Информационная поддержка школьников и студентов
Поиск по сайту

Торий — новая «батарейка» в ядерной энергетике. Торий как лекарство от ядерной чумы Торий 232 откуда известен его период полураспада

В 1815 году знаменитый шведский химик Йенс Якоб Берцелиус заявил об открытии нового элемента, который он назвал торием в честь Тора, бога-громовержца и сына верховного скандинавского бога Одина. Однако в 1825 году обнаружилось, что открытие это было ошибкой. Тем не менее название пригодилось — его Берцелиус дал новому элементу, который он обнаружил в 1828 году в одном из норвежских минералов (сейчас этот минерал называется торит). Этому элементу, возможно, предстоит большое будущее, где он сможет сыграть в атомной энергетике роль, не уступающую по важности главному ядерному топливу — урану.

Плюсы и минусы
+ Тория на Земле в несколько раз больше, чем урана
+ Не нужно разделять изотопы
+ Радиоактивное заражение при добыче тория существенно меньше (за счет более короткоживущего радона)
+ Можно использовать уже существующие тепловые реакторы
+ Торий имеет лучшие термомеханические свойства, чем уран
+ Торий менее токсичен, чем уран
+ При использовании тория не образуются минорные актиниды (долгоживущие радиоактивные изотопы)
- В процессе облучения тория образуются гамма-излучающие изотопы, что создает трудности при переработке топлива

Дальние родственники бомбы

Атомная энергетика, на которую сейчас возлагается столько надежд, — это побочная ветвь военных программ, основными целями которых было создание атомного оружия (а чуть позднее реакторов для подводных лодок). В качестве ядерного материала для изготовления бомб можно было выбрать из трех возможных вариантов: уран-235, плутоний-239 или уран-233.

Так выглядит ториевый ядерный цикл, иллюстрирующий превращение тория в высокоэффективное ядерное топливо — уран-233.

Уран-235 содержится в природном уране в очень небольшом количестве — всего 0,7% (остальные 99,3% составляет изотоп 238), и его нужно выделить, а это дорогостоящий и сложный процесс. Плутоний-239 не существует в природе, его нужно нарабатывать, облучая нейтронами уран-238 в реакторе, а затем выделяя его из облученного урана. Таким же образом можно получать уран-233 путем облучения нейтронами тория-232.


В 1960-х планировалось замкнуть ядерный цикл по урану и плутонию с использованием примерно 50% АЭС на тепловых реакторах и 50% на быстрых. Но разработка быстрых реакторов вызвала трудности, так что в настоящее время эксплуатируется лишь один такой реактор — БН-600 на Белоярской АЭС (и построен еще один — БН-800). Поэтому сбалансированную систему можно создать из ториевых тепловых реакторов и примерно 10% быстрых реакторов, которые будут восполнять недостающее топливо для тепловых.

Первые два способа в 1940-х годах были реализованы, а вот с третьим физики решили не возиться. Дело в том, что в процессе облучения тория-232 помимо полезного урана-233 образуется еще и вредная примесь — уран-232 с периодом полураспада в 74 года, цепочка распадов которого приводит к появлению таллия-208. Этот изотоп излучает высокоэнергетичные (жесткие) гамма-кванты, для защиты от которых требуются толстенные свинцовые плиты. Кроме того, жесткое гамма-излучение выводит из строя управляющие электронные цепи, без которых невозможно обойтись в конструкции оружия.

Ториевый цикл

Тем не менее о тории не совсем забыли. Еще в 1940-х годах Энрико Ферми предложил нарабатывать плутоний в реакторах на быстрых нейтронах (это более эффективно, чем на тепловых), что привело к созданию реакторов EBR-1 и EBR-2. В этих реакторах уран-235 или плутоний-239 являются источником нейтронов, превращающих уран-238 в плутоний-239. При этом плутония может образовываться больше, чем «сжигается» (в 1,3−1,4 раза), поэтому такие реакторы называются «размножителями».


Другая научная группа под руководством Юджина Вигнера предложила свой проект реактора-размножителя, но не на быстрых, а на тепловых нейтронах, с торием-232 в качестве облучаемого материала. Коэффициент воспроизводства при этом уменьшился, но конструкция была более безопасной. Однако существовала одна проблема. Ториевый топливный цикл выглядит таким образом. Поглощая нейтрон, торий-232 переходит в торий-233, который быстро превращается в протактиний-233, а он уже самопроизвольно распадается на уран-233 с периодом полураспада 27 дней. И вот в течение этого месяца протактиний будет поглощать нейтроны, мешая процессу наработки. Для решения этой проблемы хорошо бы вывести протактиний из реактора, но как это сделать? Ведь постоянная загрузка и выгрузка топлива сводит эффективность наработки почти к нулю. Вигнер предложил очень остроумное решение — реактор с жидким топливом в виде водного раствора солей урана. В 1952 году в Национальной лаборатории в Оак-Ридже под руководством ученика Вигнера, Элвина Вайнберга, был построен прототип такого реактора — Homogeneous Reactor Experiment (HRE-1). А вскоре появилась еще более интересная концепция, идеально подходившая для работы с торием: это реактор на расплавах солей, Molten-Salt Reactor Experiment. Топливо в виде фторида урана было растворено в расплаве фторидов лития, бериллия и циркония. MSRE проработал с 1965 по 1969 год, и хотя торий там не использовался, сама концепция оказалась вполне работоспособной: использование жидкого топлива повышает эффективность наработки и позволяет выводить из активной зоны вредные продукты распада.


Жидкосолевой реактор позволяет намного более гибко управлять топливным циклом, чем обычные тепловые станции, и использовать топливо с наибольшей эффективностью, выводя вредные продукты распада из активной зоны и добавляя новое топливо по мере необходимости.

