Информационная поддержка школьников и студентов
Поиск по сайту

Неомыляемые жиры функции. Биологические функции липидов. Защитная и смазочная функция

Классификация липидов позволяет разобраться с нюансами участия данных микроэлементов во множестве биологических процессов жизнедеятельности человека. Биохимия и строение каждого подобного вещества, входящего в состав клеток, по-прежнему вызывают немало споров среди ученых и экспериментаторов.

Общее описание липидов

Липиды, как известно, — природные соединения, включающие в свой состав различные жиры. Отличием данных веществ от других представителей указанной органической группы является то, что они практически не утилизируются в воде. Будучи активными эфирами кислот с высоким уровнем жирности, они не способны полностью самоустраниться с помощью растворителей неорганического типа.

Липиды имеются в организме каждого человека. Их доля достигает в среднем 10-15% от всего тела. Значение липидов невозможно недооценить: они служат прямым поставщиком жирных ненасыщенных кислот. Извне внутрь организма вещества поступают с витамином F, который крайне важен для полноценной работы пищеварительной системы.

Кроме того, липид – это скрытый ресурс жидкости в человеческом теле. Окисляясь, 100 г жиров способны образовать 106 г воды. Одним из главных предназначений данных элементов является выполнение функции естественного растворителя. Именно благодаря ей в кишечнике происходит беспрерывная абсорбция ценных жирных кислот и витаминов, растворяющихся в органических растворителях. Почти половина всей массы головного мозга принадлежит липидам. В составе остальных тканей и органов их число также велико. В прослойках подкожно-жировой клетчатки может находиться до 90% всех липидов.

Основные виды липидных соединений

Биохимия жировых органических веществ и их строение предопределяют классовые различия. Таблица позволяет наглядно продемонстрировать, какими бывают липиды.

Каждое жиросодержащее вещество относится к одной из двух категорий липидов:

  • омыляемых;
  • неомыляемых.

Если соли кислот с высокой жирностью были образованы посредством гидролиза с использованием щелочи, может возникать омыление. При этом мылами называют калиевые и натриевые соли. Омыляемые вещества представляют собой наибольшую группу липидов.

В свою очередь, группу омыляемых элементов можно условно разделить на две группы:

  • простые (состоящие только из атомов кислорода, углекислого газа и водорода);
  • сложные (представляют собой простые соединения в сочетании с фосфорными основаниями, остатками глицерина или двухтомного ненасыщенного сфингозина).

Простые липиды

К типу простых липидов биохимия относит различные жирные кислоты и спиртовые эфиры. Среди последних веществ самыми распространенными являются холестерин (так называемый циклический спирт), глицерин и олеиновый спирт.

Одним из сложных эфиров глицерина можно назвать триациглицерин, который состоит из нескольких молекул кислот высокой жирности. По сути, простые соединения представляют собой часть аподоцитов жировых тканей. Стоит отметить также, что сложные эфирные контакты с жирными кислотами могут возникать сразу в трех точках, поскольку глицерин является трехатомным спиртом. В этом случае и возникают соединения, образованные из вышеупомянутой связи:

  • триацилглицериды;
  • диацилглицериды;
  • моноацилглицериды.

Преимущественная часть данных жиров нейтрального типа присутствует в организме у животных теплокровных. В их структуре находится большая часть остатков пальмитиновой, стеариновой кислот высокой жирности. Кроме того, нейтральные жиры в одних тканях по своему содержимому могут существенно отличаться от жиров других органов в пределах одного и того же организма. К примеру, подкожная клетчатка человека обогащена такими кислотами на порядок выше, чем печень, состоящая из ненасыщенных жиров.

Нейтральные жиры

Оба вида кислот, вне зависимости от насыщенности, относятся к виду алифатических карбоновых. Биохимия позволяет понять, насколько важны эти вещества для липидов, сравнивая микроэлементы со строительными блоками. Благодаря им выстраивается каждый липид.
Если говорить о первом типе, о насыщенных кислотах, то в организме человека чаще всего можно встретить пальмитиновую и стеариновую кислоты. Намного реже в биохимических процессах участвует лигноцериновая, строение которой является более сложным (24 углеродных атома). При этом, в липидах у животных насыщенные кислоты, имеющие в своем составе менее 10 атомов, практически отсутствуют.

