Информационная поддержка школьников и студентов
Поиск по сайту

А.с. спирин, "биосинтез белков, мир рнк и происхождение жизни". Биосинтез белка (реализация наследственной информации) Общая схема синтеза белка

Биосинтез белков в клетках представляет собой последовательность реакций матричного типа, в ходе которых последовательная передача наследственной информации с одного типа молекул на другой приводит к образованию полипептидов с генетически обусловленной структурой.

Биосинтез белков представляет собой начальный этап реализации, или экспрессии генетической информации. К главным матричным процессам, обеспечивающим биосинтез белков, относятся транскрипция ДНК и трансляция мРНК. Транскрипция ДНК заключается в переписывании информации с ДНК на мРНК (матричную, или информационную РНК). Трансляция мРНК заключается в переносе информации с мРНК на полипептид. Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы.

нетранскрибируемая цепь ДНК

транскрибируемая цепь ДНК

транскрипция ДНК

кодоны мРНК

трансляция мРНК

антикодоны тРНК

аминокислоты белка

метионин

На схеме видно, что генетическая информация о структуре белка хранится в виде последовательности триплетов ДНК. При этом лишь одна из цепей ДНК служит матрицей для транскрипции (такая цепь называется транскрибируемой). Вторая цепь является комплементарной по отношению к транскрибируемой и не участвует в синтезе мРНК.

Молекула мРНК служит матрицей для синтеза полипептида на рибосомах. Триплеты мРНК, кодирующие определенную аминокислоту, называются кодоны. В трансляции принимают участие молекулы тРНК. Каждая молекула тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону мРНК. Каждая молекула тРНК способна переносить строго определенную аминокислоту. Соединение тРНК с аминокислотой называется аминоацил–тРНК.

Молекула тРНК по общей конформации напоминает клеверный лист на черешке. «Вершина листа» несет антикодон. Существует 61 тип тРНК с разными антикодонами. К «черешку листа» присоединяется аминокислота (существует 20 аминокислот, участвующих в синтезе полипептида на рибосомах). Каждой молекуле тРНК с определенным антикодоном соответствует строго определенная аминокислота. В то же время, определенной аминокислоте обычно соответствует несколько типов тРНК с разными антикодонами. Аминокислота ковалентно присоединяется к тРНК с помощью ферментов – аминоацил-тРНК-синтетаз. Эта реакция называется аминоацилированием тРНК.

На рибосомах к определенному кодону мРНК с помощью специфического белка присоединяется антикодон соответствующей молекулы аминоацил-тРНК. Такое связывание мРНК и аминоацил-тРНК называется кодонзависимым. На рибосомах аминокислоты соединяются между собой с помощью пептидных связей, а освободившиеся молекулы тРНК уходят на поиски свободных аминокислот.

Рассмотрим подробнее основные этапы биосинтеза белков.

1 этап. Транскрипция ДНК. На транскрибируемой цепи ДНК с помощью ДНК-зависимой РНК-полимеразы достраивается комплементарная цепь мРНК. Молекула мРНК является точной копией нетранскрибируемой цепи ДНК с той разницей, что вместо дезоксирибонуклеотидов в ее состав входят рибонуклеотиды, в состав которых вместо тимина входит урацил.

2 этап. Процессинг (созревание) мРНК. Синтезированная молекула мРНК (первичный транскрипт) подвергается дополнительным превращениям. В большинстве случаев исходная молекула мРНК разрезается на отдельные фрагменты. Одни фрагменты – интроны – расщепляются до нуклеотидов, а другие – экзоны – сшиваются в зрелую мРНК. Процесс соединения экзонов «без узелков» называетсясплайсинг.

Сплайсинг характерен для эукариот и архебактерий, но иногда встречается и у прокариот. Существует несколько видов сплайсинга. Сущность альтернативного сплайсинга заключается в том, что одни и те же участки исходной мРНК могут быть и интронами, и экзонами. Тогда одному и тому же участку ДНК соответствует несколько типов зрелой мРНК и, соответственно, несколько разных форм одного и того же белка. Сущность транс–сплайсинга заключается в соединение экзонов, кодируемых разными генами (иногда даже из разных хромосом), в одну зрелую молекулу мРНК.