Путь наименьшего сопротивления

Тем не менее жидкосолевые реакторы (ЖСР) не получили распространения, поскольку обычные тепловые реакторы на уране оказались дешевле. Мировая атомная энергетика пошла по наиболее простому и дешевому пути, взяв за основу проверенные водо-водяные реакторы под давлением (ВВЭР), потомки тех, которые были сконструированы для подводных лодок, а также кипящие водо-водяные реакторы. Реакторы с графитовым замедлителем, такие как РБМК, представляют собой другую ветвь генеалогического древа — они происходят от реакторов для наработки плутония. «Основным топливом для этих реакторов является уран-235, но его запасы хотя и довольно значительны, тем не менее ограничены, — объясняет «Популярной механике» начальник отдела системных стратегических исследований Научно-исследовательского центра «Курчатовский институт» Станислав Субботин. — Этот вопрос начал рассматриваться еще в 1960-х годах, и тогда планируемым решением этой проблемы считалось введение в ядерный топливный цикл отвального урана-238, запасов которого почти в 200 раз больше. Для этого планировалось построить множество реакторов на быстрых нейтронах, которые бы нарабатывали плутоний с коэффициентом воспроизводства 1,3−1,4, чтобы избыток можно было использовать для питания тепловых реакторов. Быстрый реактор БН-600 был запущен на Белоярской АЭС — правда, не в режиме бридера. Недавно там же был построен и еще один — БН-800. Но для построения эффективной экосистемы атомной энергетики таких реакторов нужно примерно 50%».


Все радиоактивные изотопы, которые встречаются в природе в естественных условиях, принадлежат к одному из трех семейств (радиоактивных рядов). Каждый такой ряд — это цепочка ядер, связанных последовательным радиоактивным распадом. Родоначальники радиоактивных рядов — долгоживущие изотопы уран-238 (период полураспада 4,47 млрд лет), уран-235 (704 млн лет) и торий-232 (14,1 млрд лет). Цепочки заканчиваются стабильными изотопами свинца. Существует еще один ряд, начинающийся с нептуния-237, но период его полураспада слишком мал — всего лишь 2,14 млн лет, поэтому в природе он не встречается.

Могучий торий

Вот тут как раз на сцену и выходит торий. «Торий часто называют альтернативой урану-235, но это совершенно неправильно, — говорит Станислав Субботин. — Сам по себе торий, как и уран-238, вообще не является ядерным топливом. Однако, поместив его в нейтронное поле в самом обычном водо-водяном реакторе, можно получить отличное топливо — уран-233, которое затем использовать для этого же самого реактора. То есть никаких переделок, никакого серьезного изменения существующей инфраструктуры не нужно. Еще один плюс тория — распространенность в природе: его запасы как минимум втрое превышают запасы урана. Кроме того, нет необходимости в разделении изотопов, поскольку при попутной добыче вместе с редкоземельными элементами встречается только торий-232. Опять же, при добыче урана происходит загрязнение окружающей местности относительно долгоживущим (период полураспада 3,8 суток) радоном-222 (в ряду тория радон-220 — короткоживущий, 55 секунд, и не успевает распространиться). Кроме того, торий имеет отличные термомеханические свойства: он тугоплавкий, менее склонен к растрескиванию и выделяет меньше радиоактивных газов при повреждении оболочки ТВЭЛ. Наработка урана-233 из тория в тепловых реакторах примерно в три раза более эффективна, чем плутония из урана-235, так что наличие как минимум половины таких реакторов в экосистеме атомной энергетики позволит замкнуть цикл по урану и плутонию. Правда, быстрые реакторы все равно будут нужны, поскольку коэффициент воспроизводства у ториевых реакторов не превышает единицы».


На производство 1 ГВт в течение года требуется: 250 т природного урана (содержат 1,75 т урана-235) требуется добыть 215 т обедненного урана (в том числе 0,6 т урана-235) уходят в отвалы; 35 т обогащенного урана (из них 1,15 т урана-235) загружаются в реактор; отработанное топливо содержит 33,4 т урана-238, 0,3 т урана-235, 0,3 т плутония-239, 1 т продуктов распада. 1 т тория-232 при загрузке в жидкосолевой реактор полностью конвертируется в 1 т урана-233; 1 т продуктов распада, из них 83% - короткоживущие изотопы (распадаются до стабильных примерно за десять лет).

Однако у тория есть и один достаточно серьезный минус. При нейтронном облучении тория уран-233 оказывается загрязненным ураном-232, который испытывает цепочку распадов, приводящую к жесткому гамма-излучающему изотопу таллий-208. «Это сильно затрудняет работу по переработке топлива, — объясняет Станислав Субботин. — Но с другой стороны, облегчает обнаружение такого материала, уменьшая риск хищений. Кроме того, в замкнутом ядерном цикле и при автоматизированной обработке топлива это не имеет особого значения».


Термоядерное зажигание

Эксперименты по использованию ториевых ТВЭЛов в тепловых реакторах ведутся в России и других странах — Норвегии, Китае, Индии, США. «Сейчас самое время вернуться к идее жидкосолевых реакторов, — считает Станислав Субботин. — Химия фторидов и фторидных расплавов хорошо изучена благодаря производству алюминия. Для тория реакторы на расплавах солей гораздо более эффективны, чем обычные водо-водяные, поскольку позволяют гибко производить загрузку и вывод продуктов распада из активной зоны реактора. Более того, с их помощью можно реализовать гибридные подходы, используя в качестве источника нейтронов не ядерное топливо, а термоядерные установки — хотя бы те же токамаки. К тому же жидкосолевой реактор позволяет решить проблему с минорными актинидами — долгоживущими изотопами америция, кюрия и нептуния (которые образуются в облученном топливе), «дожигая» их в реакторе-мусорщике. Так что в перспективе нескольких десятилетий в атомной энергетике без тория нам не обойтись».

