5 -COOH

щавелевая

этандиовая

оксалат

НООС - COOH

ИЗОМЕРИЯ КАРБОНОВЫХ КИСЛОТ.

1. Изомерия углеродной цепи. Начинается с бутановой кислоты (С 3 Н 7 СООН ) , которая существует в виде двух изомеров: масляной (бутановой) и изомасляной (2-метилпропановой) кислот.
2. Изомерия положения кратной связи в непредельных кислотах, например:

СН 2 =СН-СН 2 -СООН СН 3 -СН=СН-СООН

Бутен-3-овая кислота Бутен-2-овая кислота

(винилуксусная кислота) (кротоновая кислота)
3. Цис-, транс-изомерия в непредельных кислотах, например:

4. Межклассовая изомерия : Карбоновые кислоты изомерны сложным эфирам:

Уксусная кислота СН 3 -СООН и метилформиат Н-СООСН 3


5. Изомерия положения функциональных групп у гетерофункционалъных кислот.

Например, существуют три изомера хлормасляной кислоты: 2-хлорбутановая, 3-хлорбутановая и 4-хлорбутановая.


СТРОЕНИЕ КАРБОКСИЛЬНОЙ ГРУППЫ.

Карбоксильная группа сочетает в себе две функциональные группы – карбонил и гидроксил, взаимно влияющие друг на друга

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризацией связи О–Н.
В водном растворе карбоновые кислоты диссоциируют на ионы:

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей. С увеличением молекулярной массы растворимость кислот в воде уменьшается.


ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ – в них гидроксогруппа замещена на некоторые другие группы. Все они при гидролизе образуют карбоновые кислоты.

Соли

Сложные эфиры

Галогенангидриды

Ангидриды

Амиды.










ПОЛУЧЕНИЕ КАРБОНОВЫХ КИСЛОТ.


1. Окисление спиртов в жестких условиях – раствором перманганата или дихромата калия в кислой среде при нагревании.



2.Окисление альдегидов : раствором перманганата или дихромата калия в кислой среде при нагревании, реакцией серебряного зеркала, гидроксидом меди при нагревании.



3. Щелочной гидролиз трихлоридов :

R-CCl 3 + 3NaOH  + 3NaCl

неустойчивое вещество

 RCOOH + H 2 O


4. Гидролиз сложных эфиров.

R-COOR 1 + KOH  RCOOK + R 1 OH

RCOOK + HCl  R-COOH + KCl



5. Гидролиз нитрилов, ангидридов, солей.

1)нитрил: R-CN + 2H 2 O –(H +) RCOOH

2)ангидрид: (R-COO) 2 O + H 2 O  2RCOOH

3)натриевая соль: R-COONa+HClR-COOH + NaCl


6. Взаимодействие реактива Гриньяра с СО 2:

R-MgBr + CO 2  R-COO-MgBr

R-COO-MgBr -(+H 2 O) R-COOH +Mg(OH)Br



7. Муравьиную кислоту получают нагреванием оксида углерода (II) с гидроксидом натрия под давлением:

NaOH + CO –(200 o C,p) HCOONa

2HCOONa+ H 2 SO 4 2HCOOH + Na 2 SO 4



8. Уксусную кислоту получают каталитическим окислением бутана :

2C 4 H 10 + 5O 2  4CH 3 -COOH + 2H 2 O

9. Для получения бензойной кислоты можно использовать окисление монозамещенных гомологов бензола кислым раствором перманганата калия:

5C 6 H 5 –CH 3 +6KMnO 4 +9H 2 SO 4 5C 6 H 5 -COOH+3K 2 SO 4 + MnSO 4 + 14H 2 O

ХИМИЧЕСКИЕ СВОЙСТВА КАРБОНОВЫХ КИСЛОТ.

1. Кислотные свойства – замещение атома Н в карбоксильной группе на металл или ион аммония.


1.Взаимодействие с металлами

2CH 3 COOH+Ca (CH 3 COO) 2 Ca+H 2

ацетат кальция



2.Взаимодействие с оксидами металлов

2CH 3 COOH+BaO (CH 3 COO) 2 Ba+H 2 O

3.Реакция нейтрализации с гидроксидами металлов

2CH 3 COOH+Cu(OH) 2  (CH 3 COO) 2 Cu + 2H 2 O

4.Взаимодействие с солями более слабых и летучих (или нерастворимых) кислот

2CH 3 COOH+CaCO 3  (CH 3 COO) 2 Ca + H 2 O + CO 2

4*. Качественная реакция на карбоновые кислоты: взаимодействие с содой (гидрокарбонатом натрия) или другими карбонатами и гидрокарбонатами.

