Информационная поддержка школьников и студентов
Поиск по сайту

Углерод — характеристика элемента и химические свойства. Оксиды углерода (II) и (IV). Карбонилы переходных металлов Влияние угарного газа на организм человека

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа .

Атом углерода имеет 6 электронов: 1s 2 2s 2 2p 2 . Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2р х, а другой, либо 2р у , либо 2р z -орбитали.

Различие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1s 2 2s 1 2p x 1 2p y 1 2p z 1 . Именно такое состояние атома углерода характерно для решетки алмаза — тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp 3 -гибридизацией, а возникающие функции – sp 3 -гибридными. Образование четырех sp 3 -cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р-р- и одна s-s-связи. Помимо sp 3 -гибридизации у атома углерода наблюдается также sp 2 — и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp 2 — гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу. Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp 2 .


При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp 2 -гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил. Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода. Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества .

Химические свойства углерода

Наиболее характерные степени окисления: +4, +2.

При низких температурах углерод инертен, но при нагревании его активность возрастает.

Углерод как восстановитель:

— с кислородом
C 0 + O 2 – t° = CO 2 углекислый газ
при недостатке кислорода — неполное сгорание:
2C 0 + O 2 – t° = 2C +2 O угарный газ

— со фтором
С + 2F 2 = CF 4

— с водяным паром
C 0 + H 2 O – 1200° = С +2 O + H 2 водяной газ

— с оксидами металлов. Таким образом выплавляют металл из руды.
C 0 + 2CuO – t° = 2Cu + C +4 O 2

— с кислотами – окислителями:
C 0 + 2H 2 SO 4 (конц.) = С +4 O 2 ­ + 2SO 2 ­ + 2H 2 O
С 0 + 4HNO 3 (конц.) = С +4 O 2 ­ + 4NO 2 ­ + 2H 2 O

— с серой образует сероуглерод:
С + 2S 2 = СS 2 .

Углерод как окислитель:

— с некоторыми металлами образует карбиды

4Al + 3C 0 = Al 4 C 3

Ca + 2C 0 = CaC 2 -4

— с водородом — метан (а также огромное количество органических соединений)

C 0 + 2H 2 = CH 4

— с кремнием, образует карборунд (при 2000 °C в электропечи):

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО 3 , доломита – MgCO 3 *CaCO 3 ; гидрокарбонатов – Mg(НCO 3) 2 и Са(НCO 3) 2 , СО 2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

Неорганические соединения углерода

Ни ионы С 4+ , ни С 4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Оксид углерода (II) СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение
1) В промышленности (в газогенераторах):
C + O 2 = CO 2

2) В лаборатории — термическим разложением муравьиной или щавелевой кислоты в присутствии H 2 SO 4 (конц.):
HCOOH = H 2 O + CO­

H 2 C 2 O 4 = CO­ + CO 2 ­ + H 2 O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1) с кислородом

2C +2 O + O 2 = 2C +4 O 2

2) с оксидами металлов

C +2 O + CuO = Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 – hn = COCl 2 (фосген)

4) реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5) с переходными металлами образует карбонилы

Ni + 4CO – t° = Ni(CO) 4

Fe + 5CO – t° = Fe(CO) 5

Оксид углерода (IV) СO 2

Углекислый газ, бесцветный, без запаха, растворимость в воде — в 1V H 2 O растворяется 0,9V CO 2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO 2 называется «сухой лёд»); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO 3 – t° = CaO + CO 2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 ­

NaHCO 3 + HCl = NaCl + H 2 O + CO 2 ­

Химические свойства СO 2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na 2 O + CO 2 = Na 2 CO 3

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

NaOH + CO 2 = NaHCO 3

При повышенной температуре может проявлять окислительные свойства

С +4 O 2 + 2Mg – t° = 2Mg +2 O + C 0

Качественная реакция

Помутнение известковой воды:

Ca(OH) 2 + CO 2 = CaCO 3 ¯(белый осадок) + H 2 O

Оно исчезает при длительном пропускании CO 2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO 3 + H 2 O + CO 2 = Сa(HCO 3) 2

Угольная кислота и её соли

H 2 CO 3 — Кислота слабая, существует только в водном растворе:

CO 2 + H 2 O ↔ H 2 CO 3

Двухосновная:
H 2 CO 3 ↔ H + + HCO 3 — Кислые соли — бикарбонаты, гидрокарбонаты
HCO 3 — ↔ H + + CO 3 2- Cредние соли — карбонаты

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO 3 – t° = Na 2 CO 3 + H 2 O + CO 2 ­

Na 2 CO 3 + H 2 O + CO 2 = 2NaHCO 3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO 3 – t° = CuO + CO 2 ­

Качественная реакция — «вскипание» при действии сильной кислоты:

Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 ­

CO 3 2- + 2H + = H 2 O + CO 2 ­

Карбиды

Карбид кальция:

CaO + 3 C = CaC 2 + CO

CaC 2 + 2 H 2 O = Ca(OH) 2 + C 2 H 2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC 2 + 6 H 2 O = 2La(OH) 3 + 2 C 2 H 2 + H 2 .

Be 2 C и Al 4 C 3 разлагаются водой с образованием метана:

Al 4 C 3 + 12 H 2 O = 4 Al(OH) 3 = 3 CH 4 .

В технике применяют карбиды титана TiC, вольфрама W 2 C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na 2 CO 3 + 2 NH 3 + 3 CO = 2 NaCN + 2 H 2 O + H 2 + 2 CO 2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C= O: [:C= N:] –

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H 2 O + 0,5 O 2 = 2 K + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды :
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан: Hg(CN) 2 = Hg + (CN) 2 . Растворы цианидов окисляются до цианатов :

2 KCN + O 2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C= N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH 4 OCN = CO(NH 2) 2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над «виталистической теорией».

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC) 2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO 2 + 2 NH 3 = CO(NH 2) 2 + H 2 O. При 130 0 С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее «азотный аналог» – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H 2 CO 3 – слабая кислота (К 1 =1,3·10 -4 ; К 2 =5·10 -11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H 2 CO 3 ↔ H + + HCO 3 — .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO 2 + H 2 O ↔ H 2 CO 3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H + + CO 3 2- ↔ HCO 3 —

CaCO 3 (тв.) ↔ Ca 2+ + CO 3 2-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует «парниковому эффекту» – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na 2 CO 3) используется в производстве стекла.

Углерод образует два чрезвычайно устойчивых оксида (СО и СO 2), три значительно менее устойчивых оксида (С 3 O 2 , С 5 O 2 и С 12 O 9), ряд неустойчивых или плохо изученных оксидов (С 2 O, С 2 O 3 и др.) и нестехиометрический оксид графита. Среди перечисленных оксидов особую роль играют СО и СO 2 .

ОПРЕДЕЛЕНИЕ

Монооксид углерода при обычных условиях горючий газ без цвета и запаха.

Он довольно токсичен из-за его способности образовывать комплекс с гемоглобином, который примерно в 300 раз устойчивее, чем комплекс кислород-гемоглобин.

ОПРЕДЕЛЕНИЕ

Диоксид углерода при обычных условиях - бесцветный газ, примерно в 1,5 раза тяжелее воздуха, благодаря чему его можно переливать, как жидкость, из одного сосуда в другой.

Масса 1 л CO 2 при нормальных условиях составляет 1,98 г. Растворимость диоксида углерода в воде невелика: 1 объем воды при 20 o С растворяет 0,88 объема CO 2 , а при 0 o С - 1,7 объема.

Прямое окисление углерода при недостатке кислорода или воздуха приводит к образованию СО, при достаточном их количестве образуется СO 2 . Некоторые свойства этих оксидов представлены в табл. 1.

Таблица 1. Физические свойства оксидов углерода.

Получение оксида углерода

Чистый СО может быть получен в лаборатории дегидратированием муравьиной кислоты (НСООН)концентрированной серной кислотой при ~140 °С:

HCOOH = CO + H 2 O.

В небольших количествах диоксид углерода можно легко получить действием кислот на карбонаты:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 .

В промышленном масштабе CO 2 получают главным образом как побочный продукт в процессе синтеза аммиака:

CH 4 + 2H 2 O = CO 2 + 4H 2 ;

CO + H 2 O = CO 2 + H 2 .