1 грамм на 28 000 литров . Таково соотношения расхода топлива в автомобильных двигателях, если заменить привычное горючее торием.

Речь о 232-ом изотопе . У него самый длинный период полураспада. 8 граммов тория хватит, чтобы двигатель беспрерывно работал в течение 100 лет.

Запасов нового топлива в 3 раза больше, чем в земной коре. Специалисты Laser Power Systems уже приступили к разработке нового двигателя.

Компания американская. Работа двигателя будет напоминать цикл стандартной электростанции. Загвоздкой стала разработка подходящего лазера.

Его задача – нагревать воду, пар которой запускает мини-турбины. Пока ученые отрабатывают процесс, узнаем побольше о топливе 21-го века, а в перспективе и всего тысячелетия.

Что такое торий?

Металл торий относится к актиноидам. В это семейство входят радиоактивные . Все они располагаются в 3-ей группе 7-го периода таблицы .

Номера актиноидов – от 90-го до 103-го. Торий стоит первым. Его и открыли первым, одновременно с ураном.

В чистом виде героя выделил в 1882-ом году Ларс Нильсон. Радиоактивность элемента обнаружили не сразу.

Поэтому, торий долго не вызывал интереса общественности. Распад тория доказан лишь в 1907-ом году.

С 1907-го года изотопы тория открывались один за другим. К 2017-му насчитывается 30 модификаций металла. 9 из них получены .

Наиболее устойчива 232-я. Полураспад тория в таком виде длится 1,4*10 10 лет. Именно поэтому 232-ой изотоп повсеместно распространен, в земной коре занимает долю 8*10 -4 %.

Остальные изотопы хранятся несколько лет, а посему не представляют практического интереса и редко встречаются в природе. Правда 229-ый торий распадается за 7 340 лет. Но, этот изотоп «выведен» искусственно.

Полностью устойчивых изотопов у тория нет. В чистом виде элемент выглядит как —, пластичный .

Именно он делает столь мягким минерал торит. легко режется . Минерал изучал Йенс Берценлиус.

Шведский химик смог вычислить в составе камня неизвестный , но не смог выделить его, отдав лавры Нильсону.

Свойства тория

Торий – элемент , удельная радиоактивность которого равна 0,109 микрокюри на грамм. У 238-го урана, к примеру, показатель почти в 3 раза больше.

Соответственно, торий слаборадиоактивен. Несколько изотопов тория, кстати, являются следствием распада урана. Речь о 230-ом, 231-ом, 234-ом и 235-ом модификациях 90-го элемента.

Распад героя статьи сопровождается выделением радона. Этот газ, так же, именуют тороном. Однако, второе название не общеупотребительное.

Радон опасен при вдыхании. Однако, микродозы содержатся в минеральных водах и влияют на организм благостно.

Принципиален именно путь попадания торона в организм. Выпить можно, впитать – да, но не вдыхать.

В плане кристаллической решетки радиоактивный торий предстает всего в двух ипостасях. До 1 400-от градусов строение металла гранецентрическое.

Оно основано на объемных кубах, состоящих из 14-ти атомов. Часть из них стоят в углах фигуры. Остальные атомы располагаются посередине каждого .

При нагреве свыше 1 400-от градусов Цельсия кристаллическая решетка тория становится объемноцентрированной.

«Упаковка» таких кубов менее плотная. И без того мягковатый торий становится еще более рыхлым.

Торий – химический элемент, отнесенный к парамагнетикам. Соответственно, магнитная проницаемость металла минимальна, близка к единице.

Отличают вещества группы, так же, способность намагничиваться в направлении внешнего поля.

Мольная теплоемкость тория составляет 27,3 килоджоулей. Показатель указывает на тепловую вместимость одного моля вещества, отсюда и название.

Продолжать список сложно, поскольку основная масса свойств 90-го металла зависит от степени его загрязнения.

Так, предел прочности элемента варьируется от 150-ти до 290-та меганьютонов на квадратный метр.

Нестабильна и тория. По металлу дают от 450-ти до 700-от килограмм-силы.

Стоя в начале своей группы, торий перенял часть свойств от предшествующих ей элементов. Так, для героя статьи характерна 4-я степень окисления.

Чтобы торий быстро окислился на воздухе, нужно довести температуру до 400-от градусов. Металл моментально покроется пленкой оксида.

Дуэт тория с кислородом, кстати, самый тугоплавкий из земных оксидов, размягчается лишь при 3 200-от градуса Цельсия.

При этом, соединение еще и химически устойчиво. Чистый же металл вступает в реакцию с .

Любой радиоактивный изотоп тория взаимодействует с ним даже при комнатной температуре.

Остальные реакции с героем статьи проходят при повышенных температурах. При 200-от градусах идет реакция с .

Образуются гидриды порошкообразной формы. Нитриды получаются, если торий нагреть в атмосфере .

Потребуется температура в 800-от градусов Цельсия. Но, для начала нужно добыть реактив. Узнаем, как это делают.

Добыча и месторождения тория

350 000 000 долларов. Примерно такую сумму ежегодно выделяют в на развитие ториевой энергетики. В стране масса месторождений 232-го изотопа.

Это настораживает , которая рискует потерять лидерство на топливном , если основным энергоресурсом в мире станет 90-ый элемент.

Запасы в отечестве есть. Миллионы тонн металла, к примеру, расположились под Новокузнецком.

Однако, нужно отстоять приоритетное право на применение ториевых , а за них в мире ведется борьба. Все понимают, за чем будущее.

Обычно, торий находят в виде , блестящего песка. Это минерал монацит. Пляжи из него часто входят в курортные зоны.