В результате наблюдается выделение углекислого газа.

2CH 3 COOH+Na 2 CO 3 à 2CH 3 COONa+H 2 O+CO 2 

2. Замещение гидроксильной группы:


5.Реакция этерификации




6.Образование галоген-ангидридов – с помощью хлоридов фосфора (III) и (V).



7. Образование амидов:




8. Получение ангидридов.

С помощью Р 2 О 5 можно дегидратировать карбоновую кислоту – в результате получается ангидрид.

2СН 3 – СООН + Р 2 О 5  (СН 3 СО) 2 О + НРО 3


3. Замещение атома водорода при атоме углерода, ближайшем к карбоксильной группе (-углеродный атом)


9.Галогенирование кислот – реакция идёт в присутствии красного фосфора или на свету.

CH 3 -COOH+Br 2 –(Р кр) CH 2 -COOH + НВr

Особенности муравьиной кислоты.


1. Разложение при нагревании.

Н-СООН –(H 2 SO 4 конц,t) CO + H 2 O

2. Реакция серебряного зеркала и с гидроксидом меди (II) – муравьиная кислота проявляет свойства альдегидов.

Н-COOH+2OH(NH 4) 2 СО 3 +2 Ag +2NH 3 +H 2 O
H-COOH + Cu(OH) 2 –t CO 2 + Cu 2 O + H 2 O

3. Окисление хлором и бромом, а также азотной кислотой.

H-COOH + Cl 2  CO 2 + 2HCl

Особенности бензойной кислоты.


1. Разложение при нагревании – декарбоксилирование.

При нагревании бензойной кислоты она разлагается на бензол и углекислый газ:


2. Реакции замещения в ароматическом кольце.

Карбоксильная группа является электроноакцепторной, она уменьшает электронную плотность бензольного кольца и является мета-ориентантом.
+ HNO 3 –(H 2 SO 4) +H 2 O

Особенности щавелевой кислоты.


1. Разложение при нагревании



2. Окисление перманганатом калия.


Особенности непредельных кислот (акриловой и олеиновой).


1. Реакции присоединения.

Присоединение воды и бромоводорода к акриловой кислоте происходит против правила Марковникова, т.к. карбоксильная группа является электроноакцепторной:

СН 2 =СН-СООН + НBr  Br-CH 2 -CH 2 -COOH

Также к непредельным кислотам можно присоединять галогены и водород:

С 17 Н 33 -СООН+H 2  C 17 H 35 -COOH(стеариновая)



2. Реакции окисления

При мягком окислении акриловой кислоты образуется 2 гидроксогруппы:

3СН 2 =СН-СООН+2KMnO 4 +2H 2 O 2CH 2 (OH)-CH(OH)-COOК + CH 2 (OH)-CH(OH)-COOH +2MnO 2


Свойства солей карбоновых кислот.

Свойства галогенангидридов

СЛОЖНЫЕ ЭФИРЫ

это соединения, содержащие карбоксильную группу, связанную с двумя алкильными радикалами.

Общая формула сложных эфиров такая же, как у карбоновых кислот: C n H 2 n O 2


НОМЕНКЛАТУРА СЛОЖНЫХ ЭФИРОВ. Названия сложных эфиров определяются названиями кислоты и спирта, из которых они образуются.

ПОЛУЧЕНИЕ СЛОЖНЫХ ЭФИРОВ.

1)Cложные эфиры могут быть получены при взаимодействии карбоновых кислот со спиртами (реакция этерификации ). Катализаторами являются минеральные кислоты.

2) Сложные эфиры фенолов нельзя получить с помощью этерификации , для их получения используют реакцию фенолята с галогенангидридом кислоты:

С 6 Н 5 -О - Na + + C 2 H 5 –C=O  NaCl + C 6 H 5 –O-C=O

Cl C 2 H 5

Фениловый эфир пропановой кислоты (фенилпропаноат)

Виды изомерии сложных эфиров.

1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку - с пропилового спирта, например, этилбутаноату изомерны этилизобутаноат, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки -СО-О-. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия с карбоновыми кислотами.
СВОЙСТВА СЛОЖНЫХ ЭФИРОВ.
1. Гидролиз сложных эфиров.

Реакция этерификации обратима. Обратный процесс – расщепление сложного эфира при действии воды с образованием карбоновой кислоты и спирта – называют гидролизом сложного эфира.

Кислотный гидролиз обратим:

Щелочной гидролиз протекает необратимо:

Эта реакция называется омылением сложного эфира.


2. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

В табл. 19.10 указаны некоторые органические соединения, относящиеся к карбоновым кислотам. Характерный признак карбоновых кислот - наличие в них карбоксильной

Таблица 19.10. Карбоновые кислоты

(см. скан)

функциональной группы. Карбоксильная группа состоит из карбонильной группы, связанной с гидроксильной группой. Органические кислоты с одной карбоксильной группой называются монокарбоновыми кислотами. Их систематические названия имеют суффикс -ов(ая). Органические кислоты с двумя карбоксильными группами называются дикарбоновыми кислотами. Их систематические названия имеют суффикс -диов(ая).

Насыщенные алифатические монокарбоновые кислоты образуют гомологический ряд, который характеризуется общей формулой . Ненасыщенные алифатические дикарбоновые кислоты могут существовать в форме различных геометрических изомеров (см. разд. 17.2).

Физические свойства

Низшие члены гомологического ряда насыщенных монокарбоновых кислот при нормальных условиях представляют собой жидкости, обладающие характерным острым запахом. Например, этановая (уксусная) кислота имеет характерный «уксусный» запах. Безводная уксусная кислота при комнатной температуре представляет собой жидкость. Она замерзает при превращаясь в льдистое вещество, которое называется ледяной уксусной кислотой.

Все дикарбоновые кислоты, указанные в табл. 19.10, при комнатной температуре представляют собой белые кристаллические вещества. Низшие члены рядов монокарбоновых и дикарбоновых кислот растворимы в воде. Растворимость карбоновых Кислот уменьшается по мере возрастания их относительной молекулярной массы.

В жидком состоянии и в неводных растворах молекулы монокарбоновых кислот димеризуются в результате образования между ними водородных связей:

Водородная связь в карбоновых кислотах сильнее, чем в спиртах. Это объясняется высокой полярностью карбоксильной группы, обусловленной оттягиванием электронов от атома водорода по направлению к карбонильному атому кислорода:

Вследствие этого карбоновые кислоты имеют сравнительно высокие температуры кипения (табл. 19.11).

Таблица 19.11. Температуры кипения уксусной кислоты и спиртов с близкими значениями относительной молекулярной массы

Лабораторные методы получения

Монокарбоновые кислоты можно получать из первичных спиртов и альдегидов окислением с помощью подкисленного раствора бихромата калия, взятого в избыточном количестве:

Монокарбоновые кислоты и их соли можно получать гидролизом нитрилов либо амидов:

Получение карбоновых кислот по реакции с реактивами Гриньяра и диоксидом углерода описано в разд. 19.1.

Бензойную кислоту можно получить окислением метильной боковой цепи метилбензола (см. разд. 18.2).

Кроме того, бензойную кислоту можно получить из бензальдегида с помощью реакции Каннищаро. В этой реакции бензальдегид обрабатывают 40-60%-ным раствором гидроксида натрия при комнатной температуре. Одновременное окисление и восстановление приводит к образованию бензойной кислоты и соответственно фенил-метанола:

Окисление

Реакция Канниццаро характерна для альдегидов, не имеющих -атомов водорода. Так называются атомы водорода, присоединенные к атому углерода, соседнему с альдегидной группой:

Поскольку метаналь не имеет -атомов водорода, он может вступать в реакцию Канниццаро. Альдегиды, содержащие по крайней мере один -атом водорода, в присутствии раствора гидроксида натрия подвергаются кислотнокатализируемой альдольной конденсации (см. выше).

Химические свойства

Хотя карбоксильная группа содержит карбонильную группу, карбоновые кислоты не вступают в некоторые реакции, характерные для альдегидов и кетонов. Например, они не вступают в реакции присоединения или конденсации. Это объясняется тем, что атом

углерода в карбоксильной группе имеет меньший положительный заряд, чем в альдегидной или кетогруппе.

Кислотность. Оттягивание электронной плотности от карбоксильного атома водорода ослабляет связь О-Н. Вследствие этого карбоксильная группа способна отщеплять (терять) протон. Поэтому монокарбоновые кислоты ведут себя как одноосновные кислоты. В водных растворах этих кислот устанавливается следующее равновесие:

Карбоксилат-ион может рассматриваться как гибрид двух резонансных структур:

Иначе его можно представлять себе как

Делокализация электрона между атомами карбоксилатной группы стабилизирует карбоксилат-ион. Поэтому карбоновые кислоты обладают намного большей кислотностью, чем спирты. Тем не менее из-за ковалентного характера молекул карбоновых кислот указанное выше равновесие сильно сдвинуто влево. Таким образом, карбоновые кислоты - это слабые кислоты. Например, этановая (уксусная) кислота характеризуется константой кислотности

