Информационная поддержка школьников и студентов
Поиск по сайту

Получение первичные и вторичные метаболиты. Диауксия. Метаболиты микроорганизмов. Оценка роста. Нужна помощь по изучению какой-либы темы

Из всех продуктов, получаемых с помощью микробных процессов, наибольшее значение имеют вторичные метаболиты. Если вопрос о физиологической роли вторичных метаболитов в клетках-продуцентах был предметом серьезных дискуссий, то их промышленное получение представляет несомненный интерес, так как эти метаболиты являются биологически активными веществами: одни из них обладают антимикробной активностью, другие являются специфическими ингибиторами ферментов, третьи– ростовыми факторами, многие обладают фармакологической активностью. К вторичным метаболитам относятся антибиотики, алкалоиды и токсины. Фармацевтическая промышленность разработала сверхсложные методы скрининга (массовой проверки) микроорганизмов на способность продуцировать ценные вторичные метаболиты.

Термины "вторичные метаболиты" и "вторичный метаболизм" вошли в лексику биологов в конце XIX века с легкой руки профессора Косселя. В 1891 году в Берлине он прочитал не собрании Физиологического общества лекцию, которая называлась «О химическом составе клеток»; происхождение названия «вторичные метаболиты» – значит второстепенные, «случайные».

Работа содержит 1 файл

Введение

Из всех продуктов, получаемых с помощью микробных процессов, наибольшее значение имеют вторичные метаболиты. Если вопрос о физиологической роли вторичных метаболитов в клетках- продуцентах был предметом серьезных дискуссий, то их промышленное получение представляет несомненный интерес, так как эти метаболиты являются биологически активными веществами: одни из них обладают антимикробной активностью, другие являются специфическими ингибиторами ферментов, третьи– ростовыми факторами, многие обладают фармакологической активностью. К вторичным метаболитам относятся антибиотики, алкалоиды и токсины. Фармацевтическая промышленность разработала сверхсложные методы скрининга (массовой проверки) микроорганизмов на способность продуцировать ценные вторичные метаболиты.

Термины "вторичные метаболиты" и "вторичный метаболизм" вошли в лексику биологов в конце XIX века с легкой руки профессора Косселя. В 1891 году в Берлине он прочитал не собрании Физиологического общества лекцию, которая называлась «О химическом составе клеток»; происхождение названия «вторичные метаболиты» – значит второстепенные, «случайные».

Целью данной работы является изучение способов синтеза, химической структуры, свойств и роли вторичных метаболитов в жизни человека.

Для достижения поставленной цели решались следующие задачи:

  1. Изучение процессов, происходящих при синтезе вторичных метаболитов.
  2. Анализ химической структуры вторичных метаболитов.
  3. Оценка роли вторичных метаболитов в жизни их продуцентов, человека и высших животных.

1.Вторичные метаболиты микроорганизмов. Общие сведения.

Вторичные метаболиты (идиолиты) – это вещества микробного (или растительного) происхождения, не существенные для роста и репродукции образующего их организма. Каждый вторичный метаболит производится относительно ограниченным числом видов. Эти соединения синтезируются в конце экспоненциальной или в течение стационарной фаз роста, и их формирование в значительной степени зависит от условий роста, особенно состава питательной среды.

Многие вторичные метаболиты имеют химическую структуру, необычную для биологической материи. Эти соединения относятся к разнообразным классам органических веществ, – аминоциклитолы, кумарины, эпоксиды, пирролы, нерибосомальные пептиды, полиены, терпеноиды, тетрациклины, поликетиды, изопреноиды, стероиды, гиббереллины, фитоалексины и т.д. В отличие от синтеза первичного метаболита, который происходит одновременно с ростом и размножением культуры, для продуцента вторичных метаболитов принято говорить о трофофазе (когда культура растет и размножается) и идиофазе (когда рост замедляется или останавливается и начинается синтез продукта). О механизмах переключения путей метаболизма с первичного на вторичный и о физиологической роли вторичных метаболитов в жизни собственного продуцента достоверно известно очень мало. Известны четыре класса биосинтетических реакций, «уводящих» интермедиат (от латинского intermedius средний – промежуточное вещество с коротким временем жизни, образующееся в ходе химической реакции и затем реагирующие далее до продуктов реакции) на путь вторичного метаболизма:

  1. преобразование первичного метаболита в специфический предшественник для вторичного метаболизма;
  2. реакции модификации или активации, уводящие предшественник на путь вторичного метаболизма;
  3. полимеризация и конденсация;
  4. поздние реакции модификации.

Рис.1.Связь вторичного и первичного метаболизма (ВМ - вторичный метаболит)

К вторичным метаболитам причисляют антибиотики, токсины, иммунодепрессанты и стимуляторы, а также некоторые запасные вещества (поли-β-алканоаты). Неизвестно, насколько распространен вторичный метаболизм в природе. Само понятие «вторичный метаболит» достаточно расплывчатое и многие исследователи его не признают.

2.Образование вторичных метаболитов

С биотехнологической точки зрения важными являются понятия о вторичных метаболитах или о реакциях вторичного обмена, которые сходны у всех живых организмов. К реакциям вторичного обмена относятся те, которые сопровождаются образованием алкалоидов, антибиотиков, триспоровых кислот гиббереллинов и некоторых других веществ, расцениваемых несущественными для продуцента. Вторичные метаболиты представляют собой продукты реакций, катализируемых ферментами.

Рисунок 2. Схема образования вторичных метаболитов.

Преметаболиты в схеме представляют собой простые питательные вещества, поступающие извне (аммоний, ионы металлов, углекислота, сульфаты, фосфаты, нитраты для гетеротрофов - моносахариды и некоторые другие).

К интермедиатам или прометаболитам относятся простые сахара, аминокислоты, нуклеиновые основания. Информационные молекулы ДНК и РНК вычленены из состава других реакций, хотя синтез и распад (прерывистые стрелки) также катализируются ферментами. В отличие от первичных метаболитов образование вторичных метаболитов непосредственно не кодируется ядерной или цитоплазматической ДНК. Согласно такому представлению все живые организмы синтезируют присущие им вторичные метаболиты.

На основании положений, сформулированных В.Н. Шапошниковым(1939), каждый продуцент в своем развитие проходит две фазы, названные Ж.Д. Бу’Локком трофофазой и идиофазой (от греч. trofe-питание, idios-свой, специфический). В период трофофазы активно протекают конструктивный и энергетический обмен - в клетках преобладают синтетические процессы, нарастает количество первичных метаболитов-липидов, гликонов, гликоконъюгатов; скорость роста и размножения организма при этом высокая, а продуктивность экзогенных вторичных метаболитов низкая, и, напротив, в идиофазу скорость роста и размножения низкая, а продукция экзогенных и эндогенных вторичных метаболитов высокая. Продуктивность культуры может быть повышена за счет внесения предшественников метаболитов (преимущественно в период времени, приходящийся на конец идиофазы).