Самым распространенным атомным набором ненасыщенных кислот являются соединения, состоящие из 18 атомов углерода. Незаменимыми считают следующие виды ненасыщенных кислот, обладающих от 1 до 4 двойных связей:

  • олеиновая;
  • линолевая;
  • линоленовая;
  • арахидоновая.
Простагландиды и воски

В большей или меньшей степени все они обладают в организме млекопитающих. Огромное значение имеют производные кислот ненасыщенного типа, которыми являются простагландиды. Синтезируемые всеми клетками и тканями, кроме эритроцитов, они оказывают колоссальное действие на функционирование главных структур и процессов человеческого организма:

  • систему кровообращения и сердце;
  • метаболизм и обмен электролитами;
  • центральную и периферическую нервные системы;
  • органы пищеварения;
  • репродуктивную функцию.

В отдельной группе находятся эфиры сложных кислот и спиртов с одним или двумя атомами в цепочке — воски. Общее число углеродных частиц у них может достигать 22. Благодаря твердой текстуре данные вещества воспринимаются липидами в качестве протекторов. Среди природных восков, синтезирующихся организмами, чаще всего встречаются пчелиный, ланолин и элемент, покрывающий поверхность листьев.

Сложные липиды

Классы липидов представлены группами сложных соединений. Биохимия к ним относит:

  • фосфолипиды;
  • гликолипиды;
  • сульфолипиды.

Фосфолипиды являются биологическими конструкциями, имеющими сложное строение. В их состав обязательно входит фосфор, азотистые соединения, спирты и многое другое. Для организма они играют весомую роль, являясь основополагающей составляющей строительного процесса биологических мембран. Фосфолипиды присутствуют в сердце, печени и головном мозге.

К подклассу сложных липидов относятся также гликолипиды – это соединения, в составе которого имеется сфингозиновый спирт, а значит, и углеводы. В большей степени, чем какие-либо другие ткани в организме, нервные оболочки богаты гликолипидами.

Разновидностью гликолипидов, содержащих остатки серной кислоты, считаются сульфолипиды. Между тем,
классификация липидов всегда подразумевает выделение данных веществ в отдельную группу. Основное различие между двумя сложными соединениями заключается в особенностях их структуры. На месте галактозы третьего атома углерода у гликолипида располагается остаток серной кислоты.

Группа неомыляемых липидов

В отличие от внушительной по числу разновидностей группы омыляемых липидов, неомыляемые полностью высвобождают жирные кислоты и не проходят гидролизацию путем щелочного воздействия. Такие вещества бывают двух типов:

  • высшие спирты;
  • высшие углеводороды.

К первой категории относятся витамины, отличающиеся жирорастворимыми качествами – А, Е, D. Самым известным представителем второго типа стеринов – высших спиртов – является холестерин. Выделить элемент из желчных камней путем выделения одноатомного спирта ученым удалось еще несколько веков назад.

Холестерин невозможно обнаружить у растений, в то время, как в организме млекопитающих он присутствует абсолютно во всех клетках. Его наличие является важным условием полноценного функционирования пищеварительной, гормональной и мочеполовой систем.

Рассматривая высшие углеводороды, которые также являются неомыляемыми веществами, важно обратиться к определению, которое дает биохимия. Указанные элементы с научной точки зрения представляют собой компоненты, продуцируемые изопреном. Молекулярное строение углеводородов основано на объединении частиц изопрена.

Как правило, указанные элементы присутствуют в растительных клетках особо душистых видов. Кроме того, известный всем натуральный каучук – политерпен – относят к группе неомыляемых высших углеводородов.

К неомыляемым относят липиды, которые при гидролизе не образуют карбоновых кислот или их солей. Неомыляемая липидная фракция содержит вещества двух основных типов: стероиды и терпены . Первые преобладают в липидах животного происхождения, вторые  в липидах растений. Например, терпенами богаты эфирные масла растений: герани, розы, лаванды и др., а также смола хвойных деревьев.

3.3.1. Терпены.

Под этим названием объединяют углеводороды, углеродный скелет которых построен из двух и более звеньев изопрена (2-метилбутадиена-1,3):

и их производные  спирты, альдегиды и кетоны.