Заместители, присутствующие в молекуле карбоновой кислоты, сильно влияют на ее кислотность вследствие оказываемого ими индуктивного эффекта. Такие заместители, как хлор, оттягивают на себя электронную плотность и, следовательно, вызывают отрицательный индуктивный эффект Оттягивание электронной плотности от карбоксильного атома водорода приводит к повышению кислотности карбоновой кислоты. В отличие от этого такие заместители, как алкильные группы, обладают электронодонорными свойствами и создают положительный индуктивный эффект, Они ослабляют карбоновую кислоту:

Влияние заместителей на кислотность карбоновых кислот наглядно проявляется в значениях для ряда кислот, указанных в табл. 19.12.

Таблица 19.12. Значения карбоновых кислот

Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот. Они вступают в реакции с реакционноспособными металлами, основаниями, щелочами, карбонатами и гидрокарбонатами, образуя соответствующие соли (табл. 19.13). Реакции, указанные в этой таблице, характерны и для растворимых и нерастворимых карбоновых кислот.

Подобно другим солям слабых кислот, карбоксилатные соли (соли карбоновых кислот) реагируют с минеральными кислотами, взятыми в избыточном количестве, образуя исходные карбоновые кислоты. Например, при добавлении раствора гидроксида натрия к взвеси нерастворимой бензойной кислоты в воде происходит растворение кислоты вследствие образования бензоата натрия. Если затем к полученному раствору добавить серную кислоту, происходит осаждение бензойной кислоты:

Таблица 19.13. Образование солей из карбоновых кислот

Этерификация. При нагревании смеси карбоновой кислоты со спиртом в присутствии концентрированной минеральной кислоты происходит образование сложного эфира. Такой процесс, называемый этерификацией, требует расщепления молекул спирта. При этом существуют две возможности.

1. Алкоксиводородное расщепление. В данном случае спиртовый атом кислорода (из гидроксильной группы) попадает в молекулу образующегося эфира:

2. Алкилгидроксилъное расщепление. При расщеплении такого типа спиртовый атом кислорода попадает в молекулу воды:

Какой из этих случаев реализуется конкретно, можно определить экспериментально, проводя этерификацию с использованием спирта, содержащего изотоп 180 (см. разд. 1.3), т.е. с использованием изотопной метки. Определение относительной молекулярной массы образующегося эфира с помощью масс-спектрометрии показывает, присутствует ли в нем изотопная метка-кислород-18. Таким способом обнаружено, что этерификация с участием первичных спиртов приводит к образованию меченых сложных эфиров:

Это показывает, что молекула метанола в ходе рассматриваемой реакции подвергается метокси-водородному расщеплению.

Галогенирование. Карбоновые кислоты реагируют с пентахлоридом фосфора и оксид-дихлоридом серы, образуя хлорангидриды соответствующих кислот. Например

И бензоилхлорид, и оксид-трихлорид фосфора представляют собой жидкости, которые необходимо отделить друг от друга. Поэтому для хлорирования карбоновых кислот удобнее использовать оксид-дихлорид серы: это позволяет легко удалить газообразные хлороводород и диоксид серы из жидкого хлорангидрида карбоновой кислоты:

При продувании хлора через кипящую уксусную кислоту в присутствии таких катализаторов, как красный фосфор либо иод, и под действием солнечного света

образуется монохлороэтановая (монохлороуксусная) кислота:

Дальнейшее хлорирование приводит к образованию дизамешенного и тризамещенного продуктов:

Восстановление. При взаимодействии с лития в сухом диэтиловом эфире карбоновые кислоты могут восстанавливаться до соответствующих спиртов. Сначала образуется алкоксидное промежуточное соединение, гидролиз которого приводит к образованию спирта:

Карбоновые кислоты не восстанавливаются многими обычными восстановителями. Эти кислоты не могут восстанавливаться сразу до соответствующих альдегидов.

Окисление. За исключением метановой (муравьиной) и этановой (уксусной) кислот, остальные карбоновые кислоты окисляются с трудом. Муравьиная кислота и ее соли (формиаты) окисляются перманганатом калия. Муравьиная кислота способна восстанавливать реактив Фелинга и при нагревании в смеси с водно-аммиачным раствором нитрата серебра образует «серебряное зеркало». При окислении муравьиной кислоты образуются диоксид углерода и вода:

Этандиовая (щавелевая) кислота тоже окисляется перманганатом калия, образуя диоксид углерода и воду:

Дегидратация. Перегонка карбоновой кислоты с каким-либо обезвоживателем, например оксидом приводит к отщеплению молекулы воды от двух молекул кислоты и образованию ангидрида карбоновой кислоты:

Муравьиная и щавелевая кислоты оказываются исключениями и в этом случае. Дегидратация муравьиной кислоты или ее калиевой либо натриевой соли с помощью концентрированной серной кислоты приводит к образованию моноксида углерода и

Дегидратация метаноата (формиата) натрия концентрированной серной кислотой представляет собой обычный лабораторный способ получения моноксида углерода. Дегидратация щавелевой кислоты горячей концентрированной серной кислотой приводит к образованию смеси моноксида углерода и диоксида углерода:

Карбоксилаты

Натриевые и калиевые соли карбоновых кислот представляют собой кристаллические вещества белого цвета. Они легко растворяются в воде, образуя сильные электролиты.

Электролиз натриевых или калиевых карбоксилатных солей, растворенных в водно-метанольной смеси, приводит к образованию алканов и диоксида углерода на аноде и водорода на катоде.

На аноде:

На катоде:

Такой метод получения алканов называется электрохимическим синтезом Кольбе.

Образование алканов происходит и при нагревании смеси карбоксилатов натрия или калия с гидроксидом натрия либо натронной известью. (Натронная известь - это смесь гидроксида натрия с гидроксидом кальция.) Такой способ используется, например, для получения метана в лабораторных условиях:

Ароматические карбоксилаты натрия или калия в аналогичных условиях образуют арены:

При нагревании смеси карбоксилатов натрия с хлорангидридами образуются ангидриды соответствующих карбоновых кислот:

Карбоксилаты кальция тоже представляют собой кристаллические вещества белого цвета и, как правило, растворимы в воде. При их нагревании происходит образование

ние с низким выходом соответствующих кетонов:

При нагревании смеси карбоксилатов кальция с формиатом кальция образуется альдегид:

Аммониевые соли карбоновых кислот тоже представляют собой белые кристаллические вещества, растворимые в воде. При сильном нагревании они образуют соответствующие амиды:

Карбоновыми кислотами называются производные углеводородов, в молекуле которых содержится одна или несколько карбоксильных групп

Общая формула предельных одноосновных карбоновых кислот: С n H 2n O 2

Классификация карбоновых кислот.

1. По числу карбоксильных групп:

Одноосновные (монокарбоновые)

Многоосновные (дикарбоновые, трикарбоновые и т.д.).

    По характеру углеводородного радикала:

Предельные CH 3 -CH 2 -CH 2 -COOH ; бутановая кислота.

Непредельные CH 2 =CH-CH 2 -COOH ; бутен-3-овая кислота.

Ароматические

пара-метилбензойная кислота

Названия карбоновых кислот.

Название

её соли и

муравьиная

метановая

уксусная

этановая

пропионовая

пропановая

пропионат

масляная

бутановая

CH 3 (CH 2) 2 COOH

валериановая

пентановая

CH 3 (CH 2) 3 COOH

капроновая

гексановая

гексанат

CH 3 (CH 2) 4 COOH

пальмитиновая

гексадекановая

пальмитат

С 15 Н 31 СООН

стеариновая

октадекановая

С 17 Н 35 СООН

акриловая

пропеновая

олеиновая

СН 3 (СН 2) 7 СН=СН(СН 2) 7 СООН

бензойная

бензойная

щавелевая

этандиовая

НООС - COOH

ИЗОМЕРИЯ КАРБОНОВЫХ КИСЛОТ.

1. Изомерия углеродной цепи. Начинается с бутановой кислоты (С 3 Н 7 СООН ) , которая существует в виде двух изомеров: масляной (бутановой) и изомасляной (2-метилпропановой) кислот.

2. Изомерия положения кратной связи в непредельных кислотах, например:

СН 2 =СН-СН 2 -СООН СН 3 -СН=СН-СООН

Бутен-3-овая кислота Бутен-2-овая кислота

(винилуксусная кислота) (кротоновая кислота)

3. Цис-, транс-изомерия в непредельных кислотах, например:

4. Межклассовая изомерия : Карбоновые кислоты изомерны сложным эфирам:

Уксусная кислота СН 3 -СООН и метилформиат Н-СООСН 3

5. Изомерия положения функциональных групп у гетерофункционалъных кислот.

Например, существуют три изомера хлормасляной кислоты: 2-хлорбутановая, 3-хлорбутановая и 4-хлорбутановая.

Строение карбоксильной группы.

Карбоксильная группа сочетает в себе две функциональные группы – карбонил и гидроксил, взаимно влияющие друг на друга

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризацией связи О–Н. В водном растворе карбоновые кислоты диссоциируют на ионы:

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей. С увеличением молекулярной массы растворимость кислот в воде уменьшается.

ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ – в них гидроксогруппа замещена на некоторые другие группы. Все они при гидролизе образуют карбоновые кислоты.

Сложные эфиры

Галогенангидриды

Ангидриды

ПОЛУЧЕНИЕ КАРБОНОВЫХ КИСЛОТ.

1. Окисление спиртов в жестких условиях – раствором перманганата или дихромата калия в кислой среде при нагревании.

2.Окисление альдегидов : раствором перманганата или дихромата калия в кислой среде при нагревании, реакцией серебряного зеркала, гидроксидом меди при нагревании.

3. Щелочной гидролиз трихлоридов :

R-CCl 3 + 3NaOH  + 3NaCl

неустойчивое вещество

 RCOOH + H 2 O

4. Гидролиз сложных эфиров.

R-COOR 1 + KOH  RCOOK + R 1 OH

RCOOK + HCl  R-COOH + KCl

5. Гидролиз нитрилов, ангидридов, солей.

1)нитрил: R-CN + 2H 2 O –(H +) RCOOH

2)ангидрид: (R-COO) 2 O + H 2 O  2RCOOH

3)натриевая соль: R-COONa+HClR-COOH + NaCl

6. Взаимодействие реактива Гриньяра с СО 2 :

R-MgBr + CO 2  R-COO-MgBr

R-COO-MgBr -(+H 2 O) R-COOH +Mg(OH)Br

7. Муравьиную кислоту получают нагреванием оксида углерода (II) с гидроксидом натрия под давлением:

NaOH + CO –(200 o C,p) HCOONa

2HCOONa+ H 2 SO 4 2HCOOH + Na 2 SO 4

8. Уксусную кислоту получают каталитическим окислением бутана :

2C 4 H 10 + 5O 2  4CH 3 -COOH + 2H 2 O

9. Для получения бензойной кислоты можно использовать окисление монозамещенных гомологов бензола кислым раствором перманганата калия:

5C 6 H 5 –CH 3 +6KMnO 4 +9H 2 SO 4 5C 6 H 5 -COOH+3K 2 SO 4 + MnSO 4 + 14H 2 O

ХИМИЧЕСКИЕ СВОЙСТВА КАРБОНОВЫХ КИСЛОТ.

Химические соединения, основу которых составляет одна и более групп СООН, получили определение карбоновые кислоты.

В основу соединений входит группа СООН, имеющая два составляющих — карбонил и гидроксил. Группу атомов СООН называют карбоксильной группой (карбоксилом). Взаимодействие элементов обеспечивается сочетанием двух атомов кислорода и атома углерода.

Одноклассники

Строение карбоновых кислот

Углеводородный радикал в одноосновных предельных кислотах соединяется с одной группой СООН. Общая формула карбоновых кислот выглядит так: R-COOH.

Строение карбоновой группы влияет на химические свойства.

Номенклатура

В названии карбоновых соединений сначала нумеруют атом углерода группы COOH. Количество карбоксильных групп обозначают приставками ди-; три-; тетра-.

Например,СН3-СН2-СООН — формула пропановой кислоты.

У карбоновых соединений существуют и привычные слуху названия: муравьиная, уксусная, лимонная…Все это названия карбоновых кислот.

Названия солей карбоновых соединений получаются из названий углеводорода с добавлением суффикса «-оат» (СООК)2- этандиот калия.

Классификация карбоновых кислот

Карбоновые кислоты классификация .

По характеру углеводорода:

  • предельные;
  • непредельные;
  • ароматические.

По количеству групп СООН бывают:

  • одноосновные (уксусная кислота);
  • двуосновные (щавелевая кислота);
  • многоосновные (лимонная кислота).

Предельные карбоновые кислоты — соединения, в которых радикал соединен с одним карбонилом.

Классификация карбоновых кислот разделяет их еще и по строению радикала, с которым связан карбонил. По этому признаку соединения бывают алифатические и алициклические.

Физические свойства

Рассмотрим карбоновые кислоты физические свойства.

Карбоновые соединения имеют различное число атомов углерода. В зависимости от этого числа физические свойства этих соединений различаются.

Соединения, имеющие в составе от одного до трех углеродных атомов, считаются низшими. Это жидкости без цвета с резким запахом. Низшие соединения с легкостью растворяются в воде.

Соединения, имеющие в составе от четырех до девяти углеродных атомов — маслянистые жидкости, имеющие неприятный запах.

Соединения, имеющие в составе более девяти углеродных атомов, считаются высшими и физические свойства этих соединений таковы: они являются твердыми веществами , их невозможно растворить в воде.