Рис. 3.Соотношение биомассы клеток (а), первичных метаболитов(б) и вторичных метаболитов (в) в культурах Saccharomyces cerevisiae(Пекарские дрожжи)(1), Penicillium chrysogenum(2), Nicotiana tabacum(3), кератоцитов(клетки соединительной ткани роговой оболочки глаза.)(4); М-масса высушенных клеток, М*-число животных клеток, t-время в сутках, I-трофофаза (заштрихованная часть), II-идиофаза.

Из рисунка 3 видно, что продолжительность трофофазы более короткая у дрожжей, чем у пеницилла и клеток табака. Накопление этанола S.cerevisiae сопровождается возрастанием ингибирующей активности его на продуцент и поэтому кривые, приходящиеся на идиофазу, идут почти параллельно, повторяя характер кривой для первичных метаболитов, биосинтез которых начался в период трофофазы.

Пенициллин, синтезируемый P. chrysogenum, и не подавляющий продуцент, выражено накапливается в идиофазу.

Алкалоид никотин синтезируется клетками табака замедленно и при переходе культуры в стационарную фазу выход его заметно уменьшается.

В каждом из приведенных примеров можно отметить свои особенности биосинтеза вторичных метаболитов. В любом случае они образуются клетками как естественные продукты в процессе культивирования в соответствующих средах и под каталитическим действием ферментов.

3.Отдельные представители вторичных метаболитов

3.1.Антибиотики

Антибиотики - это вещества биологического происхождения, способные даже в низких концентрациях подавлять рост микроорганизмов. Термин «вторичные метаболиты» эквивалентен термину «антибиотики», используемому в широком смысле слова. Способность образовывать антибиотики широко распространена в природе, однако она неравномерно распределена между различными таксономическими группами микроорганизмов. Наибольшее количество антибиотиков получено из актиномицетов (лучистых грибков)(по разным оценкам от 6000 до 10000, на первом месте по химическому многообразию синтезируемых веществ стоят стрептомицеты). Из несовершенных грибов выделено около 1500 антибиотиков, причем около трети образуется представителями родов Penicillium и Aspergillus, однако немногие из них имеют практическое значение. Они играют важную роль как лечебные средства, стимулирующие препараты, добавки к кормам и т.п. В качестве продуцентов вторичных метаболитов микроорганизмы приобрели огромное экономическое значение. Открытие и исследование антибиотиков, а также получение новых полусинтетических оказало неоценимые услуги медицине.

3.2.Образование антибиотиков

Уже в прошлом веке было известно, что между различными микроорганизмами могут существовать как симбиотические, так и антагонистические взаимоотношения. Толчком к выяснению материальной основы антибиоза послужило наблюдение Флеминга, обнаружившего(1928), что колония грибов Penicillium notatum подавляла рост стафилококков. Выделяемое этим грибом вещество, которое проникло в агар посредством диффузии, получило название пенициллина. С тех пор было выделено множество веществ с антибиотической активностью. Различают вещества, подавляющие рост микробов (бактериостатические, фунгистатические) и убивающие их (бактерицидные, фунгицидные).

3.3.Методы выявления антибиотиков

Первые антибиотики были обнаружены случайно, по образованию зон подавления роста. В чашках с питательным агаром, густо засеянным тест- организмом(индикаторными бактериями), вокруг колоний гриба или стрептомицета рост отсутствовал: антибиотик, диффундирующий из колонии в агар, вызывал образование прозрачных участков в сплошном бактериальном газоне(Рисунок 4).

Рис.4.Выделение антибиотиков можно обнаружить по образованию зон подавления роста индикаторных бактерий(Staphylococcus aureus), равномерно рассеянных на агаре.

Видами - индикаторами в таких опытах служат типичные представители групп микроорганизмов. Для качественного испытания продуцента антибиотика достаточно посеять его в середину чашки с питательным агаром, а индикаторные бактерии в виде радиальных штрихов(Рисунок 5). После инкубации по степени торможения роста различных индикаторных организмов судят о спектре действия антибиотика. Антибиотики различаются по действию на грам–положительные и грам – отрицательные бактерии, на дрожжи, дерматофиты и другие микроорганизмы.

Рис.5. Определение спектра действия трех антибиотиков с помощью штрихового теста:1- Staphylococcus aureus,2- Streptococcus, 3- Escherichia coli,4- Pseudomonas aeruginosa (синегнойная палочка),5- Candida albicans, 6- Trichophyton rubrum

Большинство антибиотиков было открыто в процессе предварительного отбора(скрининга).

3.4.Важнейшие антибиотики, применяемые в медицине

Первое место среди них все еще принадлежит пенициллину, который синтезируют Penicillium notatum, P. chrysogenum и некоторые другие грибы; удалось также получить полусинтетические пенициллины (путем расщепления природных пенициллинов до 6-аминопенициллановой кислоты, к которой затем химическим путем присоединяют различные боковые группы).

Для человека пенициллин почти не токсичен и лишь в редких случаях вызывает побочные аллергические реакции.

Многие бактерии образуют пенциллиназу, которая расщепляет β-лактамовое кольцо и инактивирует пенициллин. Воздействуя на 6-аминопени-циллановую кислоту хлорангидридами кислот, можно получать сотни пенициллинов (Рисунок 6). Многие полусинтетические пенициллины не расщепляются пенициллиназой (фермент, обладающий способностью расщеплять (инактивировать) пенициллины и цефалоспорины) и ввиду их устойчивости к действию кислот могут вводиться перорально.

Рисунок 6. Получение полусинтетических пенициллинов действием бактериальных ферментов на пенициллин.

Рисунок 7. Структурные формулы цефалоспорина С, стрептомицина А, хлормицетина, тетрациклина и актиномицина D(актиномицина С 1)

Цефалоспорины- продукты одного из видов гриба Cephalosporium. Цефалоспорин С имеет β-лактамовое кольцо и по своей структуре близок к пенициллину (рисунок 7). Отщепляя боковую цепь и затем присоединяя к образовавшейся 7-аминоцефалоспорановой кислоте другие боковые группы, можно получать полусинтетические цефалоспорины (цефалотин, цефалоридин), которые по своему действию сходны с производными пенициллина.

Стрептомицин был впервые выделен из культуры Streptomyces griseus, однако его синтезируют и некоторые другие виды Streptomyces. Молекула стрептомицина состоит из трех частей: N-метил-L-2-глюкозамина, метилпентозы и дигуанидинзамещенного инозитола (рисунок 7). Успех применения стрептомицина объясняется его действием на ряд кислотоустойчивых и грам-отрицательных бактерий, нечувствительных к пенициллину. Однако стрептомицин вызывает у больных резко выраженные аллергические реакции. Этот антибиотик применяется также в ветеринарии и для борьбы с болезнями растений.

Хлоромицетин (хлорамфеникол) был впервые обнаружен в культурах Streptomyces venezuelae, но его можно получить и синтетическим путем (Рисунок 7). Он отличается исключительной стабильностью и действует на многие грам-отрицательные бактерии, включая спирохеты, риккетсии и актиномицеты, а также на крупные вирусы.

Тетрациклины тоже представляют собой метаболиты различных стрептомицетов (в том числе Streptomyces aureofaciens). Химически они очень близки между собой и имеют в основе структуры нафтацен (Рисунок 7). Наиболее известны хлортетрациклин (ауреомицин), оксите-трациклин (террамицин) и тетрациклин. Тетрациклины отличаются широким спектром действия и хорошей переносимостью.