Большие количества углекислого газа получают при обжиге известняка:

CaCO 3 = CaO + CO 2 .

Химические свойства оксида углерода

Монооксид углерода химически активен при высоких температурах. Он проявляет себя как сильный восстановитель. Реагирует с кислородом, хлором, серой, аммиаком, щелочами, металлами.

CO + NaOH = Na(HCOO) (t = 120 - 130 o C, p);

CO + H 2 = CH 4 + H 2 O (t = 150 — 200 o C, kat. Ni);

CO + 2H 2 = CH 3 OH (t = 250 — 300 o C, kat. CuO/Cr 2 O 3);

2CO + O 2 = 2CO 2 (kat. MnO 2 /CuO);

CO + Cl 2 = CCl 2 O(t = 125 — 150 o C, kat. C);

4CO + Ni = (t = 50 — 100 o C);

5CO + Fe = (t = 100 — 200 o C, p).

Диоксид углерода проявляет кислотные свойства: реагирует со щелочами, гидратом аммиака. Восстанавливается активными металлами, водородом, углеродом.

CO 2 + NaOH dilute = NaHCO 3 ;

CO 2 + 2NaOH conc = Na 2 CO 3 + H 2 O;

CO 2 + Ba(OH) 2 = BaCO 3 + H 2 O;

CO 2 + BaCO 3 + H 2 O = Ba(HCO 3) 2 ;

CO 2 + NH 3 ×H 2 O = NH 4 HCO 3 ;

CO 2 + 4H 2 = CH 4 + 2H 2 O (t = 200 o C, kat. Cu 2 O);

CO 2 + C = 2CO (t > 1000 o C);

CO 2 + 2Mg = C + 2MgO;

2CO 2 + 5Ca = CaC 2 + 4CaO (t = 500 o C);

2CO 2 + 2Na 2 O 2 = 2Na 2 CO 3 + O 2 .

Применение оксида углерода

Монооксид углерода широко используется как топливо в виде генераторного газа или водяного газа и образуется также привыделении многих металлов из их оксидов восстановлением углем. Генераторный газ получают, пропуская воздух черезраскаленный уголь. В его состав входит около 25% СО, 4% СO2 и 70% N 2 со следами Н 2 и СН 4 62.

Применение диоксида углерода чаще всего обусловлено его физическими свойствами. Его используют как охлаждающий агент, для газирования напитков, при получении облегченных(вспененных) пластмасс, а также как газ для создания инертной атмосферы.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Определите во сколько раз тяжелее воздуха оксид углерода (IV)CO 2 .
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

D air (CO 2) = M r (CO 2) / M r (air);

D air (CO 2) = 44 / 29 = 1,517.

M r (CO 2) = A r (C) + 2×A r (O) = 12 + 2× 16 = 12 + 32= 44.

Ответ Оксид углерода (IV)CO 2 тяжелее воздуха в 1,517 раз.

Химические свойства: При обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300-500 °C, 600-700 °C и 850-1000 °C Степени окисления +4 (напр., CO 2), −4 (напр., CH 4), редко +2 (СО, карбонилы металлов), +3 (C 2 N 2); сродство к электрону 1,27 эВ; энергия ионизации при последовательном переходе от С 0 к С 4+ соответственно 11,2604, 24,383, 47,871 и 64,19 эВ.

Наиболее известны три оксидауглерода:

1)Монооксид углеродаCO (представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.)

2)Диоксид углеродаCO 2 (Не токсичен, но не поддерживает дыхание. Большая концентрация в воздухе вызывает удушье. Недостаток углекислого газа тоже опасен. Углекислый газ в организмах животных имеет и физиологическое значение, например, участвует в регуляции сосудистого тонуса)

3)Диоксид триуглеродаC 3 O 2 (цветный ядовитый газ с резким, удушливым запахом, легко полимеризующийся в обычных условиях с образованием продукта, нерастворимого в воде, жёлтого, красного или фиолетового цвета.)

Соединения с неметаллами имеют свои собственные названия - метан,тетрафторметан.

