Информационная поддержка школьников и студентов
Поиск по сайту

Скачать презентацию показательная функция. Презентация "показательная функция, ее свойства и график". Изучение новой темы


Показательная функция. Функция вида у=а х,где а-заданное число, а>0, а 1, х- переменная, называется показательной. 0, а 1, х- переменная, называется показательной."> 0, а 1, х- переменная, называется показательной."> 0, а 1, х- переменная, называется показательной." title="Показательная функция. Функция вида у=а х,где а-заданное число, а>0, а 1, х- переменная, называется показательной."> title="Показательная функция. Функция вида у=а х,где а-заданное число, а>0, а 1, х- переменная, называется показательной.">


Показательная функция обладает следующими свойствами: 1.Д(у): множество R всех действительных чисел; 2.Е(у):множество всех положительных чисел; 3. Показательная функция у=а х является возрастающей на множестве всех действительных чисел,если а>1,и убывающей,если 0 1,и убы"> 1,и убывающей,если 0"> 1,и убы" title="Показательная функция обладает следующими свойствами: 1.Д(у): множество R всех действительных чисел; 2.Е(у):множество всех положительных чисел; 3. Показательная функция у=а х является возрастающей на множестве всех действительных чисел,если а>1,и убы"> title="Показательная функция обладает следующими свойствами: 1.Д(у): множество R всех действительных чисел; 2.Е(у):множество всех положительных чисел; 3. Показательная функция у=а х является возрастающей на множестве всех действительных чисел,если а>1,и убы">


1 Д(у): х є R Е(у): у >0 Возрастает на всей области определения. 2. График функции у= также проходит через точку (0;1) и расположен выше ос" title="Графики функции у=2 х и у=(½) х 1. График функции у=2 х проходит через точку (0;1) и расположен выше оси Ох. а>1 Д(у): х є R Е(у): у >0 Возрастает на всей области определения. 2. График функции у= также проходит через точку (0;1) и расположен выше ос" class="link_thumb"> 6 Графики функции у=2 х и у=(½) х 1. График функции у=2 х проходит через точку (0;1) и расположен выше оси Ох. а>1 Д(у): х є R Е(у): у >0 Возрастает на всей области определения. 2. График функции у= также проходит через точку (0;1) и расположен выше оси Ох. 0 1 Д(у): х є R Е(у): у >0 Возрастает на всей области определения. 2. График функции у= также проходит через точку (0;1) и расположен выше ос"> 1 Д(у): х є R Е(у): у >0 Возрастает на всей области определения. 2. График функции у= также проходит через точку (0;1) и расположен выше оси Ох. 0"> 1 Д(у): х є R Е(у): у >0 Возрастает на всей области определения. 2. График функции у= также проходит через точку (0;1) и расположен выше ос" title="Графики функции у=2 х и у=(½) х 1. График функции у=2 х проходит через точку (0;1) и расположен выше оси Ох. а>1 Д(у): х є R Е(у): у >0 Возрастает на всей области определения. 2. График функции у= также проходит через точку (0;1) и расположен выше ос"> title="Графики функции у=2 х и у=(½) х 1. График функции у=2 х проходит через точку (0;1) и расположен выше оси Ох. а>1 Д(у): х є R Е(у): у >0 Возрастает на всей области определения. 2. График функции у= также проходит через точку (0;1) и расположен выше ос">


Показательные уравнения. Уравнения,у которых неизвестное находится в показателе степени, называются показательными. Способы решения: 1. По свойству степени; 2. Вынесение общего множителя за скобки; 3. Деление обеих частей уравнения на одно и то же выражение,принимающее значение отличное от нуля при всех действительных значениях х; 4. Способ группировки; 5. Сведение уравнения к квадратному; 6.Графический.. Например:


1; б) 13 х+1 0,7; г) 0,04 х а в и" title="Используя свойства возрастания и убывания показательной функции, можно сравнить числа и решать показательные неравенства. 1.Сравнить: а) 5 3 и 5 5 ; б) 4 7 и 4 3 ; в) 0,2 2 и 0,2 6 ; г) 0,9 2 и 0,9. 2.Решить: а) 2 х >1; б) 13 х+1 0,7; г) 0,04 х а в и" class="link_thumb"> 8 Используя свойства возрастания и убывания показательной функции, можно сравнить числа и решать показательные неравенства. 1.Сравнить: а) 5 3 и 5 5 ; б) 4 7 и 4 3 ; в) 0,2 2 и 0,2 6 ; г) 0,9 2 и 0,9. 2.Решить: а) 2 х >1; б) 13 х+1 0,7; г) 0,04 х а в или а х 1, то х>в (х 1; б) 13 х+1 0,7; г) 0,04 х а в и"> 1; б) 13 х+1 0,7; г) 0,04 х а в или а х 1, то х>в (х"> 1; б) 13 х+1 0,7; г) 0,04 х а в и" title="Используя свойства возрастания и убывания показательной функции, можно сравнить числа и решать показательные неравенства. 1.Сравнить: а) 5 3 и 5 5 ; б) 4 7 и 4 3 ; в) 0,2 2 и 0,2 6 ; г) 0,9 2 и 0,9. 2.Решить: а) 2 х >1; б) 13 х+1 0,7; г) 0,04 х а в и"> title="Используя свойства возрастания и убывания показательной функции, можно сравнить числа и решать показательные неравенства. 1.Сравнить: а) 5 3 и 5 5 ; б) 4 7 и 4 3 ; в) 0,2 2 и 0,2 6 ; г) 0,9 2 и 0,9. 2.Решить: а) 2 х >1; б) 13 х+1 0,7; г) 0,04 х а в и">


Способы решения показательных неравенств. 1. По свойству степени; 2. Вынесение общего множителя за скобки; 3. Сведение к квадратному; 4. Графический. Некоторые показательные неравенства заменой а х =t сводятся к квадратным неравенствам,которые решают,учитывая,что t>0. х у 0. х у">






Где a-заданное число, а>о, График функции,х N состоит из точек с абсциссами 1,2,3…, лежащие на некоторой кривой,- её называют Экспонентой о, График функции,х N состоит из точек с абсциссами 1,2,3…, лежащие на некоторой кривой,- её называют Экспонентой"> о, График функции,х N состоит из точек с абсциссами 1,2,3…, лежащие на некоторой кривой,- её называют Экспонентой"> о, График функции,х N состоит из точек с абсциссами 1,2,3…, лежащие на некоторой кривой,- её называют Экспонентой" title="Где a-заданное число, а>о, График функции,х N состоит из точек с абсциссами 1,2,3…, лежащие на некоторой кривой,- её называют Экспонентой"> title="Где a-заданное число, а>о, График функции,х N состоит из точек с абсциссами 1,2,3…, лежащие на некоторой кривой,- её называют Экспонентой">






Наглядный бытовой пример! Все, наверное, замечали, что если снять кипящий чайник с огня, то сначала он быстро остывает, а потом остывание идет гораздо медленнее. Дело в том, что скорость остывания пропорциональна разности между температурой чайника и температурой окружающей среды. Чем меньше становится эта разность, тем медленнее остывает чайник. Если сначала температура чайника равнялась То, а температура воздуха T1, то через t секунд температура Т чайника выразится формулой: Все, наверное, замечали, что если снять кипящий чайник с огня, то сначала он быстро остывает, а потом остывание идет гораздо медленнее. Дело в том, что скорость остывания пропорциональна разности между температурой чайника и температурой окружающей среды. Чем меньше становится эта разность, тем медленнее остывает чайник. Если сначала температура чайника равнялась То, а температура воздуха T1, то через t секунд температура Т чайника выразится формулой: T=(T1-T0)e-kt+T1, T=(T1-T0)e-kt+T1, где k - число, зависящее от формы чайника, материала, из которого он сделан, и количества воды, которое в нем находится. где k - число, зависящее от формы чайника, материала, из которого он сделан, и количества воды, которое в нем находится.


При падении тел в безвоздушном пространстве скорость их непрерывно возрастает. При падении тел в воздухе скорость падения тоже увеличивается, но не может превзойти определенной величины. При падении тел в воздухе скорость падения тоже увеличивается, но не может превзойти определенной величины.


Рассмотрим задачу о падении парашютиста. Если считать, что сила сопротивления воздуха пропорциональна скорости падения парашютиста, т.е. что F=kv, то через t секунд скорость падения будет равна: v=mg/k(1-e-kt/m), где m - масса парашютиста. Через некоторый промежуток времени е-kt/m станет очень маленьким числом, и падение станет почти равномерным. Коэффициент пропорциональности k зависит от размеров парашюта. Данная формула пригодна не только для изучения падения парашютиста, но и для изучения падения капли дождевой воды, пушинки и т.д. Рассмотрим задачу о падении парашютиста. Если считать, что сила сопротивления воздуха пропорциональна скорости падения парашютиста, т.е. что F=kv, то через t секунд скорость падения будет равна: v=mg/k(1-e-kt/m), где m - масса парашютиста. Через некоторый промежуток времени е-kt/m станет очень маленьким числом, и падение станет почти равномерным. Коэффициент пропорциональности k зависит от размеров парашюта. Данная формула пригодна не только для изучения падения парашютиста, но и для изучения падения капли дождевой воды, пушинки и т.д.


