Что такое теорема ферма. Фундаментальные исследования. Как пытались доказать теорему Фермера
не имеет решений в целых ненулевых числах .
Встречается более узкий вариант формулировки, утверждающий, что это уравнение не имеет натуральных решений. Однако очевидно, что если существует решение для целых чисел, то существует и решение в натуральных числах. В самом деле, пусть a , b , c {\displaystyle a,b,c} - целые числа, дающие решение уравнения Ферма. Если n {\displaystyle n} чётно, то | a | , | b | , | c | {\displaystyle |a|,|b|,|c|} тоже будут решением, а если нечётно, то перенесём все степени отрицательных значений в другую часть уравнения, изменив знак. Например, если бы существовало решение уравнения a 3 + b 3 = c 3 {\displaystyle a^{3}+b^{3}=c^{3}} и при этом a {\displaystyle a} отрицательно, а прочие положительны, то b 3 = c 3 + | a | 3 {\displaystyle b^{3}=c^{3}+|a|^{3}} , и получаем натуральные решения c , | a | , b . {\displaystyle c,|a|,b.} Поэтому обе формулировки эквивалентны.
Обобщениями утверждения теоремы Ферма являются опровергнутая гипотеза Эйлера и открытая гипотеза Ландера - Паркина - Селфриджа .
История
Для случая эту теорему в X веке пытался доказать ал-Ходжанди , но его доказательство не сохранилось.
В общем виде теорема была сформулирована Пьером Ферма в 1637 году на полях «Арифметики » Диофанта . Дело в том, что Ферма делал свои пометки на полях читаемых математических трактатов и там же формулировал пришедшие на ум задачи и теоремы. Теорему, о которой ведётся речь, он записал с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было поместить на полях книги:
Наоборот, невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашёл этому поистине чудесное доказательство, но поля книги слишком узки для него.
Оригинальный текст (лат.)
Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos & generaliter nullam in infinitum ultra quadratum potestatem in duas eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.
Ферма приводит только доказательство, как решение задачи, сводимой к четвёртой степени теоремы n = 4 {\displaystyle n=4} , в 45-м комментарии к «Арифметике» Диофанта и в письме к Каркави (август 1659 года) . Кроме этого, Ферма включил случай n = 3 {\displaystyle n=3} в список задач, решаемых методом бесконечного спуска .
Над полным доказательством Великой теоремы работало немало выдающихся математиков и множество дилетантов-любителей; считается, что теорема стоит на первом месте по количеству некорректных «доказательств». Тем не менее эти усилия привели к получению многих важных результатов современной теории чисел . Давид Гильберт в своём докладе «Математические проблемы» на II Международном конгрессе математиков (1900) отметил, что поиск доказательства для этой, казалось бы, малозначимой теоремы привёл к глубоким результатам в теории чисел . В 1908 году немецкий любитель математики Вольфскель завещал 100 тыс. немецких марок тому, кто докажет теорему Ферма. Однако после Первой мировой войны премия обесценилась .
В 1980-х годах появился новый подход к решению проблемы. Из гипотезы Морделла , доказанной Фальтингсом в 1983 году , следует, что уравнение a n + b n = c n {\displaystyle a^{n}+b^{n}=c^{n}} при n > 3 {\displaystyle n>3} может иметь лишь конечное число взаимно простых решений.
Немецкий математик Герхард Фрай предположил, что Великая теорема Ферма является следствием гипотезы Таниямы - Симуры . Это предположение было доказано Кеном Рибетом .
Последний важный шаг в доказательстве теоремы был сделан Уайлсом в сентябре 1994 года . Его 130-страничное доказательство было опубликовано в журнале «Annals of Mathematics » .
Первый вариант своего доказательства Уайлс опубликовал в 1993 году (после семи лет работы), но в нём вскоре был обнаружен серьёзный [какой? ] пробел, который с помощью Ричарда Лоуренса Тейлора удалось достаточно быстро устранить . В 1995 году был опубликован завершающий вариант . В 2016 году за доказательство Великой теоремы Ферма Эндрю Уайлс получил Абелевскую премию .
Колин Мак-Ларти отметил, что, возможно, доказательство Уайлса удастся упростить, чтобы не предполагать существования так называемых «больших кардиналов » .
Теорема Ферма также тривиально следует из abc-гипотезы , о доказательстве которой заявил японский математик Синъити Мотидзуки ; его доказательство отличается исключительной сложностью. В настоящее время в математическом сообществе нет ясного консенсуса в отношении его работ .