3 этап. Трансляция мРНК. Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию (продолжение) и терминацию (окончание).

Инициация. Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.

Первоначально образуется инициирующий комплекс, в состав которого входят: малая субъединица рибосомы, специфические белки (факторы инициации) и специальная инициаторная метиониновая тРНК с аминокислотой метионином – Мет–тРНКМет. Инициирующий комплекс узнает начало мРНК, присоединяется к ней и скользит до точки инициации (начала) биосинтеза белка: в большинстве случаев это стартовый кодон АУГ. Между стартовым кодоном мРНК и антикодоном метиониновой тРНК происходит кодонзависимое связывание с образованием водородных связей. Затем происходит присоединение большой субъединицы рибосомы.

При объединении субъединиц образуется целостная рибосома, которая несет два активных центра (сайта): А–участок (аминоацильный, который служит для присоединения аминоацил-тРНК) и Р–участок (пептидилтрансферазный, который служит для образования пептидной связи между аминокислотами).

Первоначально Мет–тРНКМет находится на А–участке, но затем перемещается на Р–участок. На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, который комплементарен кодону мРНК, следующему за кодоном АУГ. В нашем примере это Гли–тРНКГли с антикодоном ЦЦГ, который комплементарен кодону ГГЦ. В результате кодонзависимого связывания между кодоном мРНК и антикодоном аминоацил-тРНК образуются водородные связи. Таким образом, на рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Ковалентная связь между первой аминокислотой (метионином) и её тРНК разрывается.

После образования пептидной связи между двумя первыми аминокислотами рибосома сдвигается на один триплет. В результате происходит транслокация (перемещение) инициаторной метиониновой тРНКМет за пределы рибосомы. Водородная связь между стартовым кодоном и антикодоном инициаторной тРНК разрывается. В результате свободная тРНКМет отщепляется и уходит на поиск своей аминокислоты.

Вторая тРНК вместе с аминокислотой (в нашем примере Гли–тРНКГли) в результате транслокации оказывается на Р–участке, а А–участок освобождается.

Элонгация. Сущность элонгации заключается в присоединении последующих аминокислот, то есть в наращивании полипептидной цепи. Рабочий цикл рибосомы в процессе элонгации состоит из трех шагов: кодонзависимого связывания мРНК и аминоацил-тРНК на А–участке, образования пептидной связи между аминокислотой и растущей полипептидной цепью и транслокации с освобождением А–участка.

На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, соответствующим следующему кодону мРНК (в нашем примере это Тир–тРНКТир с антикодоном АУА, который комплементарен кодону УАУ).

На рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Связь между предыдущей аминокислотой и её тРНК (в нашем примере между глицином и тРНКГли) разрывается.

Затем рибосома смещается еще на один триплет, и в результате транслокации тРНК, которая была на Р–участке (в нашем примере тРНКГли), оказывается за пределами рибосомы и отщепляется от мРНК. А–участок освобождается, и рабочий цикл рибосомы начинается сначала.

Терминация. Заключается в окончании синтеза полипептидной цепи.

В конце концов, рибосома достигает такого кодона мРНК, которому не соответствует ни одна тРНК (и ни одна аминокислота). Существует три таких нонсенс–кодона: УАА («охра»), УАГ («янтарь»), УГА («опал»). На этих кодонах мРНК рабочий цикл рибосомы прерывается, и наращивание полипептида прекращается. Рибосома под воздействием определенных белков вновь разделяется на субъединицы.