Много трудных математических задач приходится решать в теории межпланетных путешествий. Одной из них является задача об определении массы топлива, необходимого для того, чтобы придать ракете нужную скорость v. Эта масса М зависит от массы m самой ракеты (без топлива) и от скорости v0, с которой продукты горения вытекают из ракетного двигателя. Много трудных математических задач приходится решать в теории межпланетных путешествий. Одной из них является задача об определении массы топлива, необходимого для того, чтобы придать ракете нужную скорость v. Эта масса М зависит от массы m самой ракеты (без топлива) и от скорости v0, с которой продукты горения вытекают из ракетного двигателя.


Если не учитывать сопротивление воздуха и притяжение Земли, то масса топлива определиться формулой: M=m(ev/v0-1) (формула К.Э.Циалковского). Например, для того чтобы ракете с массой 1,5 т придать скорость 8000 м/с, надо при скорости истечения газов 2000 м/с взять примерно 80 т топлива. Если не учитывать сопротивление воздуха и притяжение Земли, то масса топлива определиться формулой: M=m(ev/v0-1) (формула К.Э.Циалковского). Например, для того чтобы ракете с массой 1,5 т придать скорость 8000 м/с, надо при скорости истечения газов 2000 м/с взять примерно 80 т топлива.


Если при колебаниях маятника, гири, качающейся на пружине, не пренебрегать сопротивлением воздуха, то амплитуда колебаний становится все меньше, колебания затухают. Отклонения точки, совершающей затухающие колебания, выражается формулой: s=Ae-ktsin(?t+?). Так как множитель е-kt уменьшается с течением времени, то размах колебаний становится все меньше и меньше. Если при колебаниях маятника, гири, качающейся на пружине, не пренебрегать сопротивлением воздуха, то амплитуда колебаний становится все меньше, колебания затухают. Отклонения точки, совершающей затухающие колебания, выражается формулой: s=Ae-ktsin(?t+?). Так как множитель е-kt уменьшается с течением времени, то размах колебаний становится все меньше и меньше.


Когда радиоактивное вещество распадется, его количество уменьшается. Через некоторое время остается половина первоначального количества вещества. Этот промежуток времени to называется периодом полураспада. Вообще через t лет масса m вещества будет равна: m=m0(1/2)t/t0, где m0 - первоначальная масса вещества. Чем больше период полураспада, тем медленнее распадается вещество. Когда радиоактивное вещество распадется, его количество уменьшается. Через некоторое время остается половина первоначального количества вещества. Этот промежуток времени to называется периодом полураспада. Вообще через t лет масса m вещества будет равна: m=m0(1/2)t/t0, где m0 - первоначальная масса вещества. Чем больше период полураспада, тем медленнее распадается вещество. Явление радиоактивного распада используется для определения возраста археологических находок, например, определен примерный возраст Земли, около 5,5 млрд. лет, для поддержания эталона времени. Явление радиоактивного распада используется для определения возраста археологических находок, например, определен примерный возраст Земли, около 5,5 млрд. лет, для поддержания эталона времени.


Задача: Период полураспада плутония равен 140 суткам. Сколько плутония останется через 10 лет, если его начальная масса равна 8 г? m = ? Ответ: 1, (г).
Вот некоторые из Нобелевских лауреатов, получивших премию за исследования в области физики с использованием показательной функции: Вот некоторые из Нобелевских лауреатов, получивших премию за исследования в области физики с использованием показательной функции: Пьер Кюри г. Пьер Кюри г. Ричардсон Оуэн г. Ричардсон Оуэн г. Игорь Тамм г. Игорь Тамм г. Альварес Луис г. Альварес Луис г. Альфвен Ханнес г. Альфвен Ханнес г. Вильсон Роберт Вудро г. Вильсон Роберт Вудро г.