На побережье Азовского моря, к примеру, стоит задуматься не только о солнечной радиации, но и той, что исходит от земли. Жильный торий встречается только в ЮАР. Рудные залежи там зовутся Стинкасмкрааль.

Если добывать торий из руд, то проще получать элемент попутно с . Осталось выяснить, где торий может пригодиться, не считая автомобильных двигателей будущего.

Применение тория

Поскольку ядро тория неустойчиво, естественно применение элемента в атомной энергетике. Для ее нужд закупают , фторид и оксид тория.

Помните температуру, которую выдерживает окись 90-го металла? Только такое соединение и сдюжит в жидкосолевых реакторах.

Окись тория пригождается и в авиационной промышленности. Там 90-ый металл служит упрочнителем. Служба торию находится и в организме .

Ежедневно с пищей поступает около 3 миллиграммов радиоактивного элемента. Он участвует в регулировке процессов системы, усваивается, в основном, печенью.

Закупают торий, так же, металлурги, но не для еды. Чистый металл используют в качестве , то есть добавки, улучшающей качество , в частности, магниевых. С лигатурой они становятся жаропрочными и лучше сопротивляются разрыву.

Напоследок дополним информацию о новом автомобильном двигателе. Торий в нем – не ядерное топливо, а лишь сырье для него.

Сам по себе 90-ый элемент не способен давать энергию. Все меняют нейтронная среда и водный реактор.

С ними торий преобразуется в 233-ий уран. Вот он – эффективное топливо. Почем платят за сырье для него? Попробуем узнать.

Цена тория

Цена тория разнится на чистый металл и его соединения. Это общая фраза из . Из частностей — лишь ценник за кило оксида тория примерно в 7 500 .

На этом открытые запросы заканчиваются. Продавцы просят уточнять стоимость, поскольку реализуют радиоактивный элемент.

Предложений чистого тория в интернете нет, как нет и данных о за грамм металла. Меж тем, заинтересованным новым видом автомобильного топлива вопрос не дает покоя, как не дает покоя и то, не подскочат ли запросы за 90-ый элемент в случае его повсеместного использования.

Изначально, ради вытеснения с рынка бензиновых двигателей, торий сделают максимально выгодным. Но, что будет потом, когда возврат к былому будет уже маловероятен?

Вопросов много. Конкретики мало, впрочем, как и во всем новом, неизведанном, кажущемся на первых парах авантюрой.

Хотя, первые варианты ториевого двигателя уже готовы. Весят они около 200-от килограммов. Такой аппарат легко поместить под капот средних размеров.

ТОРИЙ

Торий – природный слабо радиоактивный металл, открытый в 1828 г. шведским химиком Йенсом Берцелиусом, который назвал его в честь Тора, бога войны скандинавских народов. В небольших количествах он присутствует во многих горных породах и грунтах, где его содержание почти в три раза превышает содержание урана. В почве содержится приблизительно шесть частей тория на миллион.

Торий встречается во многих минералах, наиболее распространенным из которых является редкоземельный минерал – фосфат тория – монацит, в котором содержится до 12% оксида тория. Залежи этого минерала имеются в нескольких странах. Торий-232 распадается очень медленно (его период полураспада почти в три раза превышает возраст Земли), но другие изотопы тория содержатся в нем и в цепях распада урана. Большинство из них являются короткоживущими элементами, и поэтому они намного более радиоактивны, чем Th-232, хотя в массовом отношении их содержание ничтожно мало.

Мировые запасы тория (доступные для добычи)
Страна Запасы (в тоннах)
Австралия 300000
Индия 290000
Норвегия 170000
USA 160000
Канада 100000
Южная Африка 35000
Бразилия 16000
Прочие страны 95000
Всего 1200000
(Источник – Служба геологической разведки USA, Запасы минералов, январь 1999 года)

Торий в качестве ядерного топлива

Торий, как и уран , может использоваться в качестве ядерного топлива. Сам по себе не являющийся делящимся материалом Th-232 поглощает медленные нейтроны и образует делящийся уран-233. Как и U-2238, торий-232 является топливным сырьем.

По одному из существенных показателей U-233 превосходит уран-235 и плутоний-239, имея более высокий выход нейтронов на один поглощенный нейтрон. Если начать реакцию с помощью другого делящегося материала (U-235 или Pu-239), можно реализовать цикл наработки делящегося материала, напоминающий, но более эффективный, чем цикл на U-238 и плутоний в реакторах на медленных нейтронах. Th-232 поглощает нейтрон и преобразуется в Th-233, который при распаде переходит в Ра-233, а затем в U-233. Облученное топливо можно выгрузить из реактора, U-233 отделить от тория и загрузить в другой реактор, как часть замкнутого топливного цикла.

За последние 30 лет появился интерес к торию в качестве ядерного топлива, поскольку его запасы в земной коре в три раза превышают запасы урана. Кроме того, в реакторах можно использовать весь добываемый торий в отличие от 0,7% изотопа U-235 из природного урана.

Основным вариантом в реакторах типа PWR могут быть топливные сборки, смонтированные так, что бланкет, состоящий главным образом из тория, покрывает затравочный элемент с большей степенью обогащения, содержащий U-235, который производит нейтроны для подкритического бланкета. Поскольку U-233 производится в бланкете, он там же и сгорает. Здесь речь следует о легководном реакторе-бридере, который успешно прошел демонстрационные испытания в USA в 1970 годах.

Научно-исследовательские и конструкторские разработки

Возможность реализации ториевых топливных циклов изучается уже около 30 лет, однако значительно менее интенсивно, чем урановых или уран-плутониевых циклов. Основные исследовательские и конструкторские работы проводились в Германии, Индии, Японии, Рф, Великобритании и USA. Было проведено также и пробное облучение ториевого топлива в реакторах до получения высокого уровня выгорания. Полностью или частично загружались ториевым топливом несколько опытных реакторов.