Модификация белков. Как правило, синтезированный полипептид подвергается дальнейшим химическим превращениям. Исходная молекула может разрезаться на отдельные фрагменты; затем одни фрагменты сшиваются, другие гидролизуются до аминокислот. Простые белки могут соединяться с самыми разнообразными веществами, образуя гликопротеины, липопротеины, металлопротеины, хромопротеины и другие сложные белки. Кроме того, аминокислоты уже в составе полипептида могут подвергаться химическим превращениям. Например, аминокислота пролин, входящая в состав белка проколлагена, окисляется до гидроксипролина. В результате из проколлагена образуется коллаген – основной белковый компонент соединительной ткани.

Реакции модификации белков не являются реакциями матричного типа. Такие биохимические реакции называются ступенчатыми.

Энергетика биосинтеза белков. Биосинтез белков – очень энергоемкий процесс. При аминоацилировании тРНК затрачивается энергия одной связи молекулы АТФ, при кодонзависимом связывании аминоацил-тРНК – энергия одной связи молекулы ГТФ, при перемещении рибосомы на один триплет – энергия одной связи еще одной молекулы ГТФ. В итоге на присоединение аминокислоты к полипептидной цепи затрачивается около 90 кДж/моль. При гидролизе же пептидной связи высвобождается лишь 2 кДж/моль. Таким образом, при биосинтезе большая часть энергии безвозвратно теряется (рассеивается в виде тепла).

Генетический код, его основные свойства

В ходе реакций матричного синтеза на основании генетического кода синтезируется полипептид с наследственно обусловленной структурой. Отрезок ДНК, содержащий информацию о структуре определенного полипептида, называется ген.

Однако, ген – это не просто участок ДНК, а единица наследственной информации, носителем которой являются нуклеиновые кислоты. Установлено, что ген имеет сложную структуру.

В большинстве случаев кодирующие участки (экзоны) разделены некодирующими (интронами). В то же время, благодаря альтернативному сплайсингу, деление участка ДНК на кодирующие и некодирующие оказывается условным. Некоторые участки ДНК могут перемещаться относительно друг друга – их называют мобильными генетическими элементами (МГЭ). Многие гены представлены несколькими копиями – тогда один и тот же белок кодируется разными участками ДНК. Еще сложнее закодирована генетическая информация у вирусов. У многих из них обнаружены перекрывающиеся гены: один и тот же участок ДНК может транскрибироваться с разных стартовых точек.

Процесс экспрессии генов обладает гибкостью: одному участку ДНК может соответствовать несколько полипептидов; один полипептид может кодироваться разными участками ДНК. Окончательная модификация белков происходит с помощью ферментов, которые кодируются различными участками ДНК.

Общие свойства генетического кода

Отражение одних объектов с помощью других называется кодированием. Отражение структуры белков в виде триплетов ДНК называется кодом ДНК, или генетическим кодом. Благодаря генетическому коду устанавливается однозначное соответствие между нуклеотидными последовательностями нуклеиновых кислот и аминокислотами, входящими в состав белков. Генетический код обладает следующими основными свойствами:

1. Генетический код триплетен: каждая аминокислота кодируется триплетом нуклеотидов ДНК и соответствующим триплетом иРНК. При этом кодоны ничем не отделены друг от друга (отсутствуют «запятые»).

2. Генетический код является избыточным (вырожденным): почти все аминокислоты могут кодироваться разными кодонами. Только двум аминокислотам соответствует по одному кодону: метионину (АУГ) и триптофану (УГГ). Зато лейцину, серину и аргинину соответствует по 6 разных кодонов.

3. Генетический код является неперекрывающимся: каждая пара нуклеотидов принадлежит только одному кодону (исключения обнаружены у вирусов).

4. Генетический код един для подавляющего большинства биологических систем. Однако имеются и исключения, например, у инфузорий и в митохондриях разных организмов. Поэтому генетический код называют квазиуниверсальным.

биосинтез белка происходит иначе. В биосинтезе белка активное участие принимают нуклеи-новые кислоты — ДНК и РНК , а в качестве необходимой энергии использует-ся энергия химических связей высокомолекулярных органических соедине-ний, имеющихся в клетке , главным образом — АТФ.