Продукты горения углерода в кислороде являются CO и CO 2 (монооксид углеродаидиоксид углеродасоответственно). Известен также неустойчивыйнедооксид углеродаС 3 О 2 (температура плавления −111 °C, температура кипения 7 °C) и некоторые другие оксиды (например C 12 O 9 , C 5 O 2 , C 12 O 12). Графит и аморфный углерод начинают реагировать с водородом при температуре 1200 °C, с фтором при 900 °C.

Углекислый газреагируетс водой , образуя слабую угольную кислоту- H 2 CO 3 , которая образует соли - карбонаты. На Земле наиболее широко распространены карбонатыкальция(минеральные формы -мел,мрамор,кальцит,известняки др.) имагния

43 Вопрос. Кремний

Кремний (Si) – стоит в 3 периоде, IV группе главной подгруппы периодич. системы.

Физ. св-ва: кремний существует в двух модификациях: аморфной и кристаллической. Аморфный кремний – порошок бурого цвета р-ряется в расплавах металлов. Кристаллич. кремний – это кристаллы темно-серого цвета, обладающие стальным блеском, твердый и хрупкий. Кремний состоит из трех изотопов.

Хим. св-ва: электронная конфигурация: 1s 2 2s 2 2p 6 3 s 2 3p 2 . Кремний – неметалл. На внешнем энергетич. ур-не кремний имеет 4 е, что обуславливает его степени окисления: +4, -4, -2. Валентность – 2, 4. Аморфный кремний обладает большей реакционной способностью, чем кристаллический. При обычных условиях он взаимодействует со фтором: Si + 2F 2 = SiF 4 .

Из к-т кремний взаимодействует только со смесью азотной и плавиковой кислот:

По отношению к металлам ведет себя по-разному: в расплавленных Zn, Al, Sn, Pb он хорошо растворяется, но не реагирует с ними; с другими расплавами металлов – с Mg, Cu, Fe кремний взаимодействует с образованием силицидов: Si + 2Mg = Mg2Si. Кремний горит в кислороде: Si + O2 = SiO2 (песок).

Получение: Свободн. кремний м.б.получен прокаливанием с магнием мелкого белого песка, который по хим. составу является почти чистым окислом кремния,SiO2+2Mg=2MgO+Si.

Оксид кремния(II)SiO - смолоподобное аморфное в-во, при обычных условиях устойчиво к действию кислорода. Относится к несолеобразующим оксидам. В природе SiO не встречается. Газообразный моноксид кремния обнаружен в газопылевых облаках межзвездных сред и на солнечных пятнах.Получение: Моноксид кремния можно получить, нагревая кремний в недостатке кислорода при температуре 2Si + O 2 нед → 2SiO. При нагревании в избытке кислорода образуется оксид кремния(IV) SiO2: Si + O 2 изб → SiO 2 .

Также SiO образуется при восстановлении SiO2 кремнием при высоких температурах: SiO 2 + Si → 2SiO.

Oксид кремния(IV)SiO2- бесцветные кристаллы , обладают высокой твёрдостью и прочностью.Св-ва: Относится к группе кислотн. оксидов.При нагревании взаимодействует с основн. оксидами и щелочами.Р-ряется в плавиковой к-те.SiO2 относится к группе стеклообразующих оксидов, т.е. склонен к образованию переохлажденного расплава - стекла.Один из лучших диэлектриков (электрич.ток не проводит).Имеет атомную кристал.решетку.

Нитрид- бинарное неорганич. хим.соединение, представляющее собой соединение кремния и азота Si 3 N 4 .Св-ва: Нитрид кремния обладает хорошими мех.и физ.-хим. св-вами. Благодаря нитридкремниевой связи значит. улучшаются эксплуатационные св-ва огнеупоров на основе карбида кремния, периклаза, форстерита и т. п. Огнеупоры на нитридной связке обладают высокой термо- и износостойкостью,имеют превосходную стойкость к растрескиванию,а также воздействию к-т, щелочей, агрессивных расплавов и паров металлов.

Хлорид кремния(IV)Четыреххлористый кремний - бесцветное в-во, хим. формула кот. SiCl 4 .Применяется в производстве кремний-органич. соединений; применяется для создания дымовых завес. Технич. четыреххлористый кремний предназначен для производства этилсиликатов, аэросила.

