Information support for schoolchildren and students
Site search

What galaxy is the milky way. Location of the solar system in the Milky Way galaxy. What will the death of the Milky Way look like?

The Milky Way Galaxy is very majestic, beautiful. This huge world is our homeland, our solar system. All the stars and other objects that are visible to the naked eye in the night sky are our galaxy. Although there are some objects that are located in the Andromeda Nebula - a neighbor of our Milky Way.

Description of the Milky Way

The Milky Way galaxy is huge, 100 thousand light years in size, and, as you know, one light year is equal to 9460730472580 km. Our solar system is located at a distance of 27,000 light years from the center of the galaxy, in one of the arms, which is called the Orion arm.

Our solar system revolves around the center of the Milky Way galaxy. This happens in the same way that the Earth revolves around the Sun. The solar system makes a complete revolution in 200 million years.

Deformation

The Milky Way galaxy looks like a disk with a bulge in the center. He is not perfect shape. On one side there is a bend to the north of the center of the galaxy, and on the other it goes down, then turns to the right. Outwardly, such a deformation is somewhat reminiscent of a wave. The disk itself is warped. This is due to the presence of the Small and Large Magellanic Clouds nearby. They rotate around the Milky Way very quickly - this was confirmed by the Hubble telescope. These two dwarf galaxies are often referred to as satellites of the Milky Way. Clouds are created by gravity connected system, which is very heavy and quite massive due to heavy elements in bulk. It is assumed that they are like a tug of war between galaxies, creating vibrations. The result is a deformation of the Milky Way galaxy. The structure of our galaxy is special, it has a halo.

Scientists believe that in billions of years the Milky Way will be swallowed up by the Magellanic Clouds, and after some more time it will be swallowed up by Andromeda.

Halo

Wondering what kind of galaxy the Milky Way is, scientists began to study it. They managed to find out that for 90% of its mass it consists of dark matter, which causes a mysterious halo. Everything that is visible to the naked eye from the Earth, namely that luminous matter, is about 10% of the galaxy.

Numerous studies have confirmed that the Milky Way has a halo. Scientists have compiled various models that take into account the invisible part and without it. After the experiments, the opinion was put forward that if there were no halo, then the speed of the planets and other elements of the Milky Way would be less than now. Because of this feature, it was suggested that most of the components consist of an invisible mass or dark matter.

Number of stars

One of the most unique is the Milky Way galaxy. The structure of our galaxy is unusual, it has more than 400 billion stars. About a quarter of them are large stars. Note: other galaxies have fewer stars. There are about ten billion stars in the Cloud, some others consist of a billion, and in the Milky Way there are more than 400 billion very different stars, and only a small part, about 3000, is visible from the Earth. It is impossible to say exactly how many stars are in the Milky Way, because how the galaxy is constantly losing objects due to their transformation into supernovae.

Gases and dust

Approximately 15% of the component galaxy - dust and gases. Maybe because of them our galaxy is called the Milky Way? Despite its huge size, we can see about 6,000 light-years ahead, but the size of the galaxy is 120,000 light-years. Maybe it is more, but even the most powerful telescopes cannot see beyond this. This is due to the accumulation of gas and dust.

The thickness of the dust does not allow visible light to pass through, but infrared light passes through it, and scientists can create maps of the starry sky.

What was before

According to scientists, our galaxy has not always been like this. The Milky Way was created from the merger of several other galaxies. This giant captured other planets, areas, which had a strong influence on the size and shape. Even now, planets are being captured by the Milky Way galaxy. An example of this is the objects Big Dog- a dwarf galaxy located near our Milky Way. Canis stars are periodically added to our universe, and from ours they pass to other galaxies, for example, there is an exchange of objects with the Sagittarius galaxy.

view of the milky way

No scientist, astronomer can say for sure what our Milky Way looks like from above. This is due to the fact that the Earth is located in the Milky Way galaxy, 26,000 light-years from the center. Due to this location, it is not possible to take pictures of the entire Milky Way. Therefore, any image of a galaxy is either a snapshot of other visible galaxies, or someone else's fantasy. And we can only guess what it actually looks like. There is even a possibility that we now know as much about it as the ancient people who considered the Earth to be flat.

Center

The center of the Milky Way galaxy is called Sagittarius A * - a great source of radio waves, suggesting that there is a huge black hole at the very heart. According to assumptions, its dimensions are a little more than 22 million kilometers, and this is the hole itself.

All the matter that tries to get into the hole forms a huge disk, almost 5 million times the size of our Sun. But even such a pulling force does not prevent new stars from forming at the edge of a black hole.

Age

According to estimates of the composition of the Milky Way galaxy, it was possible to establish an estimated age - about 14 billion years. The oldest star is just over 13 billion years old. The age of a galaxy is calculated by determining the age of the oldest star and the phases preceding its formation. Based on the available data, scientists have suggested that our universe is about 13.6-13.8 billion years old.

First, the bulge of the Milky Way was formed, then its middle part, in the place of which a black hole subsequently formed. Three billion years later, a disk with sleeves appeared. Gradually, it changed, and only about ten billion years ago did it begin to look like it does now.

We are part of something bigger

All the stars in the Milky Way galaxy are part of a larger galactic structure. We are part of the Virgo Supercluster. The nearest galaxies to the Milky Way, such as the Magellanic Cloud, Andromeda and other fifty galaxies, are one cluster, the Virgo Supercluster. A supercluster is a group of galaxies covering a huge area. And this is only a small part of the stellar neighborhood.

The Virgo Supercluster contains more than a hundred groups of clusters over 110 million light-years across. The Virgo cluster itself is a small part of the Laniakea supercluster, and it, in turn, is part of the Pisces-Cetus complex.

Rotation

Our Earth moves around the Sun, making a complete revolution in 1 year. Our Sun revolves in the Milky Way around the center of the galaxy. Our galaxy is moving in relation to a special radiation. CMB radiation is a convenient reference point that allows you to determine the speed of various matters in the Universe. Studies have shown that our galaxy rotates at a speed of 600 kilometers per second.

Name appearance

The galaxy got its name because of its special appearance, reminiscent of spilled milk in the night sky. The name was given to her in Ancient Rome. Then it was called "the road of milk." Until now, it is called that - the Milky Way, associating the name with appearance white streak in the night sky, with spilled milk.

Mentions have been found about the galaxy since the era of Aristotle, who said that the Milky Way is a place where the celestial spheres are in contact with the earthly ones. Until the moment when the telescope was created, no one added anything to this opinion. And only since the seventeenth century people began to look at the world differently.