Общая формула терпеновых углеводородов  (C 5 H 8) n . Они могут иметь циклическое или ациклическое строение и быть как предельными, так и непредельными.

Основу многих терпенов составляет сквален C 30 H 50:

Примерами замещенных ациклических терпенов являются спирт гераниол :

и продукт его мягкого окисления гераниаль :

Большинство циклических терпенов являются моно- и бициклическими. Наиболее распространенными из них являются:

Функциональным производным ментана является ментол , который содержится в эфирном масле перечной мяты:

Он оказывает антисептическое и успокаивающее действие, а также входит в состав валидола и мазей, применяемых при насморке.

В качестве примера непредельного моноциклического терпена можно привести лимонен :

Он содержится в лимонном масле и скипидаре.

При восстановлении лимонена получается ментан, а в результате кислотного гидролиза  двухатомный спирт терпин , который приме-няется в качестве отхаркивающего средства:

Особую группу терпенов составляют каратиноиды . Некоторые из них являются витаминами или их предшественниками. Наиболее известным представителем этой группы является каротин, в больших количествах содержащийся в моркови. Известны три его изомера: -, - и -каротин. Они являются предшественниками витаминов группы А.

3.3.2. Стероиды.

Стероиды широко распространены в природе и выполняют разнообразные функции в биологических системах. Основу их структуры составляет стеран, частями которого являются три циклогексановых кольца (обозначаются A, B и C) и одно циклопентановое (D):

Общую структуру стероидов можно представить следующим образом:

Характерными фрагментами стероидов являются метильные группы (С-18 и С-19), углеводородный радикал R при С-17 и функциональная группа X при С-3 (OH, OR и др.).

Стероиды, у которых углеводородный радикал при С-17 содержит 8 атомов углерода, называются стерины . Наиболее известным представителем стеринов является холестерин :

3.3.3. Низкомолекулярные биорегуляторы липидной природы.

3.3.3.1. Витамины.

Витаминами называют низкомолекулярные органические соединения различной природы, необходимые для осуществления важных биохимических и физиологических процессов. Организм человека и животных не способен синтезировать большинство витаминов, поэтому должен получать их извне.

Известно около 20 витаминов. Их делят на водорастворимые и жирорастворимые .

К водорастворимым относят витамины группы B (тиамин (В 1), рибофлавин (В 2), кобаламин (В 12) и др.), С (аскорбиновая кислота), PP (никотинамид, никотиновая кислота) и некоторые другие.

Жирорастворимыми являются витамин А (ретинол), D (кальци-ферол), E (токоферол) и K (филлохинон).

Формулы витаминов представлены в приложении 3.

Неомыляемые липиды. Терпены.

Неомыляемые липиды - это второй большой класс липидов.


Вещества этого класса липидов объединяет то, что они не гидролизуются в щелочной или кислой среде.


Ранее мы рассмотрели класс омыляемых липидов . Вещества, относящиеся к этому классу, в отличие от неомыляемых липидов, подвержены гидролизу . В результате гидролиза из омыляемых липидов образуются соли высших карбоновых кислот, т.е. мыла . Отсюда происходит название.


Неомыляемая липидная фракция содержит вещества двух основных типов:

  1. Терпены и
  2. Стероиды.

Первые преобладают в липидах растений , вторые липидах животного происхождения . Между ними имеется много общего – терпены и стероиды построены из одинаковых изопреновых пятиугольных фрагментов , а их биосинтез включает одни и те же исходные и промежуточные вещества.

Соединения, построенные из фрагментов изопрена , имеют общее название изопреноиды .


Один из наиболее распространённых изопреноидов – натуральный каучук – представляет собой полимер изопрена .


Терпены

Под этим названием объединяют ряд углеводородов и их кислородосодержащих производных – спиртов, альдегидов, кетонов , углеродный скелет которых построен из двух, трёх и более звеньев изопрена .


В правой части рисунка изопрен изображён в виде, где атомы углерода не показаны, а показаны только связи между ними.


Сами углеводороды называют терпеновыми углеводородами , а их кислородосодержащие производные (спирты, альдегиды, кетоны) – терпеноидами .


Название «Терпены» происходит от лат. Oleum Terebinthinae - скипидар .