К заслуживающим внимания экспериментам по ториевому циклу относятся следующие (первые три проводились на высокотемпературных реакторах с газовым охлаждением):

  • В период с 1967 по 1988 годы в Германии более 750 недель эксплуатировался экспериментальный реактор AVR с насыпным бланкетом при мощности 15 МегаВт. 95% всего периода работы реактора составляла работа на ториевом топливе. Топливо представляло собой 100000 топливных элементов в виде шариков. Общий вес ториевого топлива составлял 1360 кг; торий использовался в смеси с высокообогащенным ураном. Максимальная глубина выгорания составила 150000 МВт·сутки/т.
  • Ториевые ТВЭЛы, состоящие из тория и урана в соотношении 10:1, в течение 741 суток облучались в реакторе Dragon мощностью 20 МегаВт в английском городе Уинфит. Реактор Dragon эксплуатировался в рамках совместного проекта, в котором, наряду с Великобританией, с 1964 по 1973 годы участвовали Австрия, Дания, Швеция, Норвегия и Швейцария. Ториево-урановое топливо использовалось для производства U-233, который заменял потребляемый U-235 примерно в том же соотношении. Топливо могло работать в реакторе в течение шести лет.
  • В 1967-1974 годах в USA работал высокотемпературный реактор Peach Bottom на уран-ториевом топливе мощностью 110 МегаВт производства компании General Atomic.
  • В Индии в 1996 г. в Калпаккаме в качестве источника нейтронов был запущен экспериментальный исследовательский реактор Kamini мощностью 30 кВт, работавший на U-233, полученном путем облучения ThO 2 на другом реакторе. Реактор был построен неподалеку от бридерного реактора на быстрых нейтронах мощностью 40 МегаВт, в котором и облучался ThO 2 .
  • В Нидерландах в течение трех лет эксплуатировался гомогенный реактор с водяной смесью мощностью 1 МегаВт. В реакторе использовалось топливо в виде раствора высокообогащенного урана и тория; с целью удаления продуктов деления непрерывно велась переработка, в результате которой с высоким К.П.Д. производился U-233.
  • Проводился ряд экспериментов с реакторами на быстрых нейтронах.

Энергетические реакторы

  • На базе реактора AVR в Германии был разработан 300 МегаВт-реактор THTR, проработавший с 1983 по 1989 годы; реактор работал на насыпном бланкете из 674000 элементов, из которых больше половины представляло собой уран-ториевое топливо, а остальные – графитовый замедлитель и нейтронные поглотители. ТВЭЛы непрерывно обновлялись при загрузке, и в среднем прошли через реактор шесть раз. Производство топлива было поставлено на промышленную основу.
  • Реактор Fort St Vrain был единственным в USA коммерческим реактором, работавшем на ториевом топливе; этот реактор также был сконструирован на базе немецкого AVR и проработал с 1976 по 1989 годы. Это был высокотемпературный реактор (1300°С) с графитовым замедлителем и гелиевым охлаждением с проектной мощностью 842 МегаВт (330 МегаВт электрических). Топливные элементы были изготовлены из карбида тория и карбида Th/U-235 в виде микросфер, для удержания продуктов деления, покрытых диоксидом кремния и пироуглеродом. ТВЭЛы имели форму шестигранных колонн («призм»). В реакторе использовалось почти 25 тонн тория; глубина выгорания составила 170000 МВт·сутки/т.
  • Исследования ториевого топлива для реакторов типа PWR проводились на американском реакторе Shippingport; в качестве исходного делящегося материала топлива использовались U-235 и плутоний. Был сделан вывод, что торий серьезно не повлияет на режимы работы и сроки эксплуатации активной зоны. Здесь же с 1977 по 1982 годы успешно прошли испытания легководного бридерного реактора затравочно-бланкетного типа на ториево-урановом топливе, покрытым сплавом циркония.
  • В 60-мегаваттном реакторе Lingen типа BWR в Германии использовались Th/Pu-ТВЭЛы.

Индия

В Индии с целью повышения эффективности после запуска в блоки 1 и 2 А.Э.С в Какрапаре было загружено 500 кг ториевого топлива. 1-Ый блок А.Э.С был первым в мире реактором, в котором для выравнивания мощности в активной зоне использовался не обедненный уран, а торий. Работая на ториевом топливе, 1-й блок вышел на полную мощность за 300 суток, а 2-й блок – за 100 суток. Ториевое топливо планируется использовать в блоках 1 и 2 А.Э.С в Кайга и в блоках 3 и 4 А.Э.С в Раджастане, которые находятся в стадии строительства.

Обладая запасами тория, в шесть раз превышающими запасы урана, Индия в качестве основной задачи промышленного производства энергии поставила задачу внедрения ториевого цикла, которая будет решаться в три этапа:

  • тяжеловодные реакторы CANDU, работающие на топливе из природного урана, будут использоваться для наработки плутония;
  • реакторы-бридеры на быстрых нейтронах (FBR) на основе полученного плутония будут производить U-233 из тория;
  • перспективные тяжеловодные реакторы будут работать на U-233 и тории, получая 75% энергии из тория.

Отработанное топливо затем будет перерабатываться для восстановления делящихся материалов и их последующей переработки;

В качестве еще одной возможности для третьего этапа рассматриваются подкритические комплексы на ускорителях (ADS).