Our neighbours

For some reason, many people think that the closest galaxy to the Milky Way is Andromeda. But this opinion is not entirely correct. The closest "neighbor" to us is the Canis Major galaxy, located inside the Milky Way. It is located at a distance of 25,000 light years from us, and from the center - 42,000 light years. In fact, we are closer to Canis Major than to the black hole at the center of the galaxy.

Before the discovery of Canis Major at a distance of 70 thousand light years, Sagittarius was considered the closest neighbor, and after that - the Large Magellanic Cloud. Unusual stars with a huge density of class M were discovered in Pse.

According to the theory, the Milky Way swallowed up Canis Major along with all of its stars, planets and other objects.

Collision of galaxies

Recently, there is more and more information that the nearest galaxy to the Milky Way - the Andromeda Nebula, will swallow our universe. These two giants formed at about the same time - about 13.6 billion years ago. It is believed that these giants are able to unite galaxies, and due to the expansion of the Universe, they must move away from each other. But, contrary to all the rules, these objects move towards each other. The speed of movement is 200 kilometers per second. It is estimated that in 2-3 billion years Andromeda will collide with the Milky Way.

Astronomer J. Dubinsky created the collision model shown in this video:

The collision will not lead to a global catastrophe. And after a few billion years, it will form new system, with familiar galactic shapes.

Dead galaxies

Scientists conducted a large-scale study of the starry sky, covering about an eighth of it. As a result of the analysis of the star systems of the Milky Way galaxy, it was possible to find out that there are previously unknown streams of stars on the outskirts of our universe. This is all that remains of small galaxies that were once destroyed by gravity.

A telescope installed in Chile took a huge number of images that allowed scientists to assess the sky. Surrounding our galaxy, according to the images, are halos of dark matter, rarefied gas and few stars, remnants of dwarf galaxies that were once swallowed up by the Milky Way. With enough data, scientists managed to collect the "skeleton" of the dead galaxies. It's like in paleontology - it's hard to tell from a few bones what the creature looked like, but with enough data, you can assemble the skeleton and guess what the lizard was like. So it is here: the information content of the images made it possible to recreate eleven galaxies that were swallowed up by the Milky Way.

Scientists are confident that as they observe and evaluate the information they receive, they will be able to find several more new decayed galaxies that were “eaten” by the Milky Way.

We're under fire

According to scientists, the hypervelocity stars in our galaxy did not originate in it, but in the Large Magellanic Cloud. Theorists cannot explain many points regarding the existence of such stars. For example, it is impossible to say exactly why a large number of hypervelocity stars in Sextant and Leo. Revising the theory, scientists came to the conclusion that such a speed can only develop due to the impact on them of a black hole located in the center of the Milky Way.

Recently, more and more stars are being discovered that do not move from the center of our galaxy. After analyzing the trajectory of ultrafast stars, scientists managed to find out that we are under attack from the Large Magellanic Cloud.

The death of the planet

By observing the planets in our galaxy, scientists were able to see how the planet died. She was consumed by an aging star. During the expansion and transformation into a red giant, the star swallowed up its planet. And another planet in the same system changed its orbit. Seeing this and assessing the state of our Sun, scientists came to the conclusion that the same thing will happen to our luminary. In about five million years, it will turn into a red giant.

How the galaxy works

Our Milky Way has several arms that rotate in a spiral. The center of the entire disk is a gigantic black hole.

We can see galactic arms in the night sky. They look like white stripes, reminiscent of a milky road that is strewn with stars. These are the branches of the Milky Way. They are best seen in clear weather during the warm season, when there is the most cosmic dust and gases.

Our galaxy has the following arms:

  1. Angle branch.
  2. Orion. Our solar system is located in this arm. This sleeve is our "room" in the "house".
  3. Sleeve Keel-Sagittarius.
  4. Branch of Perseus.
  5. Branch of the Shield of the Southern Cross.

Also in the composition there is a core, a gas ring, dark matter. It supplies about 90% of the entire galaxy, and the remaining ten are visible objects.

Our solar system, the Earth and other planets are a single whole of a huge gravitational system that can be seen every night in a clear sky. A variety of processes are constantly taking place in our “house”: stars are born, decay, other galaxies are shelling us, dust, gases appear, stars change and go out, others flare up, they dance around ... And all this happens somewhere far away in a universe about which we know so little. Who knows, maybe the time will come when people will be able to reach other arms and planets of our galaxy in a matter of minutes, travel to other universes.

quoted1 > > Where is the Earth in the Milky Way?

place of the earth and solar system in the Milky Way galaxy: where is the Sun and the planet, parameters, distance from the center and plane, structure with photo.

For many centuries, scientists believed that the Earth is the center of the entire universe. It is easy to think why this happened, because the Earth is located in, and we could not look beyond it. Only centuries of research and observation helped to understand that all celestial bodies in the system make revolutions around the main star.

The system itself also revolves around the galactic center. Although then people did not understand this. I had to spend another certain time period to guess about the existence of many galaxies and determine the place in ours. What is the place of the Earth in the Milky Way galaxy?

Location of Earth in the Milky Way

Earth is in the Milky Way galaxy. We live in a vast and spacious place spanning 100,000-120,000 light-years in diameter and approximately 1,000 light-years wide. The territory is home to 400 billion stars.

The galaxy gained such scale thanks to an unusual diet - it absorbed and continues to feed on other small galaxies. For example, right now on the dinner table is the Dwarf Galaxy in Canis Major, whose stars are joining our disk. But when compared with others, ours is average. Even the next one is twice as big.

Structure

The planet lives in a spiral-type galaxy with a bar. For many years it was thought that there were 4 arms, but recent studies confirm only two: Shield-Centaurus and Carina-Sagittarius. They emerged from dense waves orbiting the galaxy. That is, these are grouped stars and gas clouds.

What about a photo of the Milky Way galaxy? All of them are artistic interpretations or real pictures, but very similar to our galaxies. Of course, we did not come to this immediately, since no one could say for sure what it looks like (we are inside it, after all).

Modern instruments allow counting up to 400 billion stars, each of which can have a planet. 10-15% of the mass goes to the "luminous matter", and the rest - the stars. Despite the huge array, only 6,000 light-years in the visible spectrum are open to us for observation. But here infrared devices come into play, opening up new territories.

Around the galaxy is a huge halo of dark matter, covering as much as 90% of the entire mass. No one yet knows what it is, but its presence confirms the impact on other objects. It is believed that it keeps the Milky Way from disintegrating in the process of rotation.