НАЦИОНАЛЬНЫЙ ФАРМАЦЕВТИЧЕСКИЙ УНИВЕРСИТЕТ СПЕЦИАЛЬНОСТЬ «БИОТЕХНОЛОГИЯ»

ДИСЦИПЛИНА «ОБЩАЯ МИКРОБИОЛОГИЯ И ВИРУСОЛОГИЯ» КАФЕДРА БИОТЕХНОЛОГИИ

БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ У МИКРООРГАНИЗМОВ.

БИОСИНТЕЗ ПЕРВИЧНЫХ МЕТАБОЛИТОВ: АМИНОКИСЛОТ, НУКЛЕОТИДОВ, УГЛЕВОДОВ, ЖИРНЫХ КИСЛОТ.

БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ У МИКРООРГАНИЗМОВ

БИОСИНТЕЗ АМИНОКИСЛОТ

ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ АМИНОКИСЛОТ

БИОСИНТЕЗ НУКЛЕОТИДОВ

ПРОМЫШЛЕННОЕ ПОЛУЧЕНИЕ НУКЛЕОТИДОВ

БИОСИНТЕЗ ЖИРНЫХ КИСЛОТ, УГЛЕВОДО, САХАРОВ

БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ У МИКРООРГАНИЗМОВ

МЕТАБОЛИЗМ

ГЛЮКОЗА*

РИСУНОК 1 – ОБЩАЯ СХЕМА ПУТЕЙ БИОСИНТЕЗА КЛЕТОЧНОГО МАТЕРИАЛА

ИЗ ГЛЮКОЗЫ

АМФИБОЛИЗМ КАТАБОЛИЗМ

ПЕНТОЗОФОСФАТЫ

ФОСФОЭНОЛПИРУВАТ

МОНОМЕРЫ

ПОЛИМЕРЫ

Аминокислоты

АЦЕТИЛ-КОА

Витамины

Полисахариды

Сахарофосфаты

Жирные кислоты

ОКСАЛОАЦЕТАТ

Нуклеотиды

Нуклеиновые

2-ОКСОГЛУТАРАТ

БИОСИНТЕТИЧЕСКИЕ ПРОЦЕССЫ

У МИКРООРГАНИЗМОВ

В процессе роста микроорганизмов на глюкозе в аэробных условиях около 50 %

глюкозы окисляются до СО2 для получения энергии. Остальные 50 % глюкозы преобразуется на клеточный материал. Именно на это преобразование и тратится большая часть АТФ, образованная во время окисления субстрата.

МЕТАБОЛИТЫ

МИКРООРГАНИЗМОВ

На разных этапах роста микроорганизмов образуются метаболиты.

В логарифмической фазе роста образуются первичные метаболиты (белки, аминокислоты и др.).

В лаг-фазе и в стационарной фазе образуются вторичные метаболиты, которые являются биологически активными соединениями. К ним относятся различные антибиотики, ингибиторы ферментов и др.

МЕТАБОЛИТЫ

МИКРООРГАНИЗМОВ

Первичные метаболиты – это низкомолекулярные соединения (молекулярная масса менее 1500 дальтон), необходимые для роста микробов; одни из них являются строительными блоками макромолекул, другие участвуют в синтезе коферментов. Среди наиболее важных для промышленности метаболитов можно выделить аминокислоты, органические кислоты, пуриновые и примидиновые нуклеотиды, витамины и др.

Вторичные метаболиты – это низкомолекулярные соединения, образующиеся на более поздних стадиях развития культуры, не требующиеся для роста микроорганизмов. По химическому строению вторичные метаболиты относятся к различным группам соединений. К ним относят антибиотики, алкалоиды, гормоны роста растений, токсины и пигменты.

Микроорганизмы – продуценты первичных и вторичных метаболитов используют в промышленности. Исходными штаммами для промышленных процессов служат природные организмы и культуры с нарушениями регуляции синтеза этих метаболитов, так как обычные микробные клетки не производят7 избытка первичных метаболитов.

Каким бы путем ни осуществлялся фотосинтез, в конечном итоге он завершается накоплением энергетически богатых запасных веществ, составляющих основу для поддержания жизнедеятельности клетки и в конечном итоге всего многоклеточного организма. Эти вещества являются продуктами первичного метаболизма. Помимо главнейшей своей функции первичные метаболиты - основа для биосинтеза соединений, которые принято называть продуктами вторичного метаболизма. Последние, часто называемые условно "вторичными метаболитами", целиком "обязаны" своим существованием в природе продуктам, образующимся в итоге фотосинтеза. Следует заметить, что синтез вторичных метаболитов осуществляется за счет энергии, освобождающейся в митохондриях в процессе клеточного дыхания.

Вторичные метаболиты - предмет изучения биохимии растений, но небезынтересно ознакомиться со схемой (рис. 1), на которой показана их биогенетическая связь с прямыми продуктами фотосинтеза.

Рисунок 1. Биогенетическая связь вторичных метаболитов с прямыми продуктами фотосинтеза.

Вторичные метаболиты: пигменты, алкалоиды, танины, гликозиды, органические кислоты

Пигменты

Среди пигментов вакуоли наиболее часто встречаются антоцианы и флавоны.

Антоцианы относятся к группе гликозидов с фенольными группами. Антоцианы одной группы отличаются от другой. Интересной особенностью этого пигмента является то, что он меняет свою окраску в зависимости от рН клеточного сока. При кислой реакции клеточного сока антоциан окрашивает его в розовый цвет, при нейтральной – в фиолетовый, а при основной – в синий.

У некоторых растений окраска может меняться по мере развития цветков. Например, у огуречной травы бутоны розового цвета, а зрелые цветки синего. Предполагается, что таким образом растение сигнализирует насекомым о готовности к опылению.

Антоцианы накапливаются не только в цветках, но и в стеблях, листьях и плодах.

Антохлор - это пигмент желтого цвета, относится к флавоноидам. Он встречается реже. Содержат антохлор желтые цветки тыквенных, льнянки, плоды цитрусовых.

В клеточном соке также может накапливаться пигмент антофеин, окрашивающий его в темно-бурый цвет .

К алкалоидам относят природные гетероциклические соединения, содержащие в циклах помимо углерода один или более атомов азота, реже кислорода. Они проявляют щелочные свойства. Алкалоиды обладают высокой фармакологической активностью, поэтому большинство лекарственных растений относятся к алкалоидоносам. В коробочках снотворного мака найдено более 20 различных алкалоидов, в том числе морфин, тебаин, кодеин, папаверин и др. Как известно, морфин, обладая болеутоляющим и противошоковым действием, вызывает эйфорию: при его повторном применении развивается болезненное пристрастие к нему – наркомания. Кодеин уменьшает возбудимость кашлевого центра, входит в состав противокашлевых средств. Папаверин применяется в качестве спазмолитического средства при гипертонии, стенокардии, мигрени. Богаты алкалоидами пасленовые, лютиковые, лилейные.

Многие алкалоидоносные растения ядовиты и не поедаются животными, они слабо поражаются грибковым и бактериальным заболеваниям.