Разработка перспективных реакторов

Конструкторские решения по перспективным реакторам на ториевом топливе включают:

  • Легководные реакторы, использующие в качестве топлива оксид плутония (PuO 2), оксид тория (ThO 2) и(или) оксид урана (UO 2), из которых изготовляются стержневые ТВС.
  • Высокотемпературные реакторы с газовым охлаждением (HTGR) двух типов – с насыпным бланкетом и призматическими топливными сборками.
  • Газотурбинные модульные реакторы с гелиевым охлаждением (GT-MHR). Результатом проведенных в USA исследований на реакторах типа HTGR стали призматические ТВС. Использование гелия для охлаждения при высоких температурах и сравнительно небольшая выходная энергия на модуль (600 МВт) позволяет скомбинировать модульную конструкцию с газовой турбиной (цикл Брайтона), что повышает производство тепловой энергии почти на 50%. Активная зона таких реакторов допускает применение широкого спектра конструкций ТВС, в том числе ВОУ/Th и Pu/Th. Использование ВОУ/Th-топлива было продемонстрировано на американском реакторе Fort St Vrain.
  • Модульный реактор с насыпным бланкетом (PBMR). Сконструирован в Южной Африке на основе результатов проведенных в Германии исследований. Сейчас работы ведутся международным консорциумом. Позволяет использовать ториевые насыпные бланкеты.
  • Реакторы на солевом расплаве. Перспективный реактор-бридер, в котором ториевое топливо используется в виде солевого расплава, не требуя дополнительного внешнего охлаждения. Хладагент первичного контура проходит через теплообменник, где тепловая энергия реакции деления передается в рабочий материал вторичного контура с целью генерации пара. Детальные исследования концепции проводились в 60-е годы ХХ века; сейчас они возобновились в связи с появлением передовых технологий производства материалов.
  • Перспективные тяжеловодные реакторы (AHWR). В Индии в настоящее время ведутся работы по этому направлению. Как и канадский реактор CANDU-NG, индийский реактор мощностью 250 МегаВт охлаждается обычной водой. Основная часть активной зоны состоит из смеси оксидов тория и U-233 в подкритическом состоянии; пропорции смеси таковы, что U-233 самовоспроизводится. Реакция управляется несколькими затравочными зонами на основе обычного МОХ-топлива.
  • Утилизация плутония. Сегодня в некоторых реакторах используется МОХ-топливо (U, Pu). Альтернатива состоит в использовании торий-плутониевого топлива; в этом случае реактор работает на плутонии, производя делящийся U-233, который после разделения можно использовать в составе уран-ториевого топливного цикла.

Применение тория в комплексах с ускорителями (ADS)

В комплексах с ускорителями высокоэнергетические нейтроны производятся за счет реакции расщепления ядер высокоэнергетическими протонами ускорителя, соударяющимися с тяжелыми ядрами мишени (свинец, свинец-висмут или другие элементы). Эти нейтроны можно направить в субкритический реактор, содержащий торий, где нейтроны производят U-233 и обеспечивают его деление. Существует возможность обеспечения самоподдерживающейся реакции деления, которую можно направить либо на производство энергии, либо на трансмутацию актиноидов, образующихся в результате U/Pu топливного цикла. Использование тория вместо урана означает, что в самом реакторе ADS будет производиться меньшее число актиноидов.

Разработка ториевого топливного цикла

Проблемы, связанные с решением этой задачи, сводятся к высокой стоимости производства топлива частично вследствие высокой радиоактивности U-233, который всегда содержит U-232; аналогичные проблемы касаются и переработки тория вследствие высокой радиоактивности Th-228, определенного риска распространения U-233 как оружейного материала, а также ряда технических проблем переработки (пока не решенных должным образом). Предстоит проделать большую работу, прежде чем ториевый цикл будет поставлен на коммерческую основу, но пока можно в больших количествах добывать уран, такая работа представляется маловероятной.

Тем не менее, ториевый цикл с его потенциалом по воспроизводству без использования реакторов на быстрых нейтронах сохранит свою перспективность еще в течение длительного времени. Этот цикл является определяющим фактором в развитии самодостаточной ядерной энергетики.

Ториевый топливный цикл – ядерный топливный цикл, использующий изотопы Тория-232, как ядерное сырье. Торий-232 в ходе реакции разделения в реакторе переносит трансмутацию в искусственный изотоп Уран-233, применяющийся в качестве ядерного топлива. В отличие от природного урана, природный торий содержит лишь очень небольшие доли делящегося вещества (пример – Торий-231), которого недостаточно для запуска цепной ядерной реакции. Для запуска топливного цикла необходимо наличие дополнительного делящегося вещества или другого источника нейтронов. В ториевом реакторе Торий-232 абсорбирует нейтроны для того, чтобы, в конце концов, произвести Уран-233. В зависимости от проекта реактора и топливного цикла, созданный изотоп Урана-233 может делиться в самом реакторе или отделяться химическим способом из отработанного ядерного топлива и переплавляться в новое ядерное топливо.

Ториевый топливный цикл имеет несколько потенциальных преимуществ над урановым топливным циклом, в том числе – большая распространенность, лучшие физические и ядерные свойства, отсутствующие у плутония и других актинидов, и лучше сопротивление распространению ядерного оружия, которое связано с использованием легководных реакторов, а не реакторов на расплавах солей.

История изучения тория

Единственный источник тория – желтые полупрозрачные зерна монацита (фосфата церия)

Споры по поводу ограниченности мировых запасов урана стали причиной для появления начального интереса к ториевому топливному циклу. Стало очевидным, что запасы урана – исчерпаемы, и торий может заменить уран в качестве ядерного топливного сырья. Однако, большинство стран обладают относительно богатыми залежами урана и исследования ториевого топливного цикла проводятся крайне медленно. Серьезным исключением является Индия и ее трехступенчатая ядерная программа. В XXI веке потенциал тория для сопротивления распространению ядерного оружия и характеристики отработанного топливного сырья привели к повторному интересу к ториевому топливному циклу.