Последовательность нуклеотидов ДНК (т. е. генов), или генетический код, представляет собой систему записи информации о после-довательности расположения аминокислот в белках и фактически является шифром, обеспечивающим биосинтез белка.

Генетическая информация в соответствии с генетическим кодом в какой-то момент переписывается с ДНК, как с матрицы, в нуклеотидную последо-вательность нити информационной РНК (иРНК). Она и определяет затем по-следовательность сборки аминокислот соответствующей белковой молекулы.

Важно отметить, что генетический код является универсальным для всех организмов , существующих на Земле. Это свойство универсальности ко-да позволяет сделать важный мировоззренческий вывод о единстве происхож-дения всех живых организмов — прокариот , эукариот и вирусов .

В настоящее время расшифрованы триплеты для всех 20 аминокислот, входящих 8 состав природных белков. Генетический код был расшифрован в 60-е гг. XX в. Это осуществили учёные-биохимики X. Корана , М. Ниренберг и Р. Холли . За рас-шифровку генетического кода и его роли в синтезе белка названным учёным в 1968 году была присуждена Нобелевская премия.

В биосинтезе активное участие принимают многие структурные компоненты клетки: различные молекулы РНК, рибосомы и моле-кулы разных аминокислот, из которых строится полимерная молекула белка. Хотя план строения белка закодирован в ДНК, сама она участия в синте-зе белковых молекул не принимает, а служит лишь матрицей для синтеза информацион-ной РНК (иРНК). Поэтому процесс синтеза белка складывается из двух этапов: создание иРНК и сборка молекулы белка по информа-ции в этой молекуле иРНК .

Синтез белковых молекул происходит непрерывно. Он идёт с большой скоростью: в 1 минуту образуется от 50 до 60 тысяч пептидных связей. Синтез одной молекулы длится обычно 3-4 сек. Длительность жизни белков в сред-нем составляет около двух суток, хотя отдельные белки не разрушаются в те-чение нескольких месяцев. В результате половина белков тела человека (все-го это около 17 кг белка) обновляется примерно за 80 дней. Материал с сайта

Процесс биосинтеза на всех его этапах идёт с участием многих фермен-тов и с непременным потреблением большого количества энергии.

Чёткая последовательность происходящих процессов, их матричная организованность и распределение функций между всеми задействованными компонентами приводят к выводу, что биосинтез белка — это целостная моле-кулярная система выполнения сложных реакций, обеспечивающая создание веществ, необходимых для жизни.

Биосинтез белка — пластическая часть обмена веществ клетки. Характеризуется матричной основой сборки молекул бел-ка. Синтез происходит в рибосомах при непосредственном участии иРНК, тРНК, рРНК и мономеров — аминокислот. В отличие от фотосинтеза биосин-тез белка идёт под строгим контролем генетической информации, списанной иРНК с генетического кода ДНК. Процесс биосинтеза белковой молекулы обусловлен двумя этапами: транскрипцией (списание) и трансляцией (пере-дача).

Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.

Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.

Например, участок Т-Т-Т соответствует аминокислоте лизину, отрезок А-Ц-А - цистину, Ц-А-А - валину н т. д. Разных аминокислот - 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.

Синтез белка - сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :

В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

  1. Первый этап - синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» — переписывание).
  2. На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов - антикодонов, с помощью которых определяется свой триплет-кодон.
  3. Третий этап - это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.
  4. На четвертом этапе происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

Хромосомы (от греч. «хрома» - цвет, «сома» - тело) - очень важные структуры ядра клетки. Играют главную роль в процессе клеточного деления, обеспечивая передачу наследственной информации от одного поколения к другому. Они представляют собой тонкие нити ДНК, связанные с белками. Нити называются хроматидами, состоящими из ДНК, основных белков (гистонов) и кислых белков.

В неделящейся клетке хромосомы заполняют весь объем ядра и не видны под микроскопом. Перед началом деления происходит спирализация ДНК и каждая хромосома становится различимой под микроскопом. Во время спирализации хромосомы сокращаются в десятки тысяч раз. В таком состоянии хромосомы выглядят как две лежащие рядом одинаковые нити (хроматиды), соединенные общим участком - центромерой.