Location of the solar system in the Milky Way

Earth is 25,000 light-years from the galactic center and the same distance from the edge. If we imagine the galaxy as a giant music record, then we are located halfway between the central part and the edge. More specifically, we occupy a place in the Orion arm between the two main arms. It spans 3,500 light-years in diameter and stretches out for 10,000 light-years.

It can be seen that the galaxy divides the heavens into two hemispheres. This suggests that we are located close to the galactic plane. The Milky Way has a low surface brightness due to the abundance of dust and gas hiding the disk. This makes it difficult not only to consider the central part, but also to look at the other side.

The system spends 250 million years to go around the entire orbital path - the "space year". Dinosaurs roamed the Earth during the last pass. And what will happen next? Will humans go extinct or will a new species replace them?

In general, we live in a huge and amazing place. New knowledge makes us get used to the fact that the Universe is much larger than all assumptions. Now you know where the Earth is in the Milky Way.

The starry sky has attracted the eyes of people since ancient times. The best minds of all peoples tried to comprehend our place in the Universe, to imagine and justify its structure. scientific progress made it possible to move in the study of the vast expanses of space from romantic and religious constructions to logically verified theories based on numerous factual material. Now any schoolchild has an idea of ​​what our Galaxy looks like according to the latest research, who, why and when gave it such a poetic name and what its supposed future is.

origin of name

The expression "the Milky Way galaxy" is, in fact, a tautology. Galactikos roughly translated from ancient Greek means "milk". So the inhabitants of the Peloponnese called the cluster of stars in the night sky, attributing its origin to the quick-tempered Hera: the goddess did not want to feed Hercules, the illegitimate son of Zeus, and splashed her breast milk in anger. Drops and formed a star track, visible on clear nights. Centuries later, scientists discovered that the observed luminaries are only an insignificant part of the existing celestial bodies. They gave the name of the Galaxy or the Milky Way system to the space of the Universe, in which our planet is also located. After confirming the assumption of the existence of other similar formations in space, the first term became universal for them.

Inside view

Scientific knowledge about the structure of the part of the universe, including the solar system, took little from the ancient Greeks. Understanding how our Galaxy looks like has evolved from the spherical universe of Aristotle to modern theories, in which there is a place for black holes and dark matter.

The fact that the Earth is an element of the Milky Way system imposes certain restrictions on those who are trying to figure out what shape our galaxy has. An unequivocal answer to this question requires a view from the side, and at a great distance from the object of observation. Now science is deprived of such an opportunity. A kind of substitute for an outside observer is the collection of data on the structure of the Galaxy and their correlation with the parameters of other space systems available for study.

The collected information allows us to say with confidence that our Galaxy has the shape of a disk with a thickening (bulge) in the middle and spiral arms diverging from the center. The latter contain the most bright stars systems. The disk is over 100,000 light-years across.

Structure

The center of the Galaxy is hidden by interstellar dust, which makes it difficult to study the system. The methods of radio astronomy help to cope with the problem. Waves of a certain length easily overcome any obstacles and allow you to get such a desired image. Our Galaxy, according to the data obtained, has an inhomogeneous structure.

It is conditionally possible to distinguish two elements connected with each other: the halo and the disk itself. The first subsystem has the following characteristics:

  • in shape it is a sphere;
  • its center is considered to be the bulge;
  • the highest concentration of stars in the halo is characteristic of its middle part, with approaching the edges, the density strongly decreases;
  • the rotation of this zone of the galaxy is rather slow;
  • the halo mostly contains old stars with relatively small masses;
  • a significant space of the subsystem is filled with dark matter.

The galactic disk in terms of the density of stars greatly exceeds the halo. In the sleeves there are young and even just emerging

Center and core

The "heart" of the Milky Way is located in Without studying it, it is difficult to fully understand what our Galaxy is like. The name "core" in scientific papers either refers only to the central region only a few parsecs in diameter, or includes the bulge and gas ring, which is considered the birthplace of stars. In what follows, the first version of the term will be used.

Visible light struggles to penetrate the center of the Milky Way as it collides with a lot of cosmic dust that obscures what our Galaxy looks like. Photos and images taken in the infrared range greatly expand the knowledge of astronomers about the nucleus.

Data on the features of radiation in the central part of the Galaxy led scientists to the idea that there is a black hole in the core of the nucleus. Its mass is more than 2.5 million times the mass of the Sun. Around this object, according to researchers, another, but less impressive in its parameters, black hole rotates. Modern knowledge about the features of the structure of the cosmos suggest that such objects are located in the central part of most galaxies.

Light and darkness

The joint influence of black holes on the movement of stars makes its own adjustments to how our Galaxy looks: it leads to specific changes in orbits that are not typical for cosmic bodies, for example, near the solar system. The study of these trajectories and the relationship between the velocities of motion and the distance from the center of the Galaxy formed the basis of the currently actively developing theory of dark matter. Its nature is still shrouded in mystery. The presence of dark matter, presumably constituting the vast majority of all matter in the Universe, is registered only by the effect of gravity on orbits.

If you disperse all space dust what the core hides from us, a striking picture will open to the eye. Despite the concentration of dark matter, this part of the universe is full of light emitted by a huge number of stars. There are hundreds of times more of them per unit of space than near the Sun. Approximately ten billion of them form a galactic bar, also called a bar, of an unusual shape.

space nut

The study of the center of the system in the long-wavelength range made it possible to obtain a detailed infrared image. Our Galaxy, as it turned out, in the core has a structure resembling a peanut in a shell. This "nut" is the jumper, which includes more than 20 million red giants (bright, but less hot stars).

Spiral arms of the Milky Way diverge from the ends of the bar.

The work associated with the discovery of a “peanut” at the center of a star system not only shed light on what our Galaxy is like in structure, but also helped to understand how it developed. Initially, in the space of space there was an ordinary disk, in which a jumper formed over time. Under the influence of internal processes, the bar changed its shape and began to look like a walnut.

Our house on the space map

Active activity occurs both in the bar and in the spiral arms that our Galaxy has. They were named after the constellations where branches of the branches were discovered: the arms of Perseus, Cygnus, Centaurus, Sagittarius and Orion. Near the latter (at a distance of at least 28 thousand light years from the core) is the solar system. This area has certain characteristics, according to experts, that made possible the emergence of life on Earth.

The galaxy and our solar system rotate with it. The patterns of motion of the individual components do not coincide in this case. stars are sometimes part of the spiral branches, then separated from them. Only the luminaries lying on the boundary of the corotation circle do not make such "journeys". These include the Sun, protected from the powerful processes that are constantly taking place in the arms. Even a slight shift would negate all other advantages for the development of organisms on our planet.