Она не перестаёт нас удивлять! Показательная функция также используется при решении некоторых задач судовождения, например, функцию е-x используют в задачах, требующих применения биноминального закона (повторение опытов), закона Пуассона (редких событий), закона Релея (длина случайного вектора). Показательная функция также используется при решении некоторых задач судовождения, например, функцию е-x используют в задачах, требующих применения биноминального закона (повторение опытов), закона Пуассона (редких событий), закона Релея (длина случайного вектора). Применение логарифмической функции в биологии. В питательной среде бактерия кишечной палочки делится каждую минуту. Понятно, что общее число бактерий за каждую минуту удваивается. Если в начале процесса была одна бактерия, то через х минут их число (N) станет равной 2 х, т.е. N(х) = 2 х.









Основные свойства а>10 10"> 10"> 10" title="Основные свойства а>10"> title="Основные свойства а>10">


График функции Кривая называется экспонентой а>1 0 1 0"> 1 0"> 1 0" title="График функции Кривая называется экспонентой а>1 0"> title="График функции Кривая называется экспонентой а>1 0">


Геометрическая особенность графика функции Ось Ох является горизонтальной асимптотой графика функции при х -, если а >1 при х -, если а >1 при х +, если 0 1 при х -, если а >1 при х +, если 0"> 1 при х -, если а >1 при х +, если 0"> 1 при х -, если а >1 при х +, если 0" title="Геометрическая особенность графика функции Ось Ох является горизонтальной асимптотой графика функции при х -, если а >1 при х -, если а >1 при х +, если 0"> title="Геометрическая особенность графика функции Ось Ох является горизонтальной асимптотой графика функции при х -, если а >1 при х -, если а >1 при х +, если 0">


Показательными уравнениями называют уравнения вида а>0,а1, и уравнения, сводящиеся к этому виду 0,а1, и уравнения, сводящиеся к этому виду"> 0,а1, и уравнения, сводящиеся к этому виду"> 0,а1, и уравнения, сводящиеся к этому виду" title="Показательными уравнениями называют уравнения вида а>0,а1, и уравнения, сводящиеся к этому виду"> title="Показательными уравнениями называют уравнения вида а>0,а1, и уравнения, сводящиеся к этому виду">


Основные методы решения показательных уравнений Функционально-графический Функционально-графический Основан на использовании графический иллюстраций или каких- либо свойств функции. Метод уравнивания показателей Метод уравнивания показателей Основан на применении теоремы: Уравнение равносильно уравнению f(x)=g(x), где а>0,а1. Метод введения новой переменной Метод введения новой переменной 0,а1. Метод введения новой переменной Метод введения новой переменной">


0,а1, и неравенства, сводящиеся к этому виду. Теорема: Показательное неравенство равносильно неравенству f(x)>g(x), если а >1 ; Показательное неравенство равносильно н" title="Показательные неравенства Показательными неравенствами называют неравенства вида а>0,а1, и неравенства, сводящиеся к этому виду. Теорема: Показательное неравенство равносильно неравенству f(x)>g(x), если а >1 ; Показательное неравенство равносильно н" class="link_thumb"> 8 Показательные неравенства Показательными неравенствами называют неравенства вида а>0,а1, и неравенства, сводящиеся к этому виду. Теорема: Показательное неравенство равносильно неравенству f(x)>g(x), если а >1 ; Показательное неравенство равносильно неравенству f(x) 0,а1, и неравенства, сводящиеся к этому виду. Теорема: Показательное неравенство равносильно неравенству f(x)>g(x), если а >1 ; Показательное неравенство равносильно н"> 0,а1, и неравенства, сводящиеся к этому виду. Теорема: Показательное неравенство равносильно неравенству f(x)>g(x), если а >1 ; Показательное неравенство равносильно неравенству f(x) "> 0,а1, и неравенства, сводящиеся к этому виду. Теорема: Показательное неравенство равносильно неравенству f(x)>g(x), если а >1 ; Показательное неравенство равносильно н" title="Показательные неравенства Показательными неравенствами называют неравенства вида а>0,а1, и неравенства, сводящиеся к этому виду. Теорема: Показательное неравенство равносильно неравенству f(x)>g(x), если а >1 ; Показательное неравенство равносильно н"> title="Показательные неравенства Показательными неравенствами называют неравенства вида а>0,а1, и неравенства, сводящиеся к этому виду. Теорема: Показательное неравенство равносильно неравенству f(x)>g(x), если а >1 ; Показательное неравенство равносильно н">

Данная презентация предназначена для повторения темы «Показательная функция» в 10 классе. Она содержит как теоретические сведения по данной теме, так и разноуровневые практические задания. Разработка состоит из трёх блоков:

  1. Рассмотрение основных свойств показательной функции.
  2. Решение показательных уравнений.
  3. Решение показательных неравенств.