Гликозиды – производные сахаров, соединенные со спиртами, альдегидами, фенолами и другими безазотистыми веществами. При соприкосновении с воздухом гликозиды распадаются, при этом выделяется приятный аромат, например, запах сена, завариваемого чая и т.д.

Наиболее широкое практическое применение находят сердечные гликозиды и сапонины. Сердечные гликозиды являются активным началом такого известного лекарственного растения как ландыш майский. Его лекарственные свойства известны очень давно и не утратили своего значения до сих пор. Раньше из ландыша готовили лекарства от водянки, сердечных болезней, эпилепсии, лихорадки.

Название сапонинов происходит от способности этих соединений к пенообразованию. Большинство представителей этой группы имеют высокую биологическую активность, которая обусловливает лечебное действие и соответственно лекарственное применение таких известных биостимуляторов, как женьшень, солодка, аралия.

Танины (дубильные вещества) – производные фенола. Они имеют вяжущий вкус и обладают антисептическими свойствами. В клетке накапливаются в виде коллоидных растворов и имеют желтый, красный и коричневый цвет. При добавлении солей железа приобретают голубовато-зеленый цвет, что раньше использовалось для получения чернил.

Танины могут накапливаться в значительных количествах в различных органах растений. Их много в плодах айвы, хурмы, черемухи, в коре дуба, в листьях чая.

Предполагается, что танины выполняют самые различные функции. При отмирании протопласта танинами пропитываются клеточные стенки и придают им стойкость против гниения. У живых клеток танины защищают протопласт от обезвоживания. Предполагается также, что они участвуют в синтезе и транспорте сахаров.

Производство вторичных метаболитов

Из всех продуктов, получаемых с помощью микробных процессов, наибольшее значение имеют вторичные метаболиты. Вторичные метаболиты, называемые также идиолитами, это низкомолекулярные соединения, не требующиеся для роста в чистой культуре. Они производятся ограниченным числом таксономических групп и часто представляют собой смесь близкородственных соединений, относящихся к одной и той же химической группе. Если вопрос о физиологической роли вторичных метаболитов в клетках-продуцентах был предметом серьезных дискуссий, то их промышленное получение представляет несомненный интерес, так как эти метаболиты являются биологически активными веществами: одни из них обладают антимикробной активностью, другие являются специфическими ингибиторами ферментов, третьи - ростовыми факторами, многие обладают фармакологической активностью. К вторичным метаболитам относятся антибиотики, алкалоиды, гормоны роста растений и токсины. Фармацевтическая промышленность разработала сверхсложные методы скрининга (массовой проверки) микроорганизмов на способность продуцировать ценные вторичные метаболиты.

Получение такого рода веществ послужило основой для создания целого ряда отраслей микробиологической промышленности. Первым в этом ряду стало производство пенициллина; микробиологический способ получения пенициллина был разработан в 1940-х годах и заложил фундамент современной промышленной биотехнологии.

Молекулы антибиотиков очень разнообразны по составу и механизму действия на микробную клетку. При этом в связи с возникновением устойчивости патогенных микроорганизмов к старым антибиотикам постоянно существует потребность в новых. В некоторых случаях природные микробные антибиотические продукты химическим или энзиматическим путем могут быть превращены в так называемые полусинтетические антибиотики, обладающие более высокими терапевтическими свойствами.

Антибиотики - органические соединения. Они синтезируются живой клеткой и способны в небольших концентрациях замедлить развитие или полностью уничтожить чувствительные к ним виды микроорганизмов. Их продуцируют не только клетки микроорганизмов и растений, но и клетки животных. Антибиотики растительного происхождения называют фитонцидами. Это хлорелин, томатин, сативин, получаемый из чеснока, и алин, выделяемый из лука.

Рост микроорганизмов можно охарактеризовать как S - образную кривую. Первая стадия - стадия быстрого роста, или логарифмическая, для которой характерен синтез первичных метаболитов. Далее наступает фаза медленного роста, когда увеличение биомассы клеток резко замедляется. Микроорганизмы, производящие вторичные метаболиты, вначале проходят стадию быстрого роста, тропофазу, во время которой синтез вторичных веществ незначителен. По мере замедления роста из-за истощения одного или нескольких необходимых питательных веществ в культуральной среде микроорганизм переходит в идиофазу; именно в этот период синтезируются идиолиты. Идиолиты, или вторичные метаболиты, не играют явной роли в процессах метаболизма, они вырабатываются клетками для адаптации к условиям окружающей среды, например, для защиты. Их синтезируют не все микроорганизмы, а в основном нитчатые бактерии, грибы и спорообразующие бактерии. Таким образом, продуценты первичных и вторичных метаболитов относятся к разным таксономическим группам .

Особенности культурального роста этих микроорганизмов необходимо учитывать при производстве. Например, в случае антибиотиков большинство микроорганизмов в процессе тропофазы чувствительно к собственным антибиотикам, однако во время идиофазы они становятся к ним устойчивыми.

Чтобы уберечь микроорганизмы, продуцирующие антибиотики, от самоуничтожения, важно быстро достичь идиофазы и затем культивировать микроорганизмы в этой фазе. Это достигается путем варьирования режимов культивирования и составом питательной среды на стадиях быстрого и медленного роста.

Культуры клеток и тканей растений считаются потенциальным источником специфических вторичных метаболитов, к которым относятся такие соединения, как алкалоиды, стероиды, масла и пигменты. Многие из этих веществ все еще получают путем экстракции из растений. Не ко всем видам растений в настоящее время применимы методы микробиологической промышленности. За исключением некоторых видов растений, суспензионные и каллусные культуры клеток синтезируют вторичные метаболиты в меньших количествах, чем целые растения. При этом рост биомассы в ферментере может быть значительным.

Новым подходом, направленным на увеличение выхода вторичных метаболитов, является иммобилизация клеток и тканей растений. Первая удачная попытка зафиксировать целые клетки была осуществлена в 1966 г. Мосбахом. Он зафиксировал клетки лишайника Umbilicaria pustulata в полиакриламидном геле. На следующий год ван Вецель выращивал клетки эмбрионов животных, иммобилизованных на микрошариках ДЭАЭ (диэтиламиноэтил сефадекса, на основе декстрана). После этого клетки были иммобилизованы на разных субстратах. В основном это были клетки микроорганизмов.

Методы иммобилизации клеток делят на 4 категории:

Иммобилизация клеток или субклеточных органелл в инертном субстрате. Например, клетки Catharanthus roseus, Digitalis lanata в альгинатных, агарозных шариках, в желатине и т.д. Метод предполагает обволакивание клеток одной из различных цементирующих сред – альгинат, агар, коллаген, полиакриламид.

Адсорбция клеток на инертном субстрате. Клетки прилипают к заряженным шарикам из альгината, полистирола, полиакриламида. Метод применялся в экспериментах с животными клетками, а также клетками Saccharomyces uvarum, S. cerevisiae, Candida tropicalis, E. coli.

Адсорбция клеток на инертном субстрате с помощью биологических макромолекул (таких, как лектин). Применяется редко, есть сведения об экспериментах с различными линиями клеток человека, эритроцитами крови барана, адсорбированными на покрытой белком агарозе.