Sky in diamonds

The sun is just one of many similar bodies that fill our galaxy. Stars, single or grouped, total number according to the latest data, exceed 400 billion. Proxima Centauri, closest to us, is part of a system of three stars, along with slightly more distant Alpha Centauri A and Alpha Centauri B. The brightest point in the night sky, Sirius A, is located in its luminosity, according to various sources, exceeds the solar in 17-23 times. Sirius is also not alone, he is accompanied by a satellite bearing a similar name, but labeled B.

Children often begin to get acquainted with what our galaxy looks like by looking for the North Star or Alpha in the sky. Ursa Minor. It owes its popularity to its position above north pole Earth. In terms of luminosity, Polaris significantly exceeds Sirius (almost two thousand times brighter than the Sun), but it cannot dispute the rights of Alpha Canis Major to the title of the brightest due to its distance from Earth (estimated from 300 to 465 light years).

Types of luminaries

Stars differ not only in luminosity and distance from the observer. Each is assigned a certain value (the corresponding parameter of the Sun is taken as a unit), the degree of surface heating, color.

The most impressive sizes are supergiants. Neutron stars have the highest concentration of matter per unit volume. The color characteristic is inextricably linked with temperature:

  • reds are the coldest;
  • heating the surface to 6,000º, like that of the Sun, gives rise to a yellow tint;
  • white and blue luminaries have a temperature of more than 10,000º.

It can change and reach a maximum shortly before its collapse. Supernova explosions make a huge contribution to understanding what our galaxy looks like. The photographs of this process taken by telescopes are amazing.
The data collected on their basis helped to reconstruct the process that led to the flare and to predict the fate of a number of cosmic bodies.

Future of the Milky Way

Our Galaxy and other galaxies are constantly in motion and interacting. Astronomers have found that the Milky Way has repeatedly swallowed up its neighbors. Similar processes are expected in the future. Over time, it will include the Magellanic Cloud and a number of dwarf systems. The most impressive event is expected in 3-5 billion years. This will be a collision with the only neighbor that is visible from Earth to the naked eye. As a result, the Milky Way will become an elliptical galaxy.

The endless expanses of space are amazing. It is difficult for the layman to realize the magnitude of not only the Milky Way or the entire Universe, but even the Earth. However, thanks to the achievements of science, we can imagine at least approximately what a part of the grandiose world we are.

The Milky Way is the galaxy that contains the Earth, the solar system, and all the individual stars visible to the naked eye. Refers to barred spiral galaxies.

The Milky Way, together with the Andromeda Galaxy (M31), the Triangulum Galaxy (M33) and more than 40 dwarf satellite galaxies - its own and Andromeda - form the Local Group of galaxies, which is part of the Local Supercluster (Virgo Supercluster).

Discovery history

Discovery of Galileo

The Milky Way revealed its secret only in 1610. It was then that the first telescope was invented, which was used by Galileo Galilei. The famous scientist saw through the device that the Milky Way is a real cluster of stars, which, when viewed with the naked eye, merged into a continuous faintly twinkling band. Galileo even succeeded in explaining the heterogeneity of the structure of this band. It was caused by the presence in the celestial phenomenon of not only star clusters. There are also dark clouds. The combination of these two elements creates an amazing image of the night phenomenon.

Discovery of William Herschel

The study of the Milky Way continued into the 18th century. During this period, his most active researcher was William Herschel. The famous composer and musician was engaged in the manufacture of telescopes and studied the science of the stars. The most important discovery of Herschel was the Great Plan of the Universe. This scientist observed the planets through a telescope and counted them in different parts of the sky. Studies have led to the conclusion that the Milky Way is a kind of stellar island, in which our Sun is also located. Herschel even drew a schematic plan of his discovery. In the figure, the star system was depicted as a millstone and had an elongated irregular shape. The sun at the same time was inside this ring that surrounded our world. This is how all scientists represented our Galaxy until the beginning of the last century.

It was not until the 1920s that the work of Jacobus Kaptein saw the light of day, in which the Milky Way was described in the most detailed way. At the same time, the author gave a scheme of the star island, which is as similar as possible to the one that is known to us at the present time. Today we know that the Milky Way is a Galaxy, which includes the solar system, the Earth and those individual stars that are visible to humans with the naked eye.

What shape is the Milky Way?

When studying galaxies, Edwin Hubble classified them into various types of elliptical and spiral. Spiral galaxies are disk-shaped with spiral arms inside. Since the Milky Way is disk-shaped along with spiral galaxies, it is logical to assume that it is probably a spiral galaxy.

In the 1930s, R. J. Trumpler realized that the estimates of the size of the Milky Way galaxy made by Kapetin and others were erroneous, because the measurements were based on observations using radiation waves in the visible region of the spectrum. Trumpler came to the conclusion that a huge amount of dust in the plane of the Milky Way absorbs visible light. Therefore, distant stars and their clusters seem more ghostly than they really are. Because of this, in order to accurately image the stars and star clusters within the Milky Way, astronomers had to find a way to see through the dust.

In the 1950s, the first radio telescopes were invented. Astronomers have discovered that hydrogen atoms emit radiation in radio waves, and that such radio waves can penetrate dust in the Milky Way. Thus, it became possible to see the spiral arms of this galaxy. To do this, we used the marking of stars by analogy with marks when measuring distances. Astronomers realized that O and B stars could serve to achieve this goal.

Such stars have several features:

  • brightness– they are highly visible and often found in small groups or associations;
  • warm– they emit waves of different lengths (visible, infrared, radio waves);
  • short life time They live for about 100 million years. Given the speed at which stars rotate at the center of the galaxy, they do not move far from their birthplace.

Astronomers can use radio telescopes to accurately match the positions of O and B stars and, based on the Doppler shifts in the radio spectrum, determine their speed. After performing such operations on many stars, scientists were able to produce combined radio and optical maps of the Milky Way's spiral arms. Each arm is named after the constellation that exists in it.

Astronomers believe that the movement of matter around the center of the galaxy creates density waves (regions of high and low density), just like you see when you mix cake dough with an electric mixer. These density waves are thought to have caused the spiral character of the galaxy.

Thus, by viewing the sky in waves of different wavelengths (radio, infrared, visible, ultraviolet, X-ray) using various ground-based and space telescopes, one can obtain various images of the Milky Way.