В презентации показаны различные способы решения показательных уравнений и неравенств. Данную разработку можно использовать не только при объяснении отдельных тем, но и при подготовке к экзамену.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

«Показательная функция» Учитель математики МАОУ лицей №3 города Кропоткин Краснодарского края Зозуля Елена Алексеевна

Определение Показательная функция – это функция вида, где x – переменная, - заданное число, >0,  1. Примеры:

Свойства показательной функции Область определения: все действительные числа Множество значений: все положительные числа При > 1 функция возрастающая; при 0

График показательной функции Т.к. , то график любой показательной функции проходит через точку (0; 1) 1 1 х х у у 0 0

Показательные уравнения Определение Простейшие уравнения Способы решения сложных уравнений

Определение Уравнение, в котором переменная содержится в показателе степени, называется показательным. Примеры:

Простейшее показательное уравнение – это уравнение вида Простейшее показательное уравнение решается с использованием свойств степени.

Способы решения сложных показательных уравнений. Вынесение за скобки степени с меньшим показателем Замена переменной Деление на показательную функцию

Вынесение за скобки степени с меньшим показателем Данный способ используется, если соблюдаются два условия: 1) основания степеней одинаковы; 2) коэффициенты перед переменной одинаковы Например:

Замена переменной При данном способе показательное уравнение сводится к квадратному. Способ замены переменной используют, если показатель одной из степеней в 2 раза больше, чем у другой. Например: 3 2 x – 4 · 3 х – 45 = 0 коэффициенты перед переменной противоположны. Н апример: 2 2 - х – 2 х – 1 =1 б) а) основания степеней одинаковы;

Деление на показательную функцию Данный способ используется, если основания степеней разные. а) в уравнении вида a x = b x делим на b x Например: 2 х = 5 х | : 5 x б) в уравнении A a 2 x + B (ab) x + C b 2 x = 0 делим на b 2x . Например: 3  25 х - 8  15 х + 5  9 х = 0 | : 9 x

Показательные неравенства Определение Простейшие неравенства Решение неравенств

Определение Показательные неравенства – это неравенства, в которых неизвестное содержится в показателе степени. Примеры:

Простейшие показательные неравенства – это неравенства вида: где a > 0, a  1, b – любое число.

При решении простейших неравенств используют свойства возрастания или убывания показательной функции. Для решения более сложных показательных неравенств используются те же способы, что и при решении показательных уравнений.

Показательная функция Построение графика Сравнение чисел с использованием свойств показательной функции Сравнение числа с 1 а) аналитический способ; б) графический способ.

Задача 1 Построить график функции y = 2 x x y -1 8 7 6 5 4 3 2 1 - 3 - 2 -1 0 1 2 3 х у 3 8 2 4 1 2 0 1

Задача 2 Сравнить числа Решение Ответ:

Задача 3 Сравнить число с 1. Решение -5

Задача 4 C равнить число р с 1 р = 2 > 1 , то функция у = 2 t – возрастающая. 0 1. Ответ: > 1 р =

Решение показательных уравнений Простейшие показательные уравнения Уравнения, решаемые вынесением за скобки степени с меньшим показателем Уравнения, решаемые заменой переменной случай 1; случай 2. Уравнения, решаемые делением на показательную функцию случай 1; случай 2.

Простейшие показательные уравнения Ответ: - 5,5 . Ответ: 0; 3.

Вынесение за скобки степени с меньшим показателем Ответ: 5 x + 1 - (x - 2) = = x + 1 – x + 2 = 3

Замена переменной (1) основания степеней одинаковы, показатель одной из степеней в 2 раза больше, чем у другой. 3 2 x – 4 · 3 х – 45 = 0 t = 3 x (t > 0) t 2 – 4 t – 45 = 0 По т. Виета: t 1 · t 2 = - 45; t 1 + t 2 = 4 t 1 = 9 ; t 2 = - 5 – не удовлетворяет условию 3 x = 9 ; 3 x = 3 2 ; x = 2 . Ответ: 2

Замена переменной (2) Основания степеней одинаковы, коэффициенты перед переменной противоположны. По т. Виета: - Не удовлетворяет условию Ответ: 1

Деление на показательную функцию Ответ: 0

Деление на показательную функцию Ответ: 0; 1.