Для каждого организма характерно постоянное количество и структура хромосом. В соматических клетках хромосомы всегда парные, то есть в ядре есть две одинаковые хромосомы, составляющие одну пару. Такие хромосомы называют гомологичными, а парные наборы хромосом в соматических клетках называют диплоидными.

Так, диплоидный набор хромосом у человека состоит из 46 хромосом, образуя 23 пары. Каждая пара состоит из двух одинаковых (гомологичных) хромосом.

Особенности строения хромосом позволяют выделить их 7 групп, которые обозначаются латинскими буквами А, В, С, D, Е, F, G. Все пары хромосом имеют порядковые номера.

У мужчин и женщин есть 22 пары одинаковых хромосом. Их называют аутосомы. Мужчина и женщина отличаются одной парой хромосом, которые называют половыми. Они обозначаются буквами — большая X (группа С) и маленькая Y (группа С,). В женском организме 22 пары аутосом и одна пара (XX) половых хромосом. У мужчин — 22 пары аутосом н одна пара (XY) половых хромосом.

В отличие от соматических клеток, половые клетки содержат половинный набор хромосом, то есть содержат по одной хромосоме каждой пары! Такой набор называют гаплоидным. Гаплоидный набор хромосом возникает в процессе созревания клеток.

Белки играют очень важную роль в жизнедеятельности организмов, выполняют защитные, структурные, гормональные, энергетические функции. Обеспечивают рост мышечной и костной ткани. Белки информируют о строении клетки, о её функциях и биохимических свойствах, входят в состав ценных, полезных организму продуктов питания (яиц, молочных продуктов, рыбы, орехов, бобовых, ржи и пшеницы). Усвояемость такой пищи объясняется биологической ценностью. При равном показателе количества белка легче будет усваиваться тот продукт, чья ценность выше. Дефектные полимеры должны удаляться из организма и заменяться новыми. Этот процесс протекает при синтезе белков в клетках.

Какими бывают белки

Вещества, состоящие только из остатков аминокислот, называются простыми белками (протеинами). В случае необходимости используется их энергетическое свойство, поэтому людям, ведущим здоровый образ жизни, зачастую дополнительно нужен прием протеина. Сложные же белки, протеиды, имеют в своем составе простой белок и небелковую часть. Десять аминокислот в белке являются незаменимыми, это означает, что организм не может синтезировать их самостоятельно, они поступают из пищи, другой же десяток - заменимый, то есть их можно создать из других аминокислот. Так начинается жизненно необходимый для всех организмов процесс.

Основные этапы биосинтеза: откуда берутся белки

Новые молекулы берутся в результате биосинтеза - химической реакции соединения. Существует два основных этапа синтеза белков в клетке. Это транскрипция и трансляция. Транскрипция происходит в ядре. Это считывание с ДНК (дезоксирибонуклеиновой кислоты), которая несет информацию о будущем белке, на РНК (рибонуклеиновую кислоту), которая переносит эту информацию с ДНК в цитоплазму. Происходит это по причине того, что ДНК непосредственно в биосинтезе участия не принимает, она только несет сведения, не имея способности выходить в цитоплазму, где синтезируется белок, и выполняя только функцию носителя генетической информации. Транскрипция же позволяет считать данные с матрицы ДНК на РНК по принципу комплементарности.

Роль РНК и ДНК в процессе

Итак, запускает синтез белков в клетках цепочка ДНК, которая несет информацию о каком-либо конкретном белке и называется геном. Цепочка ДНК в процессе транскрипции расплетается, то есть её спираль начинает распадаться в линейную молекулу. С ДНК информация должна преобразоваться на РНК. Напротив тимина в данном процессе должен становиться аденин. Цитозин же имеет в качестве пары гуанин, точно так же, как ДНК. Напротив аденина РНК становится урацил, потому как в РНК такого нуклеотида, как тимин, не существует, он заменяется просто урациловым нуклеотидом. С гуанином соседствует цитозин. Напротив аденина становится урацил, а в паре с тимином располагается аденин. Эти молекулы РНК, которые становятся напротив, называются информационными РНК (иРНК). Они способны через поры выходить из ядра в цитоплазму и рибосомы, которые, собственно, и выполняют функцию синтеза белков в клетках.