Doppler effect. Just as the high pitched sound of a fire truck siren gets lower as the vehicle moves away, the movement of the stars affects the wavelengths of light that reach Earth from them. This phenomenon is called the Doppler effect. We can measure this effect by measuring the lines in the star's spectrum and comparing them to the spectrum of a standard lamp. The degree of Doppler shift indicates how fast the star is moving relative to us. In addition, the direction of the Doppler shift can show us the direction in which the star is moving. If the star's spectrum shifts to the blue end, then the star is moving towards us; if in the red direction, it moves away.

Structure of the Milky Way

If we carefully consider the structure of the Milky Way, we will see the following:

  1. galactic disk. Most of the stars in the Milky Way are concentrated here.

The disk itself is divided into the following parts:

  • The nucleus is the center of the disk;
  • Arcs - areas around the nucleus, including directly the areas above and below the plane of the disk.
  • Spiral arms are areas that protrude outward from the center. Our solar system is located in one of the spiral arms of the Milky Way.
  1. globular clusters. Several hundred of them are scattered above and below the plane of the disk.
  2. Halo. This is a large, dim region that surrounds the entire galaxy. The halo consists of high temperature gas and possibly dark matter.

The radius of the halo is much larger than the size of the disk and, according to some data, reaches several hundred thousand light-years. The center of symmetry of the Milky Way halo coincides with the center of the galactic disk. The halo consists mainly of very old, dim stars. The age of the spherical component of the Galaxy exceeds 12 billion years. The central, densest part of the halo within a few thousand light-years of the center of the Galaxy is called bulge(translated from English "thickening"). The halo as a whole rotates very slowly.

Compared to halo disk spins much faster. It looks like two plates folded at the edges. The diameter of the disk of the Galaxy is about 30 kpc (100,000 light years). The thickness is about 1000 light years. The rotation speed is not the same at different distances from the center. It rapidly increases from zero in the center to 200-240 km/s at a distance of 2 thousand light years from it. The mass of the disk is 150 billion times the mass of the Sun (1.99*1030 kg). Young stars and star clusters are concentrated in the disk. There are many bright and hot stars among them. The gas in the disk of the Galaxy is unevenly distributed, forming giant clouds. Main chemical element in our galaxy is hydrogen. About 1/4 of it consists of helium.

One of the most interesting regions of the Galaxy is its center, or nucleus located in the direction of the constellation Sagittarius. The visible radiation of the central regions of the Galaxy is completely hidden from us by powerful layers of absorbing matter. Therefore, it began to be studied only after the creation of receivers for infrared and radio radiation, which is absorbed to a lesser extent. The central regions of the Galaxy are characterized by a strong concentration of stars: there are many thousands of them in each cubic parsec. Closer to the center, regions of ionized hydrogen and numerous sources of infrared radiation are noted, indicating star formation taking place there. At the very center of the Galaxy, the existence of a massive compact object is assumed - a black hole with a mass of about a million solar masses.

One of the most notable formations is spiral branches (or sleeves). They gave the name to this type of objects - spiral galaxies. Along the arms, the youngest stars are mainly concentrated, many open star clusters, as well as chains of dense clouds of interstellar gas in which stars continue to form. In contrast to the halo, where any manifestations of stellar activity are extremely rare, a stormy life continues in the branches, associated with the continuous transition of matter from interstellar space to stars and back. The spiral arms of the Milky Way are largely hidden from us by absorbing matter. Their detailed study began after the advent of radio telescopes. They made it possible to study the structure of the Galaxy by observing the radio emission of interstellar hydrogen atoms, which are concentrated along long spirals. By modern ideas, spiral arms are associated with compression waves propagating across the disk of the galaxy. Passing through the compression regions, the matter of the disk becomes denser, and the formation of stars from the gas becomes more intense. The reasons for the appearance of such a peculiar wave structure in the disks of spiral galaxies are not entirely clear. Many astrophysicists are working on this problem.

The place of the sun in the galaxy

In the vicinity of the Sun, it is possible to trace sections of two spiral branches that are about 3 thousand light years away from us. According to the constellations where these areas are found, they are called the Sagittarius arm and the Perseus arm. The sun is almost in the middle between these spiral arms. True, relatively close (by galactic standards) from us, in the constellation of Orion, there is another, not so pronounced branch, which is considered an offshoot of one of the main spiral arms of the Galaxy.

The distance from the Sun to the center of the Galaxy is 23-28 thousand light years, or 7-9 thousand parsecs. This suggests that the Sun is located closer to the edge of the disk than to its center.

Together with all nearby stars, the Sun revolves around the center of the Galaxy at a speed of 220–240 km/s, making one revolution in about 200 million years. This means that for the entire time of its existence, the Earth flew around the center of the Galaxy no more than 30 times.

The speed of rotation of the Sun around the center of the Galaxy practically coincides with the speed with which the compression wave, which forms the spiral arm, moves in the given region. Such a situation is generally unusual for the Galaxy: the spiral arms rotate at a constant angular velocity, like the spokes of a wheel, while the motion of stars, as we have seen, obeys a completely different pattern. Therefore, almost the entire stellar population of the disk either gets inside the spiral branch or leaves it. The only place where the speeds of stars and spiral arms coincide is the so-called corotation circle, and it is on it that the Sun is located!

For the Earth, this circumstance is extremely favorable. After all, violent processes occur in the spiral branches, generating powerful radiation, destructive for all living things. And no atmosphere could protect him from it. But our planet exists in a relatively quiet place in the Galaxy and has not experienced the influence of these cosmic cataclysms for hundreds of millions and billions of years. Perhaps that is why life could originate and survive on Earth.

For a long time, the position of the Sun among the stars was considered the most ordinary. Today we know that this is not the case: in in a certain sense it is privileged. And this must be taken into account when discussing the possibility of the existence of life in other parts of our Galaxy.

The location of the stars

On a cloudless night sky, the Milky Way is visible from anywhere on our planet. However, only a part of the Galaxy, which is a system of stars located inside the Orion arm, is accessible to the human eye. What is the Milky Way? The definition in space of all its parts becomes most understandable if we consider the star map. In this case, it becomes clear that the Sun, illuminating the Earth, is located almost on the disk. This is almost the edge of the Galaxy, where the distance from the nucleus is 26-28 thousand light years. Moving at a speed of 240 kilometers per hour, the Luminary spends 200 million years on one revolution around the core, so that for the entire time of its existence it traveled across the disk, rounding the core, only thirty times. Our planet is in the so-called corotation circle. This is a place in which the speed of rotation of the arms and stars are identical. This circle is characterized by an increased level of radiation. That is why life, as scientists believe, could only arise on that planet, near which there is a small number of stars. Our Earth is such a planet. It is located on the periphery of the Galaxy, in its most peaceful place. That is why on our planet for several billion years there were no global cataclysms that often occur in the Universe.