Простейшие показательные неравенства Двойные неравенства Неравенства, решаемые вынесением за скобки степени с меньшим показателем Неравенства, решаемые заменой переменной Решение показательных неравенств

Простейшие показательные неравенства

Двойные неравенства Ответ: (- 4; -1). 3 > 1 , то

Решение показательных неравенств Метод: Вынесение за скобки степени с меньшим показателем Ответ: х > 3 Т.к. 3 > 1 , то знак неравенства остается прежним: 10

Решение показательных неравенств Метод: Замена переменной Ответ: х 1 , то

Используемая литература. А.Г.Мордкович: Алгебра и начала математического анализа(профильный уровень), 10класс,2011г. А.Н. Колмогоров: Алгебра и начала математического анализа,2008г. Интернет


Урок математики по теме “Показательная функция”10 класс (учебник “Алгебра и начала математического анализа 10 класс” С.М. Никольский, М.К. Потапов и др.) разработан с использованием компьютерных технологий.

На уроке рассматривается функция , где , рассматриваются свойства этой функции и ее график. Эти свойства будут использоваться в дальнейшем, при доказательстве свойств логарифмической функции, при решении показательных уравнений и неравенств.

Тип урока: комбинированный с применением компьютера и интерактивной доски.

Компьютерные технологии создают большие возможности активизации учебной деятельности. Широкое применение ИКТ при изучении большинства предметов дает возможность реализовать принцип “учение с увлечением”, и тогда любой предмет будет иметь равные шансы стать любимым детьми.

Место данного урока в теме: первый урок в теме.

Метод: комбинированный (словесно-наглядно-практический).

Цель урока: сформировать представление о показательной функции, ее свойствах и графиках.

Задачи урока:

  • научить строить простейшие графики показательной функции и решать показательные уравнения графически,
  • научить применять свойства показательной функции,
  • осуществить контроль знаний,
  • использовать различные приемы и методы для поддержания работоспособности учащихся.

Материал для урока подобран таким образом, что предполагает работу с учащихся различных категорий - от слабых учеников до сильных.

Ход урока

I. Организационный момент (слайд 1-4). Презентация

  • Актуальность темы.
  • Постановка задачи.
  • План работы.
  • II. Изучение нового материала (слайд 5-6)

    Определение показательной функции;

    Свойства показательной функции;

    График показательной функции.

    III. Устно - закрепление новых знаний (слайды 7-16)

    1) Выяснить, является ли функция возрастающей (убывающей)

    2) Сравнить: .

    3) Сравнить с единицей:

    4) На рисунке изображены графики показательных функций. Соотнесите график функции с формулой.

    IV. Динамическая пауза

    V. Обобщение и систематизация новых знаний (слайд 16-20)

    1) Построить график функции: y=(1/3) x ;

    2) Решить графически уравнение:

    3) Применение показательной функции к решению прикладных задач:

    “Период полураспада плутония равен 140 суткам. Сколько плутония останется через 10 лет, если его начальная масса равна 8 г?”

    VI. Тестовая работа (слайд 21)

    Каждый ученик имеет карточку с заданием - тест (Приложение 1) и таблицу для внесения ответов (Приложение 2).

    Проверяем и оцениваем (слайд 22)

    VII. Домашнее задание (слайд 23-24)

    № 4.55 (а, в, и) № 4.59, № 4.60 (а, ж); № 4.61 (г, з)

    Задача (для тех, кто интересуется математикой):

    Зависимость давления атмосферы р (в сантиметрах ртутного столба) от выраженной в километрах высоты h над уровнем моря выражается формулой

    Вычислить, каким будет атмосферное давление на вершине Эльбруса, высота которой 5,6 км?

    VIII. Подведение итогов

    Литература

    1. С.М.Никольский, М. К. Потапов и др. “Алгебра и начала математического анализа 10 класс”, Москва “ Просвещение”, 2010.
    2. М. К. Потапов, А.В. Потапов “Алгебра и начала математического анализа 10 класс. Книга для учителя”, Москва “ Просвещение”, 2009.
    3. М. К. Потапов, А.В. Потапов “Алгебра и начала математического анализа 10 класс. Дидактические материалы”, Москва “ Просвещение”, 2009.
    4. Л. О. Денищева и др. “Сборник экзаменационных заданий. Математика. ЭГЕ”, Москва, издательство “Эксмо”, 2009.
    5. Математика. Сборник тренировочных работ. Под редакцией А.Л. Семенова, И. В. Ященко, Москва, “Экзамен”, 2009.