Некоторые вариации и обобщения
2682440 4 + 15365639 4 + 18796760 4 = 20615673 4 . {\displaystyle 2682440^{4}+15365639^{4}+18796760^{4}=20615673^{4}.}Позднее были найдены и другие решения; простейшее из них:
95800 4 + 217519 4 + 414560 4 = 422481 4 . {\displaystyle 95800^{4}+217519^{4}+414560^{4}=422481^{4}.}Ещё одним популярным обобщением теоремы Ферма является гипотеза Била , сформулированная в 1993 году американским математиком-любителем, пообещавшим за её доказательство или опровержение 1 млн долларов США.
«Ферматисты»
Простота формулировки теоремы Ферма (доступная в понимании даже школьнику), а также сложность единственного известного доказательства (или неведение о его существовании), вдохновляют многих на попытки найти другое, более простое, доказательство. Людей, пытающихся доказать теорему Ферма элементарными методами, называют «ферматистами » или «ферматиками». Ферматисты зачастую не являются профессионалами и допускают ошибки в арифметических действиях или логических выводах , хотя некоторые представляют весьма изощрённые «доказательства», в которых трудно найти ошибку.
Доказывать теорему Ферма в среде любителей математики было настолько популярно, что в 1972 году журнал «Квант» , публикуя статью о теореме Ферма, сопроводил её следующей припиской : «Редакция „Кванта“ со своей стороны считает необходимым известить читателей, что письма с проектами доказательств теоремы Ферма рассматриваться (и возвращаться) не будут».
Немецкому математику Эдмунду Ландау очень докучали «ферматисты». Чтобы не отвлекаться от основной работы, он заказал несколько сот бланков с шаблонным текстом, сообщающим, что на определённой строке на некоторой странице находится ошибка, при этом находить ошибку и заполнять пробелы в бланке он поручал своим аспирантам.
Примечательно, что отдельные ферматисты добиваются публикации своих (неверных) «доказательств» в ненаучной прессе, которая раздувает их значение до научной сенсации . Впрочем, иногда такие публикации появляются и в уважаемых научных изданиях , как правило, с последующими опровержениями . Среди других примеров:
Теорема Ферма в культуре и искусстве
Великая теорема Ферма стала символом труднейшей научной проблемы и в этом качестве часто упоминается в беллетристике. Далее перечислены некоторые произведения, в которых теорема не просто упомянута, но является существенной частью сюжета или идеологии произведения.
- В рассказе Артура Порджеса «Саймон Флэгг и дьявол»
профессор Саймон Флегг обращается за доказательством теоремы к дьяволу. По этому рассказу снят игровой научно-популярный фильм «Математик и чёрт»
(СССР, , производство Центрнаучфильм, творческое объединение «Радуга», режиссёр Райтбурт).
- Экранизация: короткометражка «Математик и чёрт» (1972).
- А. П. Казанцев в романе «Острее шпаги» в 1983 году предложил оригинальную версию отсутствия доказательства самого Пьера Ферма.
- В телесериале «Звёздный Путь » капитан космического корабля Жан-Люк Пикар был озадачен разгадкой Великой теоремы Ферма во второй половине XXIV века . Таким образом, создатели фильма предполагали, что решения у Великой теоремы Ферма не будет в ближайшие 400 лет. Серия «Рояль » с этим эпизодом была снята в 1989 году , когда Эндрю Уайлс был в самом начале своих работ. В действительности решение было найдено всего спустя пять лет.
- В посвящённой Хэллоуину 1995 года серии «Симпсонов » двумерный Гомер Симпсон случайно попадает в третье измерение. Во время его путешествия в этом странном мире в воздухе парят геометрические тела и математические формулы, включая неверное равенство 1782 12 + 1841 12 = 1922 12 {\displaystyle 1782^{12}+1841^{12}=1922^{12}} . Калькулятор с точностью не более 10 значащих цифр подтверждает это равенство: 1782 12 + 1841 12 = 2 541 210 258 614 589 176 288 669 958 142 428 526 657 ≈ 2,541 210 259 ⋅ 10 39 , 1922 12 = 2 541 210 259 314 801 410 819 278 649 643 651 567 616 ≈ 2,541 210 259 ⋅ 10 39 . {\displaystyle {\begin{array}{cl}1782^{12}+1841^{12}&=2\,541\,210\,258\,614\,589\,176\,288\,669\,958\,142\,428\,526\,657\approx 2{,}541\,210\,259\cdot 10^{39},\\1922^{12}&=2\,541\,210\,259\,314\,801\,410\,819\,278\,649\,643\,651\,567\,616\approx 2{,}541\,210\,259\cdot 10^{39}.\end{array}}}
- В первом издании «Искусства программирования » Дональда Кнута теорема Ферма приведена в качестве упражнения с математическим уклоном в самом начале книги и оценена максимальным числом (50) баллов, как «исследовательская проблема, которая (насколько это было известно автору в момент написания) ещё не получила удовлетворительного решения. Если читатель найдет решение этой задачи, его настоятельно просят опубликовать его; кроме того, автор данной книги будет очень признателен, если ему сообщат решение как можно быстрее (при условии, что оно правильно)». В третьем издании книги это упражнение уже требует знаний высшей математики и оценивается лишь в 45 баллов.