Карбид кремния - бинарное неорганич. хим. соединение кремния с углеродом SiC. В природе встречается в виде чрезвычайно редкого минерала - муассанита.

Диоксид кремния или кремнезем – стойкое соединение Si , широко распространен в природе. Реагирует со сплавлением его с щелочами, основными оксидами, образуя соли кремниевой кислоты – силикаты. Получение: в промышленности кремний в чистом виде получают восстановлением диоксида кремния коксом в электропечах: SiO 2 + 2С = Si + 2СO 2 .

В лаборатории кремний получают прокаливанием с магнием или алюминием белого песка:

SiO 2 + 2Mg = 2MgO + Si.

3SiO 2 + 4Al = Al 2 О 3 + 3Si.

Кремний образует к-ты: Н 2 SiO 3 – мета-кремниевая к-та; Н 2 Si 2 O 5 – двуметакремниевая к-та.

Нахождение в природе: минерал кварц – SiO2. Кристаллы кварца имеют форму шестигранной призмы, бесцветные и прозрачные, назыв.горным хрусталем. Аметист – горный хрусталь, окрашенный примесями в лиловый цвет; дымчатый топаз окрашен в буроватый цвет; агат и яшма – кристаллич. разновидности кварца. Аморфный кремнезем менее распространен и существует в виде минерала опала. Диатомит, трепел или кизельгур (инфузорная земля) – землистые формы аморфного кремния.Общ. формула кремниевых к-т – n SiO2? m H2O. В природе нах-ся в основном в виде солей, в свободн. форме выделены немногие, напр, HSiO (ортокремниевая) и H 2 SiO 3 (кремниевая или метакремниевая).

Получение кремниевой кислоты:

1) взаимодействие силикатов щелочн. металлов с к-тами: Na 2 SiO 3 + 2HCl = H 2 SiO 3 + 2NaCl;

2) кремневая к-та явл. термически неустойчивой: H 2 SiO 3 = H 2 O + SiO 2 .

H 2 SiO 3 образует пересыщенные р-ры, в кот. в рез-те полимеризации образует коллоиды. Используя стабилизаторы, можно получить стойкие коллоиды (золи). Их используют в производстве. Без стабилизаторов из р-ра кремниевой к-ты образуется гель, осушив который можно получить силикагель (используют как адсорбент).

Силикаты – соли кремниевой к-ты. Силикаты распространены в природе, земная кора состоит в большинстве из кремнезема и силикатов (полевые шпаты, слюда, глина, тальк и др.). Гранит, базальт и другие горные породы имеют в своем составе силикаты. Изумруд, топаз, аквамарин – кристаллы силикатов. Растворимы только силикаты натрия и калия, остальные – нерастворимы. Силикаты имеют сложн. хим. состав: Каолин Al 2 O 3 ; 2SiO 2 ; 2H 2 O или H 4 Al 2 SiO 9 .

Асбест CaO; 3MgO; 4SiO 2 или CaMgSi 4 O 12 .

Получение: сплавление оксида кремния со щелочами или карбонатами.

Растворимое стекло – силикаты натрия и калия. Жидкое стекло – водн. р-ры силикатов калия и натрия. Его использ. для изготовления кислотоупорного цемента и бетона, керосинонепроницаемых штукатурок, огнезащитных красок. Алюмосиликаты – силикаты, содержащие алюминий (полевой шпат, слюда ). Полевые шпаты состоят помимо оксидов кремния и алюминия из оксидов калия, натрия, кальция. Слюды имеют в своем составе, кроме кремния и алюминия, еще водород, натрий или калий, реже – кальций, магний, железо. Граниты и гнейсы (горные породы) – сост. из кварца, полевого шпата и слюды. Горн. породы и минералы, находясь на пов-ти Земли, вступают во взаимодействие с водой и воздухом, что вызывает их изменение и разрушение. Этот процесс назыв. выветриванием .

Применение: силикатные породы (гранит) использ. как строительный материал, силикаты – в кач-ве сырья при производстве цемента, стекла, керамики, наполнителей; слюду и асбест – как электро– и термоизоляцию.