О сложном простыми словами

Теперь же совершается сборка из аминокислотных последовательностей полипептидной цепочки белка. Транскрипцией можно назвать считывание информации о будущем белке с матрицы ДНК на РНК. Это можно определить как первый этап. После того как РНК выходит из ядра, она должна попасть к рибосомам, где происходит второй этап, который называется трансляцией.

Трансляция - это уже переход РНК, то есть перенос информации с нуклеотидов на молекулу белка, когда РНК говорит о том, какая последовательность аминокислот должна быть в веществе. В таком порядке информационная РНК попадает в цитоплазму к рибосомам, которые осуществляют синтез белков в клетке: А (аденин) - Г (гуанин) - У (урацил) - Ц (цитозин) - У (урацил) - А (аденин).

Зачем нужны рибосомы

Для того чтобы произошла трансляция и в результате образовался белок, нужны такие компоненты, как сама информационная РНК, транспортная РНК, а также рибосомы в качестве "фабрики", на которой производится белок. В данном случае функционируют две разновидности РНК: информационная, которая образовалась в ядре с ДНК, и транспортная. Молекула второй кислоты имеет вид клевера. Этот "клевер" присоединяет к себе аминокислоту и несет её к рибосомам. То есть он выполняет транспортировку органических соединений непосредственно к "фабрике" по их образованию.

Как работает рРНК

Также существуют рибосомальные РНК, которые входят в состав самой рибосомы и выполняют синтез белка в клетке. Получается, что рибосомы являются немембранными структурами, они не имеют оболочек, как, например, ядро или эндоплазматическая сеть, а состоят просто из белков и рибосомальных РНК. Что же происходит, когда последовательность из нуклеотидов, то есть информационная РНК, попадает к рибосомам?

Транспортная РНК, которая находится в цитоплазме, подтягивает к себе аминокислоты. Откуда же взялись аминокислоты в клетке? А образуются они вследствие расщепления белков, которые поступают внутрь с пищей. Эти соединения переносятся током крови к клеткам, где происходит продуцирование необходимых для организма белков.

Конечный этап синтеза белков в клетках

Аминокислоты плавают в цитоплазме так же, как и транспортные РНК, и когда происходит непосредственно сборка полипептидной цепи, эти транспортные РНК начинают с ними соединяться. Однако не во всякой последовательности и далеко не любая транспортная РНК может соединиться со всеми видами аминокислот. Существует определенный участок, к которому присоединяется необходимая аминокислота. Второй же участок транспортной РНК называется антикодоном. Этот элемент состоит из трех нуклеотидов, которые комплементарны последовательности нуклеотидов в информационной РНК. Для одной аминокислоты необходимо три нуклеотида. Например, какой-либо условный белок состоит для упрощения из всего лишь двух аминокислот. Очевидно, что в основном белки имеют очень длинную структуру, состоят из многих аминокислот. Цепь А - Г - У называется триплетом, или кодоном, к нему будет присоединяться транспортная РНК в виде клевера, на конце которого будет находиться определенная аминокислота. К следующему триплету Ц - У - А будет присоединяться еще одна тРНК, которая будет содержать совершенно другую аминокислоту, комплементарную данной последовательности. В таком порядке будет происходить дальнейшая сборка полипептидной цепочки.