Терпеноидами богаты эфирные масла растений (герани, розы, лаванды, лимона, перечной мяты и др.), смола хвойных деревьев и каучуконосов .


К терпенам относятся и различные растительные пигменты и жирорастворимые витамины .


Группировка терпенового типа (изопреноидная цепь ) включена в структуру многих биологически активных соединений.


В большинстве терпенов изопреновые фрагменты соединены друг с другом по принципу «голова к хвосту», как показано на примере мирцена .

Терпеновые углеводороды и терпеноиды.

Общая формула большинства терпеновых углеводородов – (С 5 Н 8) n .

Они могут иметь ациклическое и циклическое (би-, три-, полициклическое) строение.


С учетом числа изопреновых группировок в молекуле различают:

  • монотерпены (две изопреновые группировки);
  • сесквитерпены (три изопреновые группировки);
  • дитерпены (четыре изопреновые группировки);
  • тритерпены (шесть изопреновых группировок);
  • тетратерпены (восемь изопреновых группировок).
Примеры терпенов

Примером ациклических терпенов служит уже упоминавшийся ранее мирицен – монотерпен, содержащийся в эфирных маслах хмеля и благородного лавра.


Другой пример – родственный мирицену спирт

гераниол, входящий в состав эфирных масел герани и розы.


При мягком окислении гераниол образует альдегид цитраль а .


Тритерпен сквален С 30 Н 50 – промежуточный продукт в биосинтезе холестерина.


В последние годы установлено, что цитраль и гераниол выделяются в небольших количествах рабочими пчёлами при отыскивании пищи. Запах этих веществ привлекает других пчёл. Соединения подобного рода называют феромонами . Они выделяются животными и определённым образом влияют на поведение других особей того же или близкого вида.


Среди терпенов наиболее распространены моно- и бициклические терпены . Многие из них применяются в медицине или служат исходными продуктами для синтеза лекарственных средств.


Соответствующие моно- и бициклическим терпенам предельные циклические углеводороды носят названия ментан, каран, пиан и борнан.

Примеры циклических терпенов

Лимонен - представитель моноциклических терпенов . Он содержится в лимонном масле и скипидаре . Лимонен входит в состав масла тмина .


Рацемическая форма лимонена (дипентен) может быть получена в результате реакции диенового синтеза из изопрена при нагревании.


Диены - ненасыщенные углеводороды, содержащие в молекуле 2 двойные связи (С=С ), например бутадиен .



– реакция, в результате которой из двух реагирующих молекул (диенов и диенофилов) образуется новый шестичленный цикл.


Рацемическая форма лимонена (дипентен) – это стереоизомер лимонена, представляющий собой его зеркальную противоположность.


При восстановлении оптически активного лимонена или дипентена получается ментан , а при полной их гидратации в кислой среде образуется двухатомный спирт терпин . Терпин в виде гидрата применяется как отхаркивающее средство при хроническом бронхите.



3амещенные дипентены (например, каннабидиол ) - психоактивное начало гашиша (марихуаны).



Как и лимонен, имеет скелет ментана . Он содержится в эфирном масле перечной мяты. Оказывает антисептическое, успокаивающее и болеутоляющее (отвлекающее) действие, входит в состав валидола, а также мазей, применяемых при насморке.



Альфа-пинен - бициклический монотерпен ряда пинана . Его левовращающий энантиомер - важная составная часть скипидара , получаемого из хвойных деревьев.




Камфора - бициклический кетон - редкий пример соединения, в котором шестичленный цикл имеет конформацию ванны.



Камфора издавна применяется в медицине как стимулятор сердечной деятельности. Ее правовращающий стереоизомер выделяют из эфирного масла камфорного дерева.


Каротиноиды.


Особую группу терпенов составляют каротиноиды - растительные пигменты .


Некоторые из них играют роль витаминов или предшественников витаминов, а также участвуют в фотосинтезе. Большинство каротиноидов относится к тетратерпенам. Их молекулы содержат значительное число сопряженных двойных связей, поэтому имеют желто-красную окраску . Для природных каротиноидов характерна транс-конфигурация двойных связей.


Каротин - растительный пигмент жёлто-красного цвета, в большом количестве содержавшийся в моркови, а также томатах и сливочном масле. Известны три его изомера, называемые альфа-, бета- и гамма-каротинами , различающиеся числом циклов и положением двойных связей. Все они являются предшественниками витаминов группы А.