What will the death of the Milky Way look like?

The cosmic story of the death of our galaxy begins here and now. We can blindly look around, thinking that the Milky Way, Andromeda (our older sister) and a bunch of unknowns - our space neighbors - this is our home, but in reality there is much more. It's time to explore what else is around us. Go.

  • Triangulum Galaxy. With a mass of about 5% of that of the Milky Way, it is the third largest galaxy in the Local Group. It has a spiral structure, its own satellites and may be a satellite of the Andromeda galaxy.
  • Large Magellanic Cloud. This galaxy is only 1% of the mass of the Milky Way, but is the fourth largest in our local group. It is very close to our Milky Way - less than 200,000 light-years away - and is undergoing active star formation as tidal interactions with our galaxy cause gas to collapse and give rise to new, hot and large stars in the universe.
  • Small Magellanic Cloud, NGC 3190 and NGC 6822. All of them have masses from 0.1% to 0.6% of the Milky Way (and it is not clear which one is larger) and all three are independent galaxies. Each contains over a billion solar masses of material.
  • Elliptical galaxies M32 and M110. They may be "only" satellites of Andromeda, but each of them has more than a billion stars, and they can even exceed the masses of numbers 5, 6 and 7.

In addition, there are at least 45 other known galaxies - smaller ones - that make up our local group. Each of them has a halo of dark matter surrounding it; each of them is gravitationally attached to the other, located at a distance of 3 million light years. Despite their size, mass and size, none of them will remain in a few billion years.

So the main thing

As time passes, galaxies interact gravitationally. They not only pull together due to gravitational attraction, but also interact tidally. We usually talk about tides in the context of the Moon pulling terrestrial oceans and ebbs and flows, and this is partly true. But from the point of view of the galaxy, the tides are a less noticeable process. The part of the small galaxy that is close to the big one will be attracted with more gravitational force, and the part that is further away will experience less attraction. As a result, the small galaxy will stretch out and eventually break apart under the influence of gravity.

Small galaxies that are part of our local group, including both Magellanic Clouds and dwarf elliptical galaxies, will be torn apart in this way, and their material will be incorporated into the large galaxies with which they merge. “So what,” you say. After all, this is not quite death, because large galaxies will remain alive. But even they will not exist forever in this state. In 4 billion years, the mutual gravitational pull of the Milky Way and Andromeda will drag the galaxies into a gravitational dance that will lead to a big merger. Although this process will take billions of years, the spiral structure of both galaxies will be destroyed, resulting in the creation of a single, giant elliptical galaxy at the core of our local group: the Milkweeds.

A small percentage of the stars will be ejected during such a merger, but the majority will remain unscathed, and there will be a large burst of star formation. Eventually, the rest of the galaxies in our local group will also be sucked in, leaving one big giant galaxy to gobble up the rest. This process will take place in all connected groups and clusters of galaxies throughout the Universe, while dark energy will push individual groups and clusters apart from each other. But even this cannot be called death, because the galaxy will remain. And for a while it will be. But the galaxy is made up of stars, dust and gas, and everything will eventually come to an end.

Across the Universe, galactic mergers will take place over tens of billions of years. During the same time, dark energy will pull them all over the Universe to a state of complete solitude and inaccessibility. And although the last galaxies outside our local group will not disappear until hundreds of billions of years have passed, the stars in them will live. The longest-lived stars in existence today will continue to burn their fuel for tens of trillions of years, and new stars will emerge from the gas, dust, and stellar corpses that inhabit each galaxy—albeit with fewer and fewer.

When the last stars burn out, only their corpses will remain - white dwarfs and neutron stars. They will shine for hundreds of trillions or even quadrillions of years before they go out. When this inevitability happens, we are left with brown dwarfs (failed stars) that accidentally merge, re-ignite nuclear fusion and create starlight for tens of trillions of years.

When the last star goes out tens of quadrillion years in the future, there will still be some mass left in the galaxy. So this can not be called "true death."

All masses gravitationally interact with each other, and gravitational objects of different masses exhibit strange properties when interacting:

  • Repeated "approaches" and close passes cause exchanges of speed and momentum between them.
  • Objects with low mass are ejected from the galaxy, and objects with higher mass sink into the center, losing speed.
  • Over a sufficiently long period of time, most of the mass will be ejected, and only a small part of the remaining mass will be firmly attached.

At the very center of these galactic remnants, there will be a supermassive black hole in every galaxy, and the rest of the galactic objects will orbit a larger version of our own solar system. Of course, this structure will be the last, and since the black hole will be as large as possible, it will eat everything it can reach. At the center of Mlecomeda there will be an object hundreds of millions of times more massive than our Sun.

But will it end too?

Thanks to the phenomenon of Hawking radiation, even these objects will one day decay. It will take about 10 80 to 10 100 years, depending on how massive our supermassive black hole becomes as it grows, but the end is coming. After that, the remains, rotating around the galactic center, will untie and leave only a halo of dark matter, which can also randomly dissociate, depending on the properties of this very matter. Without any matter, there will be nothing that we once called the local group, the Milky Way and other dear names.

Mythology

Armenian, Arabic, Wallachian, Jewish, Persian, Turkish, Kyrgyz

According to one of the Armenian myths about the Milky Way, the god Vahagn, the ancestor of the Armenians, stole straw from the ancestor of the Assyrians, Barsham, in a harsh winter and disappeared into the sky. When he walked with his prey across the sky, he dropped straws on his way; from them a light trail was formed in the sky (in Armenian “Straw thief’s road”). The myth about scattered straw is also spoken of by Arabic, Jewish, Persian, Turkish and Kyrgyz names (Kirg. samanchynyn jolu- the path of the strawman) of this phenomenon. The inhabitants of Wallachia believed that Venus stole this straw from St. Peter.

Buryat

According to Buryat mythology, good forces create the world, modify the universe. Thus, the Milky Way arose from the milk that Manzan Gurme drew from her breast and splashed out after Abai Geser, who had deceived her. According to another version, the Milky Way is a "seam of the sky" sewn up after the stars fell out of it; on it, like on a bridge, tengri walk.