Национальная лаборатория Оук-Ридж в 1960-х годах использовала Экспериментальный Реактор на Расплавах Солей, применявший Уран-233 в качестве делящегося вещества в целях эксперимента и демонстрации работы Реактора-Размножителя на Расплавах Солей, работающего по принципу ториевого цикла. Эксперименты с Реактором на Расплавах Солей возможности тория, используя растворенный в расплавленной соли фторид (IV) тория. Это уменьшало потребность в производстве топливных элементов. Программа РРС была свернута в 1976 году после увольнения ее куратора Элвина Вайнберга.

В 2006 году Карло Руббиа предложил концепт энергоусилителя или «управляемого ускорителя», который виделся ему инновацией и безопасным способом производства ядерной энергии, использующего существующие технология ускорения энергии. Идея Руббиа предлагает возможность сжигать высокорадиоактивные ядерные отходы и производить энергию из натурального тория и обедненного урана.

Кирк Соренсен, бывший ученый НАСА и Начальник по ядерным технологиям компании «Teledyne Brown Engineering», долгое время продвигал идею ториевого топливного цикла, в частности – Реакторов на Жидком Фториде Тория (РЖФТ). Он первым стал исследовать ториевые реакторы еще во время работы в НАСА, когда оценивали различные концепции электростанций для лунных колоний. В 2006 году Соренсен основал сайт «Energyfromthorium.com» для информирования и продвижения данной технологии.

В 2011 году Массачусетский Технологический Институт сделал вывод, что, несмотря на малое число барьеров для ториевого топливного цикла, текущее состояние легководных реакторов практически не дает никакого стимула для появления такого цикла на рынке. Из этого следует, что шанс ториевого цикла вытеснить традиционный урановый цикл в условиях нынешнего рынка атомной энергетики крайне мал, несмотря на потенциальные выгоды.

Ядерные реакции с торием

Во время ториевого цикла Торий-232 захватывает нейтроны (это происходит как в быстрых, так и в тепловых реакторах) для преобразования в Торий-233. Обычно это приводит к излучению электронов и антинейтрино при?-распаде и появлению Протактиния-233, Затем, при втором?-распаде и повторном излучении электронов и антинейтрино образовывается Уран-233, использующийся в виде топлива.

Отходы после продуктов деления

Ядерное деление производит радиоактивные продукты распада, который могут иметь период полураспада от нескольких дней до более 200 000 лет. В соответствии с некоторыми исследованиями токсикологии, ториевый цикл может полностью перерабатывать актиноидные отходы и лишь излучать отходы после продуктов деления, и только через несколько столетий отходы ториевого реактора станут менее токсичными, чем урановые руды, которые могут применяться для производства обедненного уранового топлива для легководного реактора аналогичной мощности.

Актинидные отходы

В реакторе, где нейтроны бьют по делящемуся атому (например, определенные урановые изотопы), может произойти как разделение ядра, так и захват нейтронов и трансмутация атома. В случае с Ураном-233 трансмутация приводит к производству полезного ядерного топлива, а также – трансурановые отходы. Когда Уран-233 абсорбирует нейтрон, может происходить реакция деления или преобразование в Уран-234. Шанс разделения или поглощения теплового нейтрона примерно равен 92 %, в то время как соотношение сечения захвата и сечение деления нейтронов в случае с Ураном-233 равен примерно 1:12. Эта цифра – больше, чем соответствующие отношения у Урана-235 (примерно 1:6), Плутона-239 или Плутона-241 (оба имеют отношения примерно 1:3). В результате появляется меньше трансурановых отходов, чем в реакторе с традиционным ураново-плутониевым топливным циклом.

Уран-233, как и большинство актинидов с различным числом нейтронов, не делится, но при «поимке» нейтронов появляется делящийся изотоп Уран-235. Если реакция деления или улавливания нейтронов у делящегося изотопа не происходит, появляется Уран-236, Нептуний-237, Плутоний-238 и, в конце концов, делящийся изотоп Плутония-239 и более тяжелые изотопы плутония. Нептуний-237 может быть удален и храниться, как отходы, или сохраниться и трансмутировать в плутоний, который лучше будет делиться, в то время, как остатки превратятся в Плутоний-242, затем – америций и кюрий. Их, в свою очередь, можно удалить, как отходы, или вернуть в реакторы для дальнейшей трансмутации и деления.

Однако Протактиний-231 с периодом полураспада в 32700 лет формируется через реакции с Торием-232, несмотря на то, что он не является трансурановым отходом, является главной причиной появления радиоактивных отходов с длительным периодом распада.

Заражение Ураном-232

Уран-232 также появляется в ходе реакции между быстрыми нейтронами и Ураном-233, Протактинием-233 и Торием-232.

Уран-232 имеет относительно малый период полураспада (68,9 лет) и некоторые продукты распады излучает гамма-излучение с высокой энергии, так же, как и Радон-224, Висмут-212 и частично – Таллий-208.

Ториевый цикл производит жесткое гамма-излучение, которое повреждает электронику, ограничивая его использование в качестве пускового механизма для ядерных бомб. Уран-232 нельзя химически отделить от Урана-233, находящегося в отработанном ядерном топливе. Однако, химическое отделение тория от урана убирает продукты распада Тория-228 и радиацию из остальной цепи полураспада, которая постепенно приводит к повторному аккумулированию Тория-228. Заражение также можно предотвратить, используя Реактор-Размножитель на Расплавах Солей и отделяя Протактиний-233 перед его распадом до Урана-233. Жесткие гамма-излучения также могут создавать радиобиологическую опасность, требующую работы в режиме телеприсутствия.

Ядерное топливо

В качестве ядерного топлива торий похож на Уран-238, который составляет большую часть натурального и обедненного урана. Показатель ядерного сечения поглощаемого теплового нейтрона и резонансного интеграла (среднее число ядерного сечения нейтронов с промежуточной энергией) для Тория-232 примерно равно трем, и составляет одну треть от соответствующего показателя Урана-238.