Биологическое значение синтеза

Между двумя аминокислотами, находящимися на концах "клеверов" каждого триплета, образуется пептидная связь. На этом этапе транспортная РНК уходит в цитоплазму. К триплетам присоединяется затем следующая транспортная РНК с другой аминокислотой, которая образует с предыдущими двумя полипептидную цепь. Этот процесс повторяется до момента, когда набирается необходимая последовательность аминокислот. Таким образом происходит синтез белка в клетке, и образуются ферменты, гормоны, кровяные вещества и т. д. Не во всякой клетке образуется любой белок. Каждая клетка может образовать определенный белок. Например, в эритроцитах будет образовываться гемоглобин, а клетками поджелудочной железы будут синтезироваться гормоны и разнообразные ферменты, расщепляющие пищу, которая попадает в организм.

В мышцах же будет образовываться белок актин и миозин. Как видно, процесс синтеза белка в клетках многоэтапен и сложен, что говорит о его значимости и необходимости для всего живого.

Оглавление: 1. Функции белка Функции белка Функции белка 2. Биосинтез белка Биосинтез белка Биосинтез белка 2.1. Первооткрыватели биосинтеза белка 2.1. Первооткрыватели биосинтеза белка Первооткрыватели биосинтеза белка Первооткрыватели биосинтеза белка 2.2. Транскрипция 2.2. Транскрипция Транскрипция 2.3. Трансляция 2.3. Трансляция Трансляция 3. Проверь себя Проверь себя Проверь себя




БИОСИНТЕЗ БЕЛКА Реплика́ция ДНК это процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки на матрице родительской молекулы ДНК. При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками. Репликацию ДНК осуществляет фермент ДНК- полимераза.


Первооткрыватели биосинтеза белка Франсуа Жакоб (р.1920) – французский микробиолог Жак Люсьен Моно () – французский биохимик и микробиолог


Транскрипция Первый этап биосинтеза белка транскрипция. Транскрипция это переписывание информации с последовательности нуклеотидов ДНК в последовательность нуклеотидов РНК. А Т Г Г А Ц Г А Ц Т В определенном участке ДНК под действием ферментов белки- гистоны отделяются, водородные связи рвутся, и двойная спираль ДНК раскручивается. Одна из цепочек становится матрицей для построения и-РНК. Участок ДНК в определенном месте начинает раскручиваться под действием ферментов. матрица ДНК


Затем на основе матрицы под действием фермента РНК- полимеразы из свободных нуклеотидов по принципу комплементарности начинается сборка мРНК. А Т Г Г А Ц Г А Ц Т У А Ц Ц У Г Ц У Г А и-РНК Между азотистыми основаниями ДНК и РНК возникают водородные связи, а между нуклеотидами самой матричной РНК образуются сложно- эфирные связи. Водородная связь Сложно-эфирная связь




МРНК После сборки иРНК водородные связи между азотистыми основаниями ДНК и иРНК рвутся, и новообразованная иРНК через поры в ядре уходит в цитоплазму, где прикрепляется к рибосомам. А две цепочки ДНК вновь соединяются, восстанавливая двойную спираль, и опять связываются с белками-гистонами. МРНК присоединяется к поверхности малой субъединицы в присутствии ионов магния. ЯДРО рибосомы цитоплазма Mg 2+


Трансляция Второй этап биосинтеза– трансляция. Трансляция– это перевод последовательности нуклеотидов в последовательность аминокислот белка. В цитоплазме аминокислоты соединяются с тРНК. Это очень видоспецифичные реакции: определенный фермент способен узнавать и связывать с соответствующей тРНК только свою аминокислоту. и-РНК АГУ У Ц А У ЦА А Г У а/к а/к а/ к У У Г А Ц У У Г Ц




Далее тРНК движется к и-РНК и связывается комплементарно своим антикодоном с кодоном и-РНК. Затем второй кодон соединяется с комплексом второй аминоацил-тРНК, содержащей свой специфический антикодон. Антикодон– триплет нуклеотидов на верхушке тРНК. Кодон– триплет нуклеотидов на и-РНК. и-РНК АГУ У Ц А У Ц А А Г У а/ к а/к У У Г А Ц У У Г Ц Водородные связи между комплементарными нуклеотидами