Молекула симметрична и состоит из двух одинаковых частей:

Рассмотрим особенности химического строения и биохимических функций наиболее важных представителей неомыляемых липидов - стероидов и терпенов.

Стероиды .

К стероидам относится обширный класс природных веществ, в основе молекул которых лежит конденсированный остов, называемый стераном. Наиболее распространенным среди многочисленных биологических соединений стероидной природы является холестерин.

Холестерин - одноатомный спирт (холестерол); он проявляет свойства вторичного спирта и алкена. Около 30% холестерина в организме содержится в свободном виде, остальное количество - в составе ацилхолестеринов, т.е. сложных эфиров с высшими карбоновыми кислотами, как насыщенными (пальмитиновой и стеариновой), так и ненасыщенными (линолевой, арахидоновой и др.), т.е. в виде ацилхолестеринов. Общее содержание холестерина в организме человека составляет 210-250 г. В больших количествах он содержится в головном и спинном мозге, является компонентом биомембран.

Важнейшая биохимическая функция холестерина обусловлена тем, что он играет роль промежуточного продукта в синтезе многих соединений стероидной природы: в плаценте, семенниках, желтом теле и надпочечниках происходит превращение холестерина в гормон прогестерон, который является начальным субстратом сложной цепи биосинтеза стероидных половых гормонов и кортикостероидов.

Другие пути использования холестерина в организме связаны с образованием витамина D и необходимых для пищеварения желчных кислот - холевой и 7-дезоксихолевой.

В организме холевая кислота, образуя амиды по карбонильной группе с глицином и таурином, превращается в глицинхолевую и таурохолевую кислоты.

Анионы этих кислот являются эффективными поверхностно-активными веществами. В кишечнике они участвуют в процессах эмульгирования жиров и тем самым способствуют их всасыванию и перевариванию.

Желчные кислоты используют в качестве лекарственных препаратов, предотвращающих образование и растворение уже имеющихся желчных камней, которые состоят из холестерина и билирубина.

Транспорт нерастворимых в жидкостях организма липидов, в том числе и холестерина, осуществляется в составе особых частиц - липопротеинов, представляющих собой сложные по составу комплексы с белками.

В крови обнаружено несколько форм липопротеинов, которые отличают по плотности: хиломикроны, липопротеины очень низкой плотности (ЛОНП), липопротеины низкой плотности (ЛНП) и липопротеины высокой плотности (ЛВП). Липопротеины можно разделить с помощью ультрацентрифугирования.

Липопротеины представляют собой сферические частицы, гидрофильная поверхность которых представляет собой слой ориентированных фосфолипидов и белков, а ядро образовано гидрофобными молекулами триацилглицеринов и эфиров холестерина.

Триацилглицерины и холестерин под действием специфических ферментов (липопротеинлипаза) высвобождаются из хиломикронов и затем потребляются жировой тканью, печенью, сердцем и другими органами.

При некоторых нарушениях обмена веществ или высокой концентрации холестерина в крови повышается концентрация ЛОНП и ЛНП, что ведет к их отложению на стенках сосудов (атеросклероз), в том числе в артериях сердечной мышцы (ишемическая болезнь сердца и инфаркт миокарда).

Терпены .

Терпены - это ряд биологически активных углеводородов и их кислородсодержащих производных, углеродный скелет которых состоит из нескольких звеньев изопрена С 5 Н 8 . Поэтому общая формула для большинства терпенов - (С 5 Н 8) n . Терпены могут иметь ациклическое или циклическое (би-, три- и полициклическое) строение. Структуры терпенов с общей формулой С 10 Н 16 - мирцен и лимонен:

В состав эфирных масел входят производные терпенов, содержащие гидроксильные, альдегидные или кетогруппы, - терпеноиды. Среди них большое применение находят ментол (содержится в масле мяты, от которой и получил свое название, от лат. menta - мята), линалоол (жидкость с запахом ландыша), цитраль, камфара.

К терпенам относятся смоляные кислоты, которые имеют общую формулу С 20 Н 30 О 2 и составляют 4/5 смолы хвойных растений (живица). При переработке живицы получают твердый остаток смоляных кислот - канифоль, которая служит сырьем для многих отраслей промышленности. Кроме того, терпеновые группировки (изопреноидные цепи) входят в структуру многих сложных биологически активных соединений, таких как каратиноиды, фитол и др.