Ковалентное связывание с другим инертным носителем типа КМЦ. Очень редко применяется, известна удачная иммобилизация для Micrococcus luteus. В основном проводились эксперименты по иммобилизации клеток животных и микроорганизмов.

В последнее время интерес к иммобилизации клеток растений значительно возрос, это связано с тем, что иммобилизованные клетки имеют определенные преимущества перед каллусными и суспензионными культурами при использовании их для получения вторичных метаболитов.

Физиологические основы преимущества иммобилизованных растительных клеток перед традиционными способами культивирования

В литературе имеются многочисленные данные о том, что существует положительная корреляция между накоплением вторичных метаболитов и степенью дифференцировки в культуре клеток. Кроме того, лигнин, например, откладывается в трахеидах и сосудистых элементах ксилемы только после завершения процессов дифференцировки, что было показано в экспериментах как in vivo, так и in vitro. Полученные данные свидетельствуют о том, что дифференциация и накопление вторичных продуктов обмена веществ происходит в конце клеточного цикла. При снижении роста процессы дифференциации ускоряются.

Изучение содержания алкалоидов, накапливаемых многими растениями in vitro, показало, что компактные, медленно растущие культуры клеток содержат алкалоиды в больших количествах, чем рыхлые, быстро растущие культуры. Организация клеток необходима для их нормального метаболизма. Наличие организованности в ткани и ее последующее действие на различные физические и химические градиенты – четкие показатели, по которым различаются высоко- и низкопродуктивные культуры. Очевидно, что иммобилизация клеток обеспечивает условия, приводящие к дифференциации, упорядочивает организацию клеток и способствует тем самым высокому выходу вторичных метаболитов.

Иммобилизованные клетки имеют ряд преимуществ:

1. Клетки, иммобилизованные в или на инертном субстрате, образуют биомассу гораздо медленнее, чем растущие в жидких суспензионных культурах.

Какова же связь между ростом и метаболизмом? При чем здесь клеточная организация и дифференцировка? Предполагают, что эта взаимосвязь обусловлена двумя типами механизмов. Первый механизм основан на том, что рост определяет степень агрегации клеток, оказывая косвенное влияние на синтез вторичных метаболитов. Организация в данном случае является результатом агрегации клеток, а достаточная степень агрегации может быть получена только в медленно растущих культурах. Второй механизм связан с кинетикой скорости роста и предполагает, что «первичный» и «вторичный» пути метаболизма по-разному конкурируют за предшественники в быстро и медленно растущих клетках. Если условия среды благоприятны для быстрого роста, то в первую очередь синтезируются первичные метаболиты. Если быстрый рост блокирован, то начинается синтез вторичных метаболитов. Таким образом, низкая скорость роста иммобилизованных клеток способствует высокому выходу метаболитов.

2. Кроме медленного роста иммобилизация клеток позволяет им расти в тесном физическом контакте друг другом, что благоприятно отражается и на химических контактах.

В растении любая клетка окружена другими клетками, но ее положение меняется в ходе онтогенеза в результате деления как этой, так и окружающих клеток. От положения клетки в растении зависит степень и тип дифференциации этой клетки. Следовательно, физическое окружение клетки влияет на ее метаболизм. Каким образом? Регуляция синтеза вторичных метаболитов находится как под генетическим, так и под эпигенетическим (внеядерным) контролем, то есть любые изменения в цитоплазме могут привести к количественным и качественным изменениям в образовании вторичных метаболитов. В свою очередь, цитоплазма представляет собой динамическую систему, находящуюся под влиянием окружающей среды.

Из внешних условий на метаболизм существенное влияние оказывают 2 важных фактора: концентрация кислорода и углекислого газа, а также уровень освещения. Свет играет роль и в процессе фотосинтеза, и в таких физиологических процессах, как деление клеток, ориентация микрофибрилл, активация ферментов. Интенсивность и длина световой волны определяется положением клетки в массе других клеток, то есть зависят от степени организованности ткани. В организованной структуре существуют центробежные градиенты концентрации О2 и СО2, которые играют исключительно важную роль в процессе дифференциации.

Таким образом, вторичный метаболизм в крупных агрегатах клеток с небольшим отношением площади к объему (S/V) отличается от такового изолированных клеток и мелких групп клеток в результате действия градиентов концентрации газов. Аналогично действуют градиенты регуляторов роста, питательных веществ, механического давления. Условия окружения у диспергированных клеток и клеток в виде агрегатов различны, поэтому пути метаболизма у них также различаются.

3. Регулировать выход вторичных метаболитов можно также, изменяя химический состав окружающей среды.

Изменение состава среды для каллусной и суспензионной культуры сопровождается определенными физическим манипуляциями с клетками, что может привести к повреждению или загрязнению культур. Эти трудности можно преодолеть, используя циркуляцию больших объемов питательной среды вокруг физически неподвижных клеток, что позволяет осуществлять последовательные химические воздействия.

4. В некоторых случаях возникают проблемы с выделением идиолитов.

При использовании иммобилизованных клеток относительно легко осуществляется обработка их химическим веществами, индуцирующими высвобождение требуемых продуктов. Это также снижает ингибирование по типу обратной связи, которое ограничивает синтез веществ вследствие накопления их внутри клетки. Культивируемые клетки некоторых растений, например, Capsicum frutescens выделяют вторичные метаболиты в окружающую среду, а система иммобилизованных клеток позволяет отбирать продукты без повреждения культур. Таким образом, иммобилизация клеток способствует легкой изоляции идиолитов .


Список использованной литературы:

1. «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.

2. Лекарственное сырьё растительного и животного происхождения. Фармакогнозия: учебное пособие/под ред. Г.П.Яковлева. СПб.: СпецЛит, 2006. 845 с.

3. Шабарова З. А., Богданов А. А., Золотухин А. С. Химические основы генетической инженерии. - М.: Изд-во МГУ, 2004, 224 с.

4. Чебышев Н.В., Гринева Г.Г., Кобзарь М.В., Гулянков С.И. Биология.М., 2000


Лекарственное сырьё растительного и животного происхождения. Фармакогнозия: учебное пособие/под ред. Г.П.Яковлева. СПб.: СпецЛит, 2006. 845 с.

Шабарова З. А., Богданов А. А., Золотухин А. С. Химические основы генетической инженерии. - М.: Изд-во МГУ, 2004, 224 с.

Вторичные метаболиты являются важнейшими физиологически активными соединениями в мире растений. Их количество, исследованное наукой, увеличивается с каждым годом. В настоящий момент изучено около 15 % всех видов растений на предмет наличия этих веществ. Они обладают также высокой биологической активностью в отношении организма животных и человека, что определяет их потенциал как фармацевтических средств.

Отличительной особенностью всех живых организмов является то, что в них происходит метаболизм - обмен веществ. Он представляет собой совокупность химических реакций, в результате которых вырабатываются первичные и вторичные метаболиты.

Разница между ними состоит в том, что первые характерны для всех существ (синтез белков, аминокарбоновых и нуклеиновых кислот, углеводов, пуринов, витаминов), а вторые свойственны определенным видам организмов и не участвуют в росте и процессе размножения. Однако и они выполняют определенные функции.