После присоединения к мРНК двух тРНК под действием фермента происходит образование пептидной связи между аминокислотами; первая аминокислота перемещается на вторую тРНК, а освободившаяся первая тРНК уходит. После этого рибосома передвигается по нити для того, чтобы поставить на рабочее место следующий кодон. И-РНК АГУ У Ц А У Ц А А Г У а/к а/ к У У Г А Ц У У Г Ц Пептидная связь а/ к


Такое последовательное считывание рибосомой заключенного в и-РНК «текста» продолжается до тех пор, пока процесс не доходит до одного из стоп-кодонов (терминальных кодонов). Такими триплетами являются триплеты УАА, УАГ,УГА. Одна молекула мРНК может заключать в себе инструкции для синтеза нескольких полипептидных нитей. и-РНК на рибосомах белок Наконец, ферменты разрушают эту молекулу и-РНК, расщепляя ее до отдельных нуклеотидов.


3. Контрольный тест 1. Матрицей для синтеза молекулы м-РНК при транскрипции служит: а) вся молекула ДНКвся молекула ДНК б) полностью одна из цепей молекулы ДНКполностью одна из цепей молекулы ДНК в) участок одной из цепей ДНКучасток одной из цепей ДНК г) в одних случаях одна из цепей молекулы ДНК, в других– вся молекула ДНК.в одних случаях одна из цепей молекулы ДНК, в других– вся молекула ДНК. 2. Транскрипция происходит: а) в ядре в ядре б) на рибосомах на рибосомах в) в цитоплазме в цитоплазме г) на каналах гладкой ЭПСна каналах гладкой ЭПС 3. Последовательность нуклеотидов в антикодоне т-РНК строго комплементарна: а) триплету, кодирующему белоктриплету, кодирующему белок б) аминокислоте, с которой связана данная т-РНКаминокислоте, с которой связана данная т-РНК в) последовательности нуклеотидов гена последовательности нуклеотидов гена г) кодону м-РНК, осуществляющему трансляциюкодону м-РНК, осуществляющему трансляцию


4. Трансляция в клетке осуществляется: а) в ядре в ядре б) на рибосомах на рибосомах в) в цитоплазме в цитоплазме г) на каналах гладкой ЭПСна каналах гладкой ЭПС 5. При трансляции матрицей для сборки полипептидной цепи белка служат: а) обе цепочки ДНКобе цепочки ДНК б) одна из цепей молекулы ДНКодна из цепей молекулы ДНК в) молекула м-РНКмолекула м-РНК г) в одних случаях одна из цепей ДНК, в других– молекула м-РНКв одних случаях одна из цепей ДНК, в других– молекула м-РНК 6. При биосинтезе белка в клетке энергия АТФ: а) расходуется б) запасается в) не расходуется и не выделяется не расходуется и не выделяется г) на одних этапах синтеза расходуется, на других– выделяется на одних этапах синтеза расходуется, на других– выделяется 7. Исключите лишнее: рибосомы, т-РНК, м-РНК, аминокислоты, ДНК.рибосомы т-РНК м-РНКаминокислотыДНК


8. Участок молекулы т-РНК из трех нуклеотидов, комплементарно связывающийся с определенным участком м-РНК по принципу комплементарности называется… 9. Последовательность азотистых оснований в молекуле ДНК следующая: АТТААЦГЦТАТ. Какова будет последовательность азотистых оснований в м-РНК? а) ТААТТГЦГАТАТААТТГЦГАТА б) ГЦЦГТТАТЦГЦГЦЦГТТАТЦГЦ в) УААУЦЦГУТУТУААУЦЦГУТУТ г) УААУУГЦГАУАУААУУГЦГАУА


Понимание механизма синтеза белка результат длительной и сложнейшей работы многих ученых. Это блестящее достижение сейчас является одним из основных положений биологической науки. Но все же еще многое из этого процесса осталось за гранью нашего знания. Заключение