Фитол в свободном виде в природе не встречается, но входит в состав молекул хлорофилла, витаминов А и Е и других биосоединений.

Каучук и гутта являются политерпенами, в молекулах которых остатки изопрена связаны "голова к хвосту".

Катаболизм липидов

Общая характеристика липидов, их классификация. Биологические функции липидов.

Переваривание, всасывание и транспорт жиров пищи.Деградация жиров в клетках.

Общая характеристика липидов и их классификация.

Липидами называются вещества биологического происхождения, хорошо растворимые в органических растворителях, таких, как метанол, ацетон, хлороформ, бензол и др., и не растворимые или мало растворимые в воде.

По отношению к щелочам липиды делятся на омыляемые и неомыляемые.

К омыляемым липидам относятся соединения подвергающиеся гидролизу, т.е. такие производные карбоновых кислот, как сложные эфиры и лактоны, амиды и лактамы.

Омыляемые липиды Примеры

I. Сложные эфиры

1. Жиры (глицерин + 3 жирн. к-ты)

2. Воски (жирн. спирты + жирн. к-та)

3. Эфиры стеринов (стерин + жирн. к-та)

II. Фосфолипиды

1. Фосфатидовые кислоты

(глицерин + 2 жирн. к-ты + фосфат)

2. Фосфатиды

(глицерин + 2 жирн. к-ты

Фосфат + аминоспирт)

3. Сфингофосфолипиды

(сфингозин + жирн кта +

фосфат + аминоспирт)

III. Сфинголипиды

Неомыляемые липиды

Неомыляемые липидыне содержат в своей структуре сложноэфирных связей или амидных связей и поэтому не гидролизуются, хотя и могут реагировать со щелочью, проявляя кислые свойства, например, жирные кислоты, желчные кислоты и др. Поэтому липиды делят также на на нейтральные и кислые.

Углеводороды

Изопреноиды

Структурным элементом изопреноидов

является изопрен

2.1. Линейные изопреноиды

2.2. Стероиды

2.2.1. Стерины

2.2.2. Стероидные гормоныПоловые гормоны и кортикостероиды

2.3. Желчные кислоты

Спирты с длинной алифатической цепью

Карбоновые кислоты

4.1Жирные кислоты

4.2. Эйкозаноиды

В связи с особой важностью жиров и карбоновых кислот рассмотрим их подробнее.

Жиры.

Жирами называются сложные эфиры глицерина и жирных кислот. Соединения с одним остатком жирной кислоты относятся к группе моноацилглицеринов. Путем последующей этерификации этих соединений можно перейти к диацил- и далее к триацилгицеринам. Так как молекулы жиров не несут заряда, эту группу веществ называют нейтральными жирами. Три остатка жирной кислоты могут различаться как по длине цепи, так и по числу двойных связей. Жиры, экстрагированные из биологического материала, всегда представляют собой смесь близких по свойствам веществ, различающихся только остатками жирных кислот. В пищевых жирах чаще всего содержатся пальмитиновая, стеариновая, олеиновая и линолевая кислоты. Остатки ненасыщенных жирных кислот обычно находятся в положении 2 глицерина. Чем больше в составе жира ненасыщенных кислот, тем меньшую температуру размягчения или застывания они имеют. Жидкие жиры часто называют маслами, например, жир подсолнечника – подсолнечное масло, хлопковый жир – хлопковое масло. Термин «масло» иногда приписывают растительным жирам, например, масло какао, но оно твердое.

Жирные кислоты

Жирными кислотами называются карбоновые кислоты с углеродной цепью не менее 4 атомов углерода. Они потому и называются жирными, что обнаружены в жирах. Свободные жирные кислоты присутствуют в организме в небольших количествах, например в крови. Главным образом они присутствуют в организмах всех видов в виде сложных эфиров различных спиртов: высших алифатических спиртов, глицерина, холестерина, сфингозина и др.

Ниже приведены жирные кислоты, обнаруженные в растительных и животных тканях.