В животном мире вторичные соединения вырабатываются редко, чаще они поступают в организм вместе с растительной пищей. Эти вещества синтезируются преимущественно в растениях, грибах, губках и одноклеточных бактериях.

Признаки и особенности

В биохимии выделяют следующие основные признаки вторичных метаболитов растений:

    высокая биологическая активность;

    небольшая молекулярная масса (2-3 кДа);

    выработка из небольшого количества исходных веществ (5-6 аминокислот для 7 алкалоидов);

    синтез присущ отдельным видам растений;

    образование на более поздних стадиях развития живого организма.

Любой из этих признаков не является обязательным. Так, вторичные фенольные метаболиты вырабатываются у всех видов растений, а натуральный каучук имеет высокую молекулярную массу. Производство вторичных метаболитов в растениях происходит только на основе белков, липидов и углеводов под воздействием различных ферментов. Собственного пути для синтеза у таких соединений нет.

Для них характерны также следующие особенности:

    наличие в разных частях растения;

    неравномерное распределение в тканях;

    локализация в определенных отсеках клетки для обезвреживания биологической активности вторичных метаболитов;

    наличие базовой структуры (чаще всего в ее роли выступают гидроксильные, метильные, метоксильные группы), на основе которой образуются другие варианты соединений;

    разные типы изменения структуры;

    способность перехода в неактивную, «запасную» форму;

    отсутствие прямого участия в обмене веществ.

Вторичный метаболизм часто рассматривают как способность живого организма взаимодействовать с собственными ферментами и генетическим материалом. Основной процесс, в результате которого образуются вторичные соединения - это диссимиляция (распад продуктов первичного синтеза). При этом выделяется некоторое количество энергии, которая участвует в производстве вторичных соединений.

Функции

Первоначально эти вещества считались ненужными продуктами жизнедеятельности живых организмов. В настоящее время установлено, что они играют определенную роль в обменных процессах:


Продукты (вещества) вторичного метаболизма синтезируются на основе первичных соединений и могут накапливаться в растениях нередко в значительных количествах, обусловливая тем самым специфику их обмена. В растениях содержится огромное количество веществ вторичного происхождения, которые могут быть разделены на различные группы.

Среди биологически активных веществ (БАВ) наиболее известны такие обширные классы соединений, как алкалоиды, изопреноиды, фенольные соединения и их производные.

Алкалоиды - азотсодержащие органические соединения основного характера, преимущественно растительного происхождения. Строение молекул алкалоидов весьма разнообразно и нередко довольно сложно. Азот, как правило, располагается в гетероциклах, но иногда находится в боковой цепи. Чаще всего алкалоиды классифицируют на основе строения этих гетероциклов либо в соответствии с их биогенетическими предшественниками - аминокислотами. Выделяют следующие основные группы алкалоидов: пирролидиновые, пиридиновые, пиперидиновые, пирролизидиновые, хинолизидиновые, хиназолиновые, хинолиновые, изохинолиновые, индольные, дигидроиндольные (беталаины), имидазоловые, пуриновые, дитерпеновые, стероидные (гликоалкалоиды) и алкалоиды без гетероциклов (протоалкалоиды). Многие из алкалоидов обладают специфическим, часто уникальным физиологическим действием и широко используются в медицине. Некоторые алкалоиды - сильные яды (например, алкалоиды кураре).

Антраценпроизводные - группа природных соединений жёлтой, оранжевой или красной окраски, в основе которых лежит структура антрацена. Они могут иметь различную степень окисленности среднего кольца (производные антрона, антранола и антрахинона) и структуру углеродного скелета (мономерные, димерные и конденсированные соединения). Большинство из них являются производными хризацина (1,8-дигидроксиантрахинона). Реже встречаются производные ализарина (1,2-дигидроксиантрахинона). В растениях производные антрацена могут находиться в свободном виде (агликоны) или в виде гликозидов (антрагликозиды).



Витанолиды - группа фитостероидов, получивших свое название от индийского растения Withania somnifera (L.) Dunal (сем. Solanaceae), из которого было выделено первое соединение этого класса - витаферин А. В настоящее время известно несколько рядов этого класса соединений. Витанолиды - это полиоксистероиды, у которых в положении 17 находится шестичленное лактонное кольцо, а в кольце А - кетогруппа у С 1 . В некоторых соединениях обнаружены 4-бета- гидрокси-, 5-бета -, 6-бета -эпоксигруппировки.

Гликозиды - широко распространённые природные соединения, распадающиеся под влиянием различных агентов (кислота, щелочь или фермент) на углеводную часть и агликон (генин). Гликозидная связь между сахаром и агликоном может быть образована с участием атомов О, N или S (О-, N- или S-гликозиды), а также за счёт С-С атомов (С-гликозиды). Наибольшее распространение в растительном мире имеют О-гликозиды. Между собой гликозиды могут отличаться как структурой агликона, так и строением сахарной цепи. Углеводные компоненты представлены моносахаридами, дисахаридами и олигосахаридами, и соответственно гликозиды называются монозидами, биозидами и олигозидами. Своеобразными группами природных соединений являются цианогенные гликозиды и тиогликозиды (глюкозинолаты) . Цианогенные гликозиды могут быть представлены как производные альфа -гидроксинитрилов, содержащих в своём составе синильную кислоту. Широкое распространение они имеют среди растений сем. Rosaceae, подсем. Prunoideae, концентрируясь преимущественно в их семенах (например, гликозиды амигдалин и пруназин в семенах Amygdalus communis L., Armeniaca vulgaris Lam.).

Тиогликозиды (глюкозинолаты) в настоящее время рассматриваются в качестве производных гипотетического аниона - глюкозинолата, отсюда и второе название. Глюкозинолаты найдены пока только у двудольных растений и характерны для сем. Brassicaceae, Capparidaceae, Resedaceae и других представителей порядка Capparales. В растениях они содержатся в виде солей со щелочными металлами, чаще всего с калием (например, глюкозинолат синигрин из семян Brassica juncea (L.) Czern. и В. nigra (L.) Koch).

Изопреноиды - обширный класс природных соединений, рассматриваемых как продукты биогенного превращения изопрена. К ним относятся различные терпены, их производные - терпеноиды и стероиды. Некоторые изопреноиды - структурные фрагменты антибиотиков, некоторых витаминов, алкалоидов и гормонов животных.

Терпены и терпеноиды - ненасыщенные углеводороды и их производные состава (С 5 Н 8) n , где n = 2 или n > 2. По числу изопреновых звеньев их делят нанесколько классов: моно-, сескви-, ди-, три-, тетра- и политерпеноиды.

Монотерпеноиды (С 10 Н 16) и сесквитерпеноиды (С 15 Н 24) являются обычными компонентами эфирных масел. К группе циклопентаноидных монотерпеноидов относятся иридоидные гликозиды (псевдоиндиканы) , хорошо растворимые в воде и часто обладающие горьким вкусом. Название «иридоиды»связано со структурным и, возможно, биогенетическим родством агликона с иридодиалем, который был получен из муравьев рода Iridomyrmex; «псевдоиндиканы» - с образованием синей окраски в кислой среде. По числу углеродных атомов скелета агликоновой части иридоидные гликозиды подразделяются на 4 типа: С 8 , С 9 , С 10 и С 14 . Они присущи лишь покрытосеменным растениям класса двудольных, и к наиболее богатым иридоидами относятся семейства Scrophulariaceae, Rubiaceae, Lamiaceае, Verbenaceae и Bignoniaceae.