Преимущества

Торий, по приблизительным оценкам, в три-четыре раза чаще встречается в земной коре, чем уран, хотя при этом на самом деле данные о его запасах крайне ограничены. Текущие потребности в тории удовлетворяется за счет вторичных продуктов из редкоземельных элементов, добываемых из монацитовых песков.

Хотя показатель ядерного сечения делящихся тепловых нейтронов у Урана-233 сравним с Ураном-235 и Плутонием-239, у него гораздо более низкий уровень ядерного сечения улавливаемых нейтронов, чем у последних двух изотопов, что приводит к меньшему числу абсорбированных неделящихся нейтронов и росту нейтронного баланса. В конце концов, соотношение освобожденных и абсорбированных нейтронов у Урана-233 больше двух в широком спектре энергий, в том числе – тепловом. В результате, топливо на основе тория может стать основным компонентом теплового реактора-размножителя. Реактор-размножитель с ураново-плутониевым циклом вынужден использовать спектр быстрых нейтронов, так как в тепловом спектре один нейтрон абсорбируется Плутонием-239, и в среднем при реакции исчезает 2 нейтрона.

Топливо на основе тория также демонстрирует отличные физические и химические свойства, что позволяет улучшить технические данные реактора и могильника. В сравнении с диоксидом урана, преобладающим топливом для реактора, диоксид тория имеет более высокую температуру влияния, теплопроводность и более низкий коэффициент теплового расширения. Диоксид тория также показывает лучшую химическую стабильность и, в отличие от диоксида урана, не способен к дальнейшему окислению.

Так как Уран-233, производимый в ториевом топливе, серьезно загрязнен Ураном-232 в предлагаемых концептах реакторов, ториевое отработанное топливо обладает сопротивлением к распространению оружия. Уран-232 не может быть химически отделен от Урана-233 и имеет несколько продуктов распада, испускающих высокоэнергетическое гамма-излучение. Эти протоны с высокой энергией несут радиоактивную опасность, что вызывает необходимость удаленной работы с отделенным ураном и ядерного детектирования подобных веществ.

Вещества на основе уранового отработанного топлива с большим периодом полураспада (от 1000 до 1000000 лет) несут радиоактивную опасность из-за наличия плутония и других младших актинидов, после которых снова появляются долгоживущие продукты деления. Одного нейтрона, пойманного Ураном-238, достаточно для создания трансурановых элементов, в то время как пять таких «захватов» необходимо для аналогичного процесса с Торием-232. 98-99 % ториевого ядерного цикла приводит к делению Урана-233 или Урана-235, поэтому производится меньше долгоживущих трансурановых элементов. Из-за этого торий выглядит потенциально привлекательной альтернативой урану в смешанном оксидном топливе для предельного уменьшения производства трансурановых веществ и максимального объема распавшегося плутония.

Недостатки

Существует несколько препятствий для применения тория в качестве ядерного топлива, в частности – для твердотопливных реакторов.

В отличие от урана, встречающийся в природе торий, как правило, одноядерный и не содержит делящихся изотопов. Делящееся вещество, как правило – Уран-233, Уран-235 или плутоний, должны быть добавлены для достижения критичности. Вместе с высокой температурой спекания, необходимого для диоксида тория, это усложняет производство топлива. Национальная Лаборатория Оук Ридж проводило опыты над тетрафторидом тория, в качестве топлива для реактора на расплавах солей в 1964—1969 годах. Ожидалось, что будет облегчен процесса производства и разделения веществ от загрязнителей для замедления или остановки цепной реакции.

При однократном топливном цикле (например, переработка Урана-233 в самом реакторе) более серьезное выгорание необходимо для достижение желательного нейтронного баланса. Хотя диоксид тория способен вырабатывать 150000-170000 мегаватт-суток/тонну на АЭС в Форте Сэн-Рэйна и Экспериментальной АЭС в Юлихе, существуют серьезные сложности достижения таких показателей на легководных реакторах, которые составляют подавляющее большинство среди существующих реакторов.

При однократном ториевом топливном цикле оставшийся Уран-233 остается в отработанном топливе в виде долгоживущего изотопа.

Другое препятствие связано с тем, что ториевый топливный цикл требует сравнительно больше времени для превращения Тория-232 в Уран-233. Период полураспада Протактиния-233 составляет примерно 27 дней, и это – гораздо дольше, чем период полураспада Нептуния-239. В результате, основным веществом в ториевом топливе является прочный Протактиний-239. Протактиний-239 – сильный поглотитель нейтронов и, хотя может произойти преобразование в делящийся Уран-235, требуется вдвое больше поглощенных нейтронов, что разрушает нейтронный баланс и увеличивает вероятность производства трансурановых веществ.

С другой стороны, если твердый торий используется при замкнутом топливном цикле, где перерабатывается Уран-233, для производства топливо необходимо удаленное взаимодействие из-за высокого уровня радиации, провоцируемого продуктами распада Урана-232. Также это верно, если говорить о переработанном тории из-за наличия Тория-228, являющегося частью цепочкой распадов. Более того, в отличие от проверенной технологии переработки уранового топлива, технология по переработке тория сейчас только развивается.

Хотя наличие Урана-232 и осложняет дело, существуют опубликованные документы, где показывается то, что Уран-233 использовался при ядерных испытаниях. США проверяли сложную бомбу с содержанием Урана-233 и плутония в ядре во время операции «Teapot» в 1955 году, хотя при этом были достигнут гораздо меньший тротиловый эквивалент.

Несмотря на то, что топливо на основе тория производит гораздо меньше трансурановых веществ, чем аналоги на основе урана, иногда может вырабатываться некий объем долгоживущих актинидов с длительным радиоактивным фоном, в частности – Протактиний-231.