Поговорим о том, как определить характер оксида. Начнем с того, что все вещества принято подразделять на две группы: простые и сложные. Простые вещества подразделяют на металлы и неметаллы. Сложные соединения делят на четыре класса: основания, оксиды, соли, кислоты.

Определение

Так как характер оксидов зависит от их состава, для начала дадим определение данному классу неорганических веществ. Оксиды представляют собой которые состоят из двух элементов. Особенность их в том, что кислород всегда располагается в формуле вторым (последним) элементом.

Самым распространенным вариантом считают взаимодействие с кислородом простых веществ (металлов, неметаллов). Например, при взаимодействии магния с кислородом образуется проявляющий основные свойства.

Номенклатура

Характер оксидов зависит от их состава. Существуют определенные правила, по которым называют такие вещества.

Если оксид образован металлами главных подгрупп, валентность не указывается. Например, оксид кальция СаО. Если же в соединении первым располагается металл подобной подгруппы, который обладает переменной валентностью, то она обязательно указывается римской цифрой. Ставится после названия соединения в круглых скобках. Например, существуют оксиды железа (2) и (3). Составляя формулы оксидов, нужно помнить о том, что сумма степеней окисления в нем должна быть равна нулю.

Классификация

Рассмотрим, как характер оксидов зависит от степени окисления. Металлы, имеющие степень окисления +1 и +2, образуют с кислородом основные оксиды. Специфичной особенностью таких соединений является основный характер оксидов. Такие соединения вступают в химическое взаимодействие с солеобразующими оксидами неметаллов, образуя с ними соли. Кроме того, реагируют с кислотами. Продукт взаимодействия зависит от того, в каком количестве были взяты исходные вещества.

Неметаллы, а также металлы со степенями окисления от +4 до +7, образуют с кислородом кислотные оксиды. Характер оксидов предполагает взаимодействие с основаниями (щелочами). Результат взаимодействия зависит от того, в каком количестве была взята исходная щелочь. При ее недостатке в качестве продукта взаимодействия образуется кислая соль. Например, в реакции оксида углерода (4) с гидроксидом натрия образуется гидрокарбонат натрия (кислая соль).

В случае взаимодействия кислотного оксида с избыточным количеством щелочи продуктом реакции будет средняя соль (карбонат натрия). Характер кислотных оксидов зависит от степени окисления.

Они подразделяются на солеобразующие оксиды (в которых степень окисления элемента равна номеру группы), а также на безразличные оксиды, не способные образовывать соли.

Амфотерные оксиды

Есть и амфотерный характер свойств оксидов. Суть его заключается во взаимодействии этих соединений и с кислотами, и со щелочами. Какие оксиды проявляют двойственные (амфотерные) свойства? К ним относят бинарные соединения металлов со степенью окисления +3, а также оксиды бериллия, цинка.

Способы получения

Существуют различные способы Самым распространенным вариантом считают взаимодействие с кислородом простым веществ (металлов, неметаллов). Например, при взаимодействии магния с кислородом образуется проявляющий основные свойства.

Кроме того, получить оксиды можно и при взаимодействии сложных веществ с молекулярных кислородом. Например, при горении пирита (сульфида железа 2) можно получить сразу два оксида: серы и железа.

Еще одним вариантом получения оксидов считается реакция разложения солей кислородсодержащих кислот. Например, при разложении карбоната кальция можно получить углекислый газ и оксид кальция

Основные и амфотерные оксиды образуются и при разложении нерастворимых оснований. Например, при прокаливании гидроксида железа (3) образуется оксид железа (3), а также водяной пар.

Заключение

Оксиды являются классом неорганических веществ, имеющем широкое промышленное применение. Они используются в строительной сфере, фармацевтической промышленности, медицине.

Кроме того, амфотерные оксиды часто используют в органическом синтезе в качестве катализаторов (ускорителей химических процессов).

Известны два оксида углерода: СО и СO 2 .

Оксид углерода (II) СО (угарный газ). В молекуле этого окси­да атом углерода находится в невозбужденном состоянии. За счет двух р-электронов он образует две связи с атомом кислорода. Тре­тья связь образуется по донорно-акцепторному механизму, при­чем кислород является донором электронной пары, которую атом углерода акцептирует на свободную 2р-орбиталь.