Дитерпеноиды (С 20 Н 32) входят главным образом в состав различных смол. Они представлены кислотами (резиноловые кислоты), спиртами (резинолы) и углеводородами (резены). Различают собственно смолы (канифоль, даммара), масло-смолы (терпентин, канадский бальзам), камеде-смолы (гуммигут), масло-камеде-смолы (ладан, мирра, асафетида). Масло-смолы, представляющие собой раствор смол в эфирном масле и содержащие кислоты бензойную и коричную, называют бальзамами. В медицине применяют перувианский, толутанский, стираксовый бальзамы и др.

Тритерпеноиды (С 30 Н 48) по преимуществу встречаются в виде сапонинов, агликоны которых представлены пентациклическими (производные урсана, олеанана, лупана, гопана и др.) или тетрациклическими (производные даммарана, циклоартана, зуфана) соединениями.

К тетратерпеноидам (С 40 Н 64) относятся жирорастворимые растительные пигменты жёлтого, оранжевого и красного цвета - каротиноиды, предшественники витамина А (провитамины А). Они делятся на каротины (ненасыщенные углеводороды, не содержащие кислорода) и ксантофиллы (кислородсодержащие каротиноиды, имеющие гидрокси-, метокси-, карбокси-, кето- и эпоксигруппы). Широко распространены в растениях альфа -, бета - и гамма -каротины, ликопин, зеаксантин, виолаксантин и др.

Последнюю группу изопреноидов состава (С 5 Н 8) n представляют политерпеноиды , к которым относятся природный каучук и гутта.

Кардиотонические гликозиды , или сердечные гликозиды , - гетерозиды, агликоны которых являются стероидами, но отличаются от прочих стероидов наличием в молекуле вместо боковой цепи при С 17 ненасыщенного лактонного кольца: пятичленного бутенолидного (карденолиды ) или шестичленного кумалинового кольца (буфадиенолиды ). Все агликоны кардиотонических гликозидов имеют у С 3 и С 14 гидроксильные группы, а у С 13 - метильную. При С 10 может быть альфа -ориентированная метильная, альдегидная, карбинольная или карбоксильная группы. Кроме того, они могут иметь дополнительные гидроксильные группы у С 1 , С 2 , С 5 , С 11 , С 12 и С 16 ; последняя иногда бывает ацилирована муравьиной, уксусной или изовалериановой кислотой. Кардиотонические гликозиды применяются в медицине для стимуляции сокращений миокарда. Часть из них - диуретики.

Ксантоны - класс фенольных соединений, имеющих структуру дибензо-гамма -пирона. В качестве заместителей содержат в молекуле гидрокси-, метокси-, ацетокси-, метилендиокси- и другие радикалы. Известны соединения, содержащие пирановое кольцо. Особенностью ксантонов является распространение хлорсодержащих производных. Ксантоны находят в свободном виде и в составе О- и С-гликозидов. Из ксантоновых С-гликозидов наиболее известен мангиферин, который одним из первых введен в медицинскую практику.

Кумарины - природные соединения, в основе строения которых лежит 9,10-бензо-альфа -пирон. Их можно также рассматривать как производные кислоты орто -гидроксикоричной (орто -кумаровой). Они классифицируются на окси- и метоксипроизводные, фуро- и пиранокумарины, 3,4-бензокумарины и куместаны (куместролы).

Лигнаны - природные фенольные вещества, производные димеров фенилпропановых единиц (С 6 -С 3), соединенных между собой бета -углеродными атомами боковых цепей. Разнообразие лигнанов обусловлено наличием различных заместителей в бензольных кольцах и характером связи между ними, степенью насыщенности боковых цепей и др. По структуре они делятся на несколько групп: диарилбутановый (кислота гваяретовая), 1-фенилтетрагидронафталиновый (подофиллотоксин, пельтатины), бензилфенилтетрагидрофурановый (ларицирезинол и его глюкозид), дифенилтетрагидрофурофурановый (сезамин, сирингарезинол), дибензоциклооктановый (схизандрин, схизандрол) типы и др.

Лигнины представляют собой нерегулярные трёхмерные полимеры, предшественниками которых служат гидроксикоричные спирты (пара -кумаровый, конифериловый и синаповый), и являются строительным материалом клеточных стенок древесины. Лигнин содержится в одревесневших растительных тканях наряду с целлюлозой и гемицеллюлозами и участвует в создании опорных элементов механической ткани.

Меланины - полимерные фенольные соединения, которые в растениях встречаются спорадически и представляют собой наименее изученную группу природных соединений. Окрашены они в чёрный или чёрно-коричневый цвет и называются алломеланинами. В отличие от пигментов животного происхождения, они не содержат азота (или его очень мало). При щелочном расщеплении образуют пирокатехин, протокатеховую и салициловую кислоты.

Нафтохиноны - хиноидные пигменты растений, которые найдены в различных органах (в корнях, древесине, коре, листьях, плодах и реже в цветках). В качестве заместителей производные 1,4-нафтохинона содержат гидроксильные, метильные, пренильные и другие группы. Наиболее известным является красный пигмент шиконин, обнаруженный в некоторых представителях сем. Boraginaceae (виды родов Arnebia Forrsk., Echium L., Lithospermum L. и Onosma L.).

Сапонины (сапонизиды) - гликозиды, обладающие гемолитической и поверхностной активностью (детергенты), а также токсичностью для холоднокровных животных. В зависимости от строения агликона (сапогенина), их делят на стероидные и тритерпеноидные. Углеводная часть сапонинов может содержать от 1 до 11 моносахаридов. Наиболее часто встречаются D-глюкоза, D-галактоза, D-ксилоза, L-рамноза, L-арабиноза, D-галактуроновая и D-глюкуроновая кислоты. Они образуют линейные или разветвленные цепи и могут присоединяться по гидроксильной или карбоксильной группе агликона.

Стероиды - класс соединений, в молекуле которых присутствует циклопентанпергидрофенантреновый скелет. К стероидам относят стерины, витамины группы D, стероидные гормоны, агликоны стероидных сапонинов и кардиотонических гликозидов, экдизоны, витанолиды, стероидные алкалоиды.

Растительные стерины, или фитостерины, - спирты, содержащие 28-30 углеродных атомов. К ним принадлежат бета -ситостерин, стигмастерин, эргостерин, кампестерин, спинастерин и др. Некоторые из них, например бета -ситостерин, находят применение в медицине. Другие используются для получения стероидных лекарственных средств - стероидных гормонов, витамина D и др.

Стероидные сапонины содержат 27 атомов углерода, боковая цепь их образует спирокетальную систему спиростанолового или фураностанолового типов. Один из стероидных сапогенинов - диосгенин, выделенный из корневищ диоскореи, - является источником для получения важных для медицины гормональных препаратов (кортизона, прогестерона).