Температура кипения и плавления зависит от молекулярной массы вещества. Чем больше молекулярная масса, тем выше температура кипения. Для закипания и плавления нужна более высокая температура, чем спиртам.

Существует несколько способов получения карбоновых кислот .

При химических реакциях проявляются следующие свойства:

Применение карбоновых кислот

Карбоновые соединения распространены в природе.Поэтому их применяют во многих областях: в промышленности (легкой и тяжелой), в медицине и сельском хозяйстве , а также в пищевой промышленности и косметологии.

Ароматические в большом количестве содержатся в ягодах и фруктах.

В медицине используют молочную, винную и аскорбиновую кислоту. Молочную применяют в качестве прижигания, а винную — как легкое слабительное. Аскорбиновая укрепляет иммунитет.

В косметологии используются фруктовые и ароматические. Благодаря им клетки быстрее обновляются. Аромат цитрусовых способен оказать тонизирующее и успокаивающее действие на организм. Бензойная встречается в бальзамах и эфирных маслах, она хорошо растворяется в спирте.

Высокомолекулярные непредельные соединения встречаются в диетологии. Олеиновая в этой области наиболее распространена.

Полиненасыщенные с двойными связями (линолевая и другие) обладают биологической активностью. Их еще называют активными жирными кислотами. Они участвуют в обмене веществ, влияют на зрительную функцию и иммунитет, а также на нервную систему. Отсутствие этих веществ в пище или недостаточное их употребление затормаживает рост животных и оказывает негативное влияние на их репродуктивную функцию.

Сорбиновая получается из ягод рябины. Она является отличным консервантом .

Акриловая имеет едкий запах. Она применяется для получения стекла и синтетических волокон.

На основе реакции этирификации происходит синтез жира, который применяют при изготовлении мыла, а также моющих средств.

Муравьиная используется в медицине , в пчеловодстве, а также в качестве консервантов.

Уксусная — жидкость без цвета с резким запахом; легко смешивается с водой. Ее широко применяют в пищевой промышленности в качестве приправы. Также она используется при консервации. Еще она обладает свойствами растворителя. Поэтому широко применяется в производстве лаков и красок, при крашении. На ее основе изготавливают сырье для борьбы с насекомыми и сорняками.

Стеариновая и пальмитиновая (высшие одноосновные соединения) являются твердыми веществами и не растворяются в воде. Но их соли применяются в производстве мыла. Они делают брикеты мыла твердыми.

Поскольку соединения способны придавать однородность массам, то они широко используются в изготовлении лекарств.

Растения и животные также вырабатывают карбоновые соединения. Поэтому употреблять их внутрь безопасно. Главное, — соблюдать дозировку. Превышение дозы и концентрации ведет к ожогам и отравлениям.

Едкость соединений приносит пользу в металлургии, а также реставраторам и мебельщикам. Смеси на их основе позволяют выравнивать поверхности и очищать ржавчину.

Сложные эфиры, получаемые при реакции этерификации, нашли свое применение в парфюмерии. Они используются также в качестве компонентов лаков и красок, растворителей. А также как аромадобавки.

ОПРЕДЕЛЕНИЕ

Органические вещества, молекулы которых содержат одну или несколько карбоксильных групп, соединенных с углеводородным радикалом, называют карбоновыми кислотами .

Первые три члена гомологического ряда карбоновых кислот, включая пропионовую кислоту, — жидкости, имеющие резкий запах, хорошо растворимые в воде. Следующие гомологи, начиная с масляной кислоты, — также жидкости, обладающие резким неприятным запахом, но плохо растворимые в воде. Высшие кислоты, с числом атомов углерода 10 и более, представляют собой твердые вещества, без запаха, нерастворимые в воде. В целом, в ряду гомологов с увеличением молекулярной массы уменьшается растворимость в воде, уменьшается плотность и возрастает температура кипения (табл. 1).

Таблица 1. Гомологический ряд карбоновых кислот.

Получение карбоновых кислот

Карбоновые кислоты получают окислением предельных углеводородов, спиртов, альдегидов. Например, уксусную кислоту - окислением этанола раствором перманганата калия в кислой среде при нагревании:

Химические свойства карбоновых кислот

Химические свойства карбоновых кислот обусловлены в первую очередь особенностями их строения. Так, растворимые в воде кислоты способны диссоциировать на ионы:

R-COOH↔R-COO — + H + .

Благодаря наличию в воде иона H + они имеют кислый вкус, способны менять окраску индикаторов и проводить электрический ток. В водном растворе эти кислоты - слабые электролиты.