- В книге Стига Ларссона «Девушка, которая играла с огнём » главная героиня Лисбет Саландер, обладающая редкими способностями к аналитике и фотографической памятью, в качестве хобби занята доказательством Великой теоремы Ферма, на которую она наткнулась, читая фундаментальный труд «Измерения в математике», в котором приводится и доказательство Эндрю Уайлса. Лисбет не хочет изучать готовое доказательство, а главным интересом становится поиск собственного решения. Поэтому всё своё свободное время она посвящает самостоятельному поиску «замечательного доказательства» теоремы великого француза, но раз за разом заходит в тупик. В конце книги Лисбет находит доказательство, которое не только совершенно отлично от предложенного Уайлсом, но и является настолько простым, что сам Ферма мог бы его найти. Однако после ранения в голову она его забывает, и Ларссон не приводит никаких подробностей этого доказательства.
- Мюзикл «Последнее танго Ферма», изданный , создан в 2000 году Джошуа Розенблюмом (англ. Joshua Rosenblum ) и Джоан Лесснер по мотивам реальной истории Эндрю Уайлса. Главный герой по имени Дэниел Кин завершает доказательство теоремы, а дух самого Ферма старается ему помешать .
- За несколько дней до своей смерти Артур Кларк успел отрецензировать рукопись романа «Последняя Теорема », над которой он трудился в соавторстве с Фредериком Полом . Книга вышла уже после смерти Кларка.
Примечания
- Ферма теорема // Математическая энциклопедия (в 5 томах) . - М. : Советская Энциклопедия , 1985. - Т. 5.
- Diophantus of Alexandria. Arithmeticorum libri sex, et de numeris multangulis liber unus. Cum commentariis C.G. Bacheti V.C. & observationibus D.P. de Fermat senatoris Tolosani. Toulouse, 1670, pp. 338-339.
- Fermat a Carcavi. Aout 1659. Oeuvres de Fermat. Tome II. Paris: Tannery & Henry, 1904, pp. 431-436.
- Ю. Ю. Мачис. О предполагаемом доказательстве Эйлера // Математические заметки. - 2007. - Т. 82 , № 3 . - С. 395-400 . Английский перевод: J. J. Mačys. On Euler’s hypothetical proof (англ.) // Mathematical Notes : journal. - 2007. - Vol. 82 , no. 3-4 . - P. 352-356 . - DOI :10.1134/S0001434607090088 .
- Давид Гильберт. Математические проблемы :
Проблема доказательства этой неразрешимости являет разительный пример того, какое побуждающее влияние на науку может оказать специальная и на первый взгляд малозначительная проблема. Ибо, побуждённый задачей Ферма, Куммер пришёл к введению идеальных чисел и к открытию теоремы об однозначном разложении чисел в круговых полях на идеальные простые множители - теоремы, которая теперь, благодаря обобщениям на любую алгебраическую числовую область, полученным Дедекиндом и Кронекером , является центральной в современной теории чисел и значение которой выходит далеко за пределы теории чисел в область алгебры и теории функций.
- Соловьев Ю.П. Гипотеза Таниямы и последняя теорема Ферма // Соросовский образовательный журнал . - ISSEP, 1998. - Т. 4 , № 2 . - С. 135-138 .
- Wiles, Andrew. Modular elliptic curves and Fermat’s last theorem (англ.) // Annals of Mathematics : journal. - 1995. - Vol. 141 , no. 3 . - P. 443-551 . (англ.)
В мире можно найти не так уж много людей, ни разу не слы-шавших о Великой теореме Ферма — пожалуй, это единственная математическая задача, получившая столь широкую известность и ставшая настоящей легендой. О ней упоминается во множестве книг и фильмов, при этом главный контекст почти всех упоми-наний — невозможность доказать теорему.
Да, эта теорема очень известна и в некотором смысле стала «идолом», которому поклоняются математики-любители и про-фессионалы, но мало кому известно о том, что ее доказательство найдено, а произошло это в уже далеком 1995 году. Но обо всем по порядку.