Оксид углерода (II) СО образуется в процессе сгорания угля при недостатке кислорода. В промышленности его получают про­пусканием углекислого газа над раскаленным углем:

СО 2 +С=2СО

В лабораторных условиях СО получают действием концент­рированной серной кислоты на муравьиную кислоту при нагревании (H 2 SO 4 отнимает воду):

НСООН®H 2 O+CO­

Оксид углерода (II) СО - бесцветный газ, без запаха. Очень

к мало растворим в воде. Ядовит. Допустимое содержание СО в

производственных помещениях составляет 0,03 мг в 1 л воздуха. В количествах, опасных для жизни, он содержится в выхлопных газах автомобилей. Отравляющее действие состоит в

том, что он необратимо взаимодействует с гемоглобином крови,

вследствие чего прекращается перенос кислорода от легких к

В химическом отношении СО - инертное соединение (при низкой температуре). При повышении температуры до 200°С и давлении 15 10 5 Па оксид углерода (II) реагирует с NaOH, обра­зуя натриевую соль муравьиной кислоты:

Окисление до СO 2 происходит при температуре 700°С: 2СО+О 2 =2CO 2 ­

При взаимодействии с парами воды образуется СO 2 и Н 2: СО+Н 2 O®CO 2 ­+ H 2 ­

СО - энергичный восстановитель. Он восстанавливает мно­гие металлы из их оксидов, что используется в металлургии при получении металлов из руд:

Fe 2 O 3 +3CO=2Fe+3CO 2 ­

В присутствии катализаторов (платины или активированного угля) или под действием прямого солнечного света угарный газ со­единяется с хлором, образуя чрезвычайно ядовитый газ - фосген:

СО+Сl 2 ®СОСl 2

Уникальной является способность оксида углерода (II) при повышенных температурах и давлениях образовывать с некото­рыми металлами необычные (комплексные) соединения, назы­ваемые карбонилами:

При обычных условиях жидкостями являются карбонилы Ni(CO) 4 , Fe(CO) 5 , Ru(CO) 5 , Os(CO) 5 . Все остальные представляют собой кристаллические вещества. Карбонилы металлов диамаг­нитны, что указывает на наличие спаренных электронов. Все они отличаются высокой устойчивостью по отношению к различным химическим реагентам. Относительная независимость в трактов­ке поведения s- и p-электронов позволяет понять особенность электронной структуры карбонильных комплексов. Если металл, соединяясь с лигандом, обнаруживает невысокие значения ва­лентности, то в s-связях заряд переносится от лиганда к металлу, а в p-связях, наоборот, от металла к лиганду. В результате атом металла переходит в состояние близкое к нейтральному. Именно так ведет себя молекула СО, выполняющая роль акцептора в p- связях.

При нагревании карбонилы металлов разлагаются на СО и ме­талл, что используется для получения металлов высокой чистоты.

Оксид углерода (IV) СО 2 (углекислый газ) образуется в при­роде при горении и гниении органических веществ. Содержится в воздухе (объемная доля 0,03%), а также во многих минеральных источниках (нарзан, боржоми). Выделяется при дыхании живот­ных и растений.

В лаборатории его можно получить действием разбавленных кислот на карбонаты:

СаСО 3 +2НСl=СаСl 2 +CO 2 ­+Н 2 О

В промышленности получают при обжиге известняка:

СаСO 3 =СаО+CO 2 ­

Структурная формула молекулы СО 2: О=С=О. Она имеет ли­нейную форму. Связь углерода с кислородом полярная. Однако благодаря симметричному расположению связей сама молекула СО 2 неполярна.

При обычных условиях СО 2 - бесцветный газ, в 1,5 раза тяже­лее воздуха. Растворим в воде (при 0°С 1,7 л СО 2 в 1 л Н 2 О). Не поддерживает горения и дыхания, но служит источником питания зеленых растений. При сильном охлаждении СO 2 кристаллизуется в виде белой снегообразной массы, которая в спрессованном состоянии испаряется очень медленно, понижая температуру окружающей среды. Этим объясняется ее применение в качестве «сухого льда».