Карбоновые кислоты обладают химическими свойствами, характерными для растворов неорганических кислот, т.е. взаимодействуют с металлами (1), их оксидами (2), гидроксидами (3) и слабыми солями (4):

2CH 3 -COOh + Zn → (CH 3 COO) 2 Zn + H 2 (1);

2CH 3 -COOH + CuO→ (CH 3 COO) 2 Cu + H 2 O (2);

R-COOH + KOH → R-COOK + H 2 O (3);

2CH 3 -COOH + NaHCO 3 → CH 3 COONa + H 2 O + CO 2 (4).

Специфическое свойство предельных, а также непредельных карбоновых кислот, проявляемое за счет функциональной группы, — взаимодействие со спиртами.

Карбоновые кислоты взаимодействуют со спиртами при нагревании и в присутствии концентрированной серной кислоты. Например, если к уксусной кислоте прилить этиловый спирт и немного серной кислоты, то при нагревании появляется запах этилового эфира уксусной кислоты (этилацетата):

CH 3 -COOH + C 2 H 5 OH ↔CH 3 -C(O)-O-C 2 H 5 + H 2 O.

Специфическое свойство предельных карбоновых кислот, проявляемое за счет радикала, — реакция галогенирования (хлорирования).


Применение карбоновых кислот

Карбоновые кислоты служат исходным сырьем для получения кетонов, галогенангидридов, виниловых эфиров и других важных классов органических соединений.

Муравьиная кислота широко применяется для получения сложных эфиров, используемых в парфюмерии, в кожевенном деле (дубление кож), текстильной промышленности (как протрава при крашении), в качестве растворителя и консерванта.

Водный раствор (70-80%-ной) уксусной кислоты называется уксусной эссенцией, а 3-9%-ный водный раствор - столовым уксусом. Эссенция нередко используется для получения уксуса в домашних условиях путем разведения.

Примеры решения задач

ПРИМЕР 1

Задание С помощью каких химических реакций можно осуществить следующие превращения:

а) CH 4 → CH 3 Cl → CH 3 OH → HCHO → HCOOH → HCOOK.

Напишите уравнения реакций, укажите условия их протекания.

Ответ а) Хлорирование метана на свету приводит к получению хлорметана:

CH 4 + Cl 2 →CH 3 Cl + HCl.

Галогенпроизводные алканов подвергаются гидролизу в водной или щелочной среде с образованием спиртов:

CH 3 Cl + NaOH→CH 3 OH + NaCl.

В результате окисления первичных спиртов, например, дихроматом калия в кислой среде в присутствии катализатора (Cu, CuO, Pt, Ag) образуются альдегиды:

CH 3 OH+ [O] →HCHO.

Альдегиды легко окисляются до соответствующих карбоновых кислот, например, перманганатом калия:

HCHO + [O] →HCOOH.

Карбоновые кислоты, проявляют все свойства, присущие слабым минеральным кислотам, т.е. способны взаимодействовать с активными металлами с образованием солей:

2HCOOH+ 2K→2HCOOK + H 2 .

ПРИМЕР 2

Задание Напишите уравнения реакций между следующими веществами: а) 2-метилпропановой кислотой и хлором; б) уксусной кислотой и пропанолом-2; в) акриловой кислотой и бромной водой; г) 2-метилбутановой кислотой и хлоридом фосфора (V). Укажите условия протекания реакций.
Ответ а) в результате реакции взаимодействия между 2-метилпропановой кислотой и хлором происходит замещение атома водорода в углеводородном радикале, находящемся в a-положение; образуется 2-метил-2-хлорпропановая кислота

H 3 C-C(CH 3)H-COOH + Cl 2 → H 3 C-C(CH 3)Cl-COOH + HCl (kat = P).

б) в результате реакции взаимодействия между уксусной кислотой и пропанолом-2 происходит образование сложного эфира - изопропиловый эфир уксусной кислоты.

CH 3 -COOH + CH 3 -C(OH)H-CH 3 → CH 3 -C(O)-O-C(CH 3)-CH 3 .

в) в результате реакции взаимодействия между акриловой кислотой и бромной водой присоединение галогена по месту двойной связи в соответствии с правилом Марковникова; образуется 2,3-дибромпропановая кислота

CH 2 =CH-COOH + Br 2 → CH 2 Br-CHBr-COOH

г) в результате реакции взаимодействия между 2-метилбутановой кислотой и хлоридом фосфора (V) образуется соответствующий хлорангидрид

CH 3 -CH 2 -C(CH 3)H-COOH + PCl 5 →CH 3 -CH 2 -C(CH 3)H-COOCl + POCl 3 + HCl.