Hungarian

According to Hungarian legend, Attila will descend the Milky Way if the Székelys are in danger; the stars represent sparks from the hooves. Milky Way. accordingly, it is called the "road of warriors."

ancient greek

Etymology of the word Galaxias (Γαλαξίας) and its association with milk (γάλα) reveal two similar ancient Greek myths. One of the legends tells about the mother's milk spilled across the sky of the goddess Hera, who was breastfeeding Hercules. When Hera learned that the baby she was breastfeeding was not her own child, but the illegitimate son of Zeus and an earthly woman, she pushed him away, and the spilled milk became the Milky Way. Another legend says that the spilled milk is the milk of Rhea, the wife of Kronos, and Zeus himself was the baby. Kronos devoured his children, as it was predicted to him that he would be overthrown by his own son. Rhea has a plan to save her sixth child, the newborn Zeus. She wrapped a stone in baby clothes and slipped it to Kronos. Kronos asked her to feed her son one more time before he swallowed him. The milk spilled from Rhea's chest on a bare rock was subsequently called the Milky Way.

Indian

The ancient Indians considered the Milky Way to be the milk of an evening red cow passing through the sky. In the Rig Veda, the Milky Way is called Aryaman's Throne Road. The Bhagavata Purana contains a version according to which the Milky Way is the belly of a celestial dolphin.

Inca

The main objects of observation in Inca astronomy (which is reflected in their mythology) in the sky were the dark sections of the Milky Way - a kind of "constellation" in the terminology of Andean cultures: Lama, Lama Cub, Shepherd, Condor, Partridge, Toad, Snake, Fox; as well as the stars: the Southern Cross, the Pleiades, Lyra and many others.

Ketskaya

In the Ket myths, similarly to the Selkup ones, the Milky Way is described as the road of one of the three mythological characters: the Son of Heaven (Esya), who went to hunt on the western side of the sky and froze there, the hero Albe, who pursued the evil goddess, or the first shaman Dokh, who climbed this road to the sun.

Chinese, Vietnamese, Korean, Japanese

In the mythologies of the Sinosphere, the Milky Way is called and compared to a river (in Vietnamese, Chinese, Korean and Japanese the name "silver river" is retained. The Chinese also sometimes called the Milky Way the "Yellow Road", after the color of the straw.

Indigenous peoples of North America

The Hidatsa and the Eskimos call the Milky Way "Ash". Their myths speak of a girl who scattered ashes across the sky so that people could find their way home at night. The Cheyenne believed that the Milky Way was dirt and silt raised by the belly of a turtle floating in the sky. Eskimos from the Bering Strait - that these are the traces of the Creator Raven walking across the sky. The Cherokee believed that the Milky Way was formed when one hunter stole another's wife out of jealousy, and her dog began to eat unattended cornmeal and scattered it across the sky (the same myth is found among the Khoisan population of the Kalahari). Another myth of the same people says that the Milky Way is the trail of a dog dragging something across the sky. The Ctunah called the Milky Way "the dog's tail", the Blackfoot called it the "wolf road". Wyandot myth says that the Milky Way is a place where the souls of dead people and dogs come together and dance.

Maori

In Maori mythology, the Milky Way is considered to be the Tama-rereti boat. The nose of the boat is the constellation Orion and Scorpio, the anchor is the Southern Cross, Alpha Centauri and Hadar are the rope. According to legend, one day Tama-rereti was sailing in his canoe and saw that it was already late, and he was far from home. There were no stars in the sky, and, fearing that Tanif might attack, Tama-rereti began to throw sparkling pebbles into the sky. The heavenly deity Ranginui liked what he was doing, and he placed the Tama-rereti boat in the sky, and turned the pebbles into stars.

Finnish, Lithuanian, Estonian, Erzya, Kazakh

The Finnish name is Fin. Linnunrata- means "The Way of the Birds"; the Lithuanian name has a similar etymology. Estonian myth also connects the Milky ("bird's") Way with bird flight.

The Erzya name is "Kargon Ki" ("Crane Road").

The Kazakh name is “Kus Zholy” (“Way of the Birds”).

Interesting facts about the Milky Way galaxy

  • The Milky Way began forming as a cluster of dense regions after big bang. The first stars to appear were in globular clusters that continue to exist. These are the oldest stars in the galaxy;
  • The galaxy has increased its parameters by absorbing and merging with others. Now she is picking stars from the Sagittarius Dwarf Galaxy and the Magellanic Clouds;
  • The Milky Way moves in space with an acceleration of 550 km / s with respect to the background radiation;
  • Lurking at the galactic center is the supermassive black hole Sagittarius A*. By mass, it is 4.3 million times greater than the solar one;
  • Gas, dust and stars revolve around the center at a speed of 220 km/s. This is a stable indicator, implying the presence of a shell of dark matter;
  • In 5 billion years, a collision with the Andromeda galaxy is expected.

The cosmos that we are trying to study is a vast and boundless space in which there are tens, hundreds, thousands of trillions of stars united in certain groups. Our Earth does not live on its own. We are part of the solar system, which is a small particle and part of the Milky Way - a larger cosmic entity.

Our Earth, like other planets of the Milky Way, our star named the Sun, like other stars of the Milky Way, move in the Universe in a certain order and occupy the allotted places. Let's try to understand in more detail what is the structure of the Milky Way, and what are the main features of our galaxy?

Origin of the Milky Way

Our galaxy has its own history, like other areas of outer space, and is the product of a catastrophe on a universal scale. The main theory of the origin of the universe, which today dominates in scientific community- Big Bang. The model that perfectly characterizes the Big Bang theory is the chain model. nuclear reaction at the microscopic level. Initially, there was some kind of substance, which, due to certain reasons, in an instant set in motion and exploded. It is not worth talking about the conditions that led to the onset of the explosive reaction. This is far from our understanding. Now formed 15 billion years ago as a result of a cataclysm, the Universe is a huge, endless polygon.

The primary products of the explosion were at first accumulations and clouds of gas. In the future, under the influence of gravitational forces and other physical processes there was the formation of larger objects of a universal scale. Everything happened very quickly by cosmic standards, over billions of years. First there was the formation of stars, which formed clusters and later coalesced into galaxies, the exact number of which is unknown. In its composition, galactic matter is hydrogen and helium atoms in the company of other elements that are building material for the formation of stars and other space objects.

It is not possible to say exactly where in the Universe the Milky Way is located, since the center of the universe is not exactly known.

Due to the similarity of the processes that formed the Universe, our galaxy is very similar in its structure to many others. By its type, this is a typical spiral galaxy, a type of objects that is common in the Universe in a huge variety. In terms of size, the galaxy is in the golden mean - not small and not huge. Our galaxy has many more smaller neighbors in a stellar home than those who are colossal in size.

The age of all galaxies that exist in outer space is the same. Our galaxy is almost the same age as the Universe and has an age of 14.5 billion years. During this vast period of time, the structure of the Milky Way has repeatedly changed, and this is happening today, only imperceptibly, in comparison with the pace of earthly life.