В высших растениях и животных содержатся главным образом жирные кислоты с длинной и неразветвленной цепью из 16 и 18 углеродных атомов, а именно, пальмитиновая и стеариновая. Все длинноцепочечные природные жирные кислоты состоят из четного числа углеродных атомов, что обусловлено биосинтезом этих соединений в организме из предшественников.

Многие жирные кислоты имеют одну или несколько двойных связей. К наиболее распространенным ненасыщенным кислотам относятся олеиновая и линолевая. Из двух возможных цис- и транс -конфигураций двойной связи в природных липидах присутствует лишь цис- форма. Разветвленные жирные кислоты встречаются только в бактериях. Для обозначения жирных кислот иногда применяют сокращенные названия, где первая цифра означает число углеродных атомов, вторая цифра указывает число двойных связей, а последующие - положение этих связей. Как обычно, нумерация атомов углерода начинается с карбоксигруппы.

К незаменимым жирным кислотам относятсяте из них, которые не синтезируются в организме и должны поступать с пищей. Речь идет о сильно ненасыщенных кислотах, в частности арахидоновой (20:4; 5,8,11,14), линолевой (18:2; 9,12) и линоленовой (18:3; 9,12,15). Арахидоновая кислота является предшественником зйкозаноидов (простагландинов и лейкотриенов) и поэтому обязательно должна присутствовать в пищевом рационе. Линолевая и линоленовая кислоты, имеющие более короткую углеродную цепь, могут превращаться в арахидоновую за счет наращивания цепи, и, следовательно, являются ее заменителями.

Эйкозаноиды

Эйкозаноидами называются продукты окисления арахидоновой кислоты в организме. Они делятся на лейкотриены, простагландины и простациклины.

Лейкотриены не имеют в своей структуре цикла

Простагландины имеют один пятичленный цикл

Простациклины имеют циклопентатетрагидрофурановый цикл

Эйкозаноиды составляют большую группу медиаторов, обладающих широким спектром биологической активности. Эйкозаноиды образуются почти во всех клетках организма.

Они служат вторичными мессенджерами гидрофильных гормонов, контролируют сокращение гладкомышечной ткани венозных сосудов, бронхов, матки, принимают участие в высвобождении продуктов внутриклеточного синтеза оказывают влияние на метаболизм костной ткани, периферическую нервную систему, иммунную систему, передвижение и агрегацию клеток (лейкоцитов, тромбоцитов), являются эффективными лигандами болевых рецепторов. Эйкозаноиды действуют как локальные биорегуляторы путем связывания с мембранными рецепторами в непосредственной близости от места их синтеза. Ацетилсалициловая кислота и другие жаропонижающие препараты являются специфическими ингибиторами простагландин-синтазы.

Биологические функции липидов

Энергетическая.

Липиды наиболее важный из всех питательных веществ источник энергии. В количественном отношении липиды - основной энергетический резерв организма. В основном жир содержится в клетках в виде жировых капель, которые служат метаболическим «топливом». Липиды окисляются в митохондриях до воды и диоксида углерода с одновременным образованием большого количества АТФ.

Структурная.

Ряд липидов принимает участие в образовании клеточных мембран. Типичными мембранными липидами являются фосфолипиды, гликолипиды и холестерин. Следует отметить, что мембраны не содержат жиров.

3 . Изолирующая.

Жировыеотложения в подкожной ткани и вокруг различных органов обладают высокими теплоизолирующими свойствами. Как основной компонент клеточных мембран липиды изолируют клетку от окружающей среды и за счет гидрофобных свойств обеспечивают формирование мембранных потенциалов.

4. Специальные функции:

Гормоны. – мужские и женские половые гормоны, гормоны коры надпочечников. – стероидные соединения.

Медиаторы. – вещества, воздействующие на синаптические рецепторы мембран, следствием чего является трансмембранный перенос электронов - возникновение электрического импульса.

Вторичные мессенджеры (вторичные переносчики сигнала) – «внутриклеточные гормоны» -простагландины и другие эйкозаноиды.

Якорная функция. Некоторые липиды удерживают белки и другие соединения на мембранах.

Кофакторы ферментов – ретиналь, витамин К, убихинон.

Поскольку некоторые липиды не синтезируются в организме человека, они должны поступать с пищей в виде незаменимых жирных кислот и жирорастворимых витаминов.


Похожая информация.