Стильбены можно рассматривать как фенольные соединения с двумя бензольными кольцами, имеющие структуру С 6 -С 2 -С 6 . Это сравнительно небольшая группа веществ, которые встречаются в основном в древесине различных видов сосны, ели, эвкалипта, являются структурными элементами таннидов.

Танниды (дубильные вещества) - высокомолекулярные соединения со средней молекулярной массой порядка 500-5000, иногда до 20000, способные осаждать белки, алкалоиды и обладающие вяжущим вкусом. Танниды подразделяют на гидролизуемые, распадающиеся в условиях кислотного или энзиматического гидролиза на простейшие части (к ним относятся галлотаннины, эллаготаннины и несахаридные эфиры карбоновых кислот), и конденсированные, не распадающиеся под действием кислот, а образующие продукты конденсации – флобафены. Структурно они могут рассматриваться как производные флаван-3-олов (катехинов), флаван-3,4-диолов (лейкоантоцианидинов) и гидроксистильбенов.

Фенольные соединения представляют собой один из наиболее распространённых в растительных организмах и многочисленных классов вторичных соединений с различной биологической активностью. К ним относятся вещества ароматической природы, которые содержат одну или несколько гидроксильных групп, связанных с атомами углерода ароматического ядра. Эти соединения весьма неоднородны по химическому строению, в растениях встречаются в виде мономеров, димеров, олигомеров и полимеров.

В основу классификации природных фенолов положен биогенетический принцип. Современные представления о биосинтезе позволяют разбить соединения фенольной природы на несколько основных групп, расположив их в порядке усложнения молекулярной структуры.

Наиболее простыми являются соединения с одним бензольным кольцом - простые фенолы, бензойные кислоты, фенолоспирты, фенилуксусные кислоты и их производные. По числу ОН-групп различают одноатомные (фенол), двухатомные (пирокатехин, резорцин, гидрохинон) и трёхатомные (пирогаллол, флороглюцин и др.) простые фенолы. Чаще всего они находятся в связанном виде в форме гликозидов или сложных эфиров и являются структурными элементами более сложных соединений, в том числе полимерных (дубильные вещества).

Более разнообразными фенолами являются производные фенилпропанового ряда (фенилпропаноиды), содержащие в структуре один или несколько фрагментов С 6 -С 3 . К простым фенилпропаноидам можно отнести гидроксикоричные спирты и кислоты, их сложные эфиры и гликозилированные формы, а также фенилпропаны и циннамоиламиды.

К соединениям, биогенетически родственным фенилпропаноидам, относятся кумарины, флавоноиды, хромоны, димерные соединения - лигнаны и полимерные соединения - лигнины.

Немногочисленные группы фенилпропаноидных соединений составляют оригинальные комплексы, сочетающие в себе производные флавоноидов, кумаринов, ксантонов и алкалоидов с лигнанами (флаволигнаны, кумаринолигнаны, ксантолигнаны и алкалоидолигнаны). Уникальной группой биологически активных веществ являются флаволигнаны Silybum marianum (L.) Gaertn. (силибин, силидианин, силикристин), которые проявляют гепатозащитные свойства.

Фитонциды - это необычные соединения вторичного биосинтеза, продуцируемые высшими растениями и оказывающие влияние на другие организмы, главным образом микроорганизмы. Наиболее активные антибактериальные вещества содержатся в луке репчатом (Allium сера L.) и чесноке (Allium sativum L.), из последнего выделено антибиотическое соединение аллицин (производное аминокислоты аллиина).

Флавоноиды относят к группе соединений со структурой С 6 -С 3 -С 6 , и большинство из них представляют собой производные 2-фенилбензопирана (флавана) или 2-фенилбензо-гамма -пирона (флавона). Классификация их основана на степени окисленности трёхуглеродного фрагмента, положении бокового фенильного радикала, величине гетероцикла и других признаках. К производным флавана принадлежат катехины, лейкоантоцианидины и антоцианидины; к производным флавона - флавоны, флавонолы, флаваноны, флаванонолы. К флавоноидам относятся также ауроны (производные 2-бензофуранона или 2-бензилиден кумаранона), халконы и дигидрохалконы (соединения с раскрытым пирановым кольцом). Менее распространены в природе изофлавоноиды (с фенильным радикалом у С 3), неофлавоноиды (производные 4-фенилхромона), бифлавоноиды (димерные соединения, состоящие из связанных С-С-связью флавонов, флаванонов и флавон-флаванонов). К необычным производным изофлавоноидов относятся птерокарпаны и ротеноиды , которые содержат дополнительный гетероцикл. Птерокарпаны привлекли к себе внимание после того, как было выяснено, что многие из них играют роль фитоалексинов , выполняющих защитные функции против фитопатогенов. Ротенон и близкие к нему соединения токсичны для насекомых, поэтому являются эффективными инсектицидами.

Хромоны - соединения, получающиеся в результате конденсации гамма -пиронового и бензольного колец (производные бензо-гамма -пирона). Обычно все соединения этого класса имеют в положении 2 метильную или оксиметильную (ацилоксиметильную) группу. Классифицируются они по тому же принципу, что и кумарины: по числу и типу циклов, сконденсированных с хромоновым ядром (бензохромоны, фурохромоны, пиранохромоны и др.).

Экдистероиды - полиоксистероидные соединения, обладающие активностью гормонов линьки насекомых и метаморфоза членистоногих. Наиболее известными природными гормонами являются альфа -экдизон и бета -экдизон (экдистерон). В основе строения экдизонов лежит стероидный скелет, где в положении 17 присоединяется алифатическая цепочка из 8 углеродных атомов. Согласно современным представлениям, к истинным экдистероидам относятся все стероидные единения, имеющие цис -сочленение колец А и В, 6-кетогруппу, двойную связь между С 7 и С 8 и 14-альфа -гидроксильную группу, независимо от их активности в тесте на гормон линьки. Число и положение других заместителей, включая ОН-группы, различны. Фитоэкдистероиды относятся к широко распространённым вторичным метаболитам (установлено более 150 различных структур) и более вариабельны, чем зооэкдистероиды. Общее количество углеродных атомов у соединения данной группы может быть от 19 до 30.

Эфирные масла - летучие жидкие смеси органических веществ, вырабатываемых растениями, обусловливающие их запах. В состав эфирных масел входят углеводороды, спирты, сложные эфиры, кетоны, лактоны, ароматические компоненты. Преобладают терпеноидные соединения из подклассов монотерпеноидов, сесквитерпеноидов, изредка дитерпеноидов; кроме того, довольно обычны «ароматические терпеноиды» и фенилпропаноиды. Растения, содержащие эфирные масла (эфироносы), широко представлены в мировой флоре. Особенно богаты ими растения тропиков и сухих субтропиков.

Подавляющее большинство продуктов вторичного метаболизма может быть синтезировано чисто химическим путём в лаборатории, и в отдельных случаях такой синтез оказывается экономически выгодным. Однако не следует забывать, что в фитотерапии значение имеет вся сумма биологических веществ, накапливающихся в растении. Поэтому сама по себе возможность синтеза не является в этом смысле решающей.