The history with the name of our galaxy is curious. Scientists believe that the name Milky Way is legendary. This is an attempt to connect the location of the stars in our sky with ancient Greek myth about the father of the gods Kronos, who devoured his own children. The last child, who faced the same sad fate, turned out to be thin and was given to the nurse for fattening. During feeding, splashes of milk fell into the sky, thereby creating a milk path. Subsequently, scientists and astronomers of all times and peoples agreed that our galaxy is really very similar to a milky road.

The Milky Way is currently in the middle of its development cycle. In other words, cosmic gas and matter for the formation of new stars are coming to an end. The existing stars are still quite young. As in the story with the Sun, which may turn into a Red Giant in 6-7 billion years, our descendants will observe the transformation of other stars and the entire galaxy as a whole into the red sequence.

Our galaxy may also cease to exist as a result of another universal cataclysm. Research topics recent years they are guided by the forthcoming meeting of the Milky Way with our closest neighbor, the Andromeda galaxy, in the distant future. It is likely that the Milky Way, after meeting with the Andromeda galaxy, will break up into several small galaxies. In any case, this will be the reason for the emergence of new stars and the reconstruction of the space closest to us. It remains only to guess what is the fate of the Universe and our galaxy in the distant future.

Astrophysical parameters of the Milky Way

In order to imagine what the Milky Way looks like on the scale of space, it is enough to look at the Universe itself and compare its individual parts. Our galaxy is part of a subgroup, which in turn is part of the Local Group, a larger entity. Here our space metropolis is adjacent to the Andromeda and Triangulum galaxies. Surrounding the trinity are more than 40 small galaxies. The local group is already part of an even larger formation and is part of the Virgo supercluster. Some argue that these are only rough guesses about where our galaxy is. The scale of formations is so huge that it is almost impossible to imagine all this. Today we know the distance to the nearest neighboring galaxies. Other deep sky objects are out of sight. Only theoretically and mathematically their existence is allowed.

The location of the galaxy became known only thanks to approximate calculations that determined the distance to the nearest neighbors. The satellites of the Milky Way are dwarf galaxies - the Small and Large Magellanic Clouds. In total, according to scientists, there are up to 14 satellite galaxies that make up the escort of the universal chariot called the Milky Way.

As for the visible world, today there is enough information about what our galaxy looks like. The existing model, and with it the map of the Milky Way, was compiled on the basis of mathematical calculations obtained from astrophysical observations. Each cosmic body or fragment of the galaxy takes its place. It's like the universe, only on a smaller scale. The astrophysical parameters of our space metropolis are interesting, and they are impressive.

Our barred spiral galaxy star charts denoted by the index SBbc. The diameter of the galactic disk of the Milky Way is about 50-90 thousand light years or 30 thousand parsecs. For comparison, the radius of the Andromeda galaxy is 110 thousand light years on the scale of the Universe. One can only imagine how much larger the Milky Way is our neighbor. The dimensions of the dwarf galaxies closest to the Milky Way are ten times smaller than the parameters of our galaxy. Magellanic clouds have a diameter of only 7-10 thousand light years. In this huge stellar cycle, there are about 200-400 billion stars. These stars are collected in clusters and nebulae. A significant part of it is the arms of the Milky Way, in one of which our solar system is located.

Everything else is dark matter, clouds of cosmic gas and bubbles that fill interstellar space. The closer to the center of the galaxy, the more stars, the closer it becomes space. Our Sun is located in a region of space, consisting of smaller space objects located at a considerable distance from each other.

The mass of the Milky Way is 6x1042 kg, which is trillions of times the mass of our Sun. Almost all the stars that inhabit our stellar country are located in the plane of one disk, the thickness of which, according to various estimates, is 1000 light years. It is not possible to know the exact mass of our galaxy, since most of the visible spectrum of stars is hidden from us by the arms of the Milky Way. In addition, the mass of dark matter that occupies vast interstellar spaces is unknown.

The distance from the Sun to the center of our galaxy is 27 thousand light years. Being on the relative periphery, the Sun is rapidly moving around the center of the galaxy, making a complete revolution in 240 million years.

The center of the galaxy is 1000 parsecs in diameter and consists of a core with an interesting sequence. The center of the core has the shape of a bulge, in which the largest stars and a cluster of hot gases are concentrated. It is this region that releases a huge amount of energy, which in aggregate is more than the billions of stars that make up the galaxy radiate. This part of the core is the most active and brightest part of the galaxy. Along the edges of the core there is a jumper, which is the beginning of the arms of our galaxy. Such a bridge arises as a result of the colossal force of gravity caused by the rapid rotation of the galaxy itself.

Considering the central part of the galaxy, the following fact looks paradoxical. Scientists for a long time could not understand what is at the center of the Milky Way. It turns out that in the very center of a starry country called the Milky Way, a supermassive black hole has settled down, the diameter of which is about 140 km. It is there that most of the energy released by the core of the galaxy goes, it is in this bottomless abyss that the stars dissolve and die. The presence of a black hole at the center of the Milky Way indicates that all processes of formation in the Universe must someday end. Matter will turn into antimatter and everything will repeat again. How this monster will behave in millions and billions of years, the black abyss is silent, which indicates that the processes of absorption of matter are only gaining momentum.

Two main arms of the galaxy extend from the center - the Shield of the Centaur and Perseus. These structural formations were named after the constellations located in the sky. In addition to the main arms, the galaxy is surrounded by 5 more small arms.

Near and distant future

The arms, born from the core of the Milky Way, spiral outward, filling outer space with stars and cosmic material. An analogy with cosmic bodies that revolve around the Sun in our star system is appropriate here. A huge mass of stars, large and small, clusters and nebulae, cosmic objects of various sizes and nature, spins on a giant carousel. They all create wonderful picture the starry sky, which man has been looking at for more than one thousand years. When studying our galaxy, you should know that the stars in the galaxy live according to their own laws, being in one of the arms of the galaxy today, tomorrow they will start their journey in the other direction, leaving one arm and flying into another.

Earth in the Milky Way galaxy is far from the only planet suitable for life. This is just a particle of dust, the size of an atom, which was lost in the vast stellar world of our galaxy. There can be a huge number of such planets similar to Earth in the galaxy. It is enough to imagine the number of stars that somehow have their own stellar planetary systems. Other life may be far away, at the very edge of the galaxy, tens of thousands of light years away, or, conversely, be present in neighboring regions that are hidden from us by the arms of the Milky Way.