Итак, Великая теорема Ферма (нередко называемая послед-ней теоремой Ферма), сформулированная в 1637 году блестя-щим французским математиком Пьером Ферма, очень проста по своей сути и понятна любому человеку со средним образова-нием. Она гласит, что формула а в степени n + b в степени n = c в степени n не имеет натуральных (то есть не дробных) решений для n > 2. Вроде все просто и понятно, но лучшие ученые-математики и простые любители бились над поиском решения более трех с половиной веков.
Почему она так знаменита? Сейчас узнаем...
Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства. Великая теорема Ферма - задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство - даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго. 2. В чем же она состоит?
Начнем с пифагоровых штанов Формулировка действительно проста - на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны». Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно, - теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.
В V веке до н.э. Пифагор основал пифагорейское братство. Пифагорейцы, помимо прочего, изучали целочисленные тройки, удовлетворяющие равенству x²+y²=z². Они доказали, что пифагоровых троек бесконечно много, и получили общие формулы для их нахождения. Наверное, они пробовали искать тройки и более высоких степеней. Убедившись, что это не получается, пифагорейцы оставили бесполезные попытки. Члены братства были больше философами и эстетами, чем математиками.
То есть легко подобрать множество чисел, которые прекрасно удовлетворяют равенству x²+y²=z²
Начиная с 3, 4, 5 - действительно, младшекласснику понятно, что 9+16=25.
Или 5, 12, 13: 25 + 144 = 169. Замечательно.
Так вот, оказывается, что их НЕТ. Вот тут начинается подвох. Простота - кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.
Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? легко: бац - а вот оно, решение! (приведите решение). И все, оппонент сражен. А как доказать отсутствие?
Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.
В наглядном виде это можно показать так: если взять два квадратика подходящих размеров и разобрать на единичные квадратики, то из этой кучки единичных квадратиков получается третий квадратик (рис. 2):
А проделаем то же с третьим измерением (рис. 3) - не получается. Не хватает кубиков, или остаются лишние:
А вот математик XVII века француз Пьер де Ферма с увлечением исследовал общее уравнение x n +y n =z n . И, наконец, сделал вывод: при n>2 целочисленных решений не существует. Доказательство Ферма безвозвратно утеряно. Рукописи горят! Осталось лишь его замечание в «Арифметике» Диофанта: «Я нашел поистине удивительное доказательство этого предложения, но поля здесь слишком узки для того, чтобы вместить его».
Вообще-то, теорема без доказательства называется гипотезой. Но за Ферма закрепилась слава, что он никогда не ошибается. Даже если он не оставлял доказательства какого-нибудь утверждения, впоследствии оно подтверждалось. К тому же, Ферма доказал свой тезис для n=4. Так гипотеза французского математика вошла в историю как Великая теорема Ферма.
После Ферма над поиском доказательства работали такие ве-ликие умы, как Леонард Эйлер (в 1770 году им было предложено решение для n = 3),
Адриен Лежандр и Иоганн Дирихле (эти ученые в 1825 году совместно нашли доказательство для n = 5), Габриель Ламе (нашедший доказательство для n = 7) и многие другие. К середине 80-х годов прошлого века стало понятно, что ученый мир находится на пути к окончательному решению Великой теоремы Ферма, однако только в 1993 году математики увидели и поверили, что трехвековая эпопея по поиску доказа-тельства последней теоремы Ферма практически закончилась.
Легко показывается, что теорему Ферма достаточно доказать только для простых n: 3, 5, 7, 11, 13, 17, … При составных n доказательство остаётся в силе. Но и простых чисел бесконечно много…
В 1825 году, применив метод Софи Жермен, женщины-математика, Дирихле и Лежандр независимо друг от друга доказали теорему для n=5. В 1839 году тем же методом француз Габриель Ламе показал истинность теоремы для n=7. Постепенно теорему доказали почти для всех n, меньших ста.
Наконец, немецкий математик Эрнст Куммер в блестящем исследовании показал, что методами математики XIX века теорему в общем виде доказать нельзя. Премия Французской Академии Наук, учреждённая в 1847 году за доказательство теоремы Ферма, осталась невручённой.
В 1907 году богатый немецкий промышленник Пауль Вольфскель из-за неразделённой любви решил свести счёты с жизнью. Как истинный немец он назначил дату и время самоубийства: ровно в полночь. В последний день он составил завещание и написал письма друзьям и родственникам. Дела закончились раньше полночи. Надо сказать, что Пауль интересовался математикой. От нечего делать он пошёл в библиотеку и принялся читать знаменитую статью Куммера. Неожиданно ему показалось, что Куммер в ходе рассуждений совершил ошибку. Вольфскель стал с карандашом в руках разбирать это место статьи. Полночь миновала, наступило утро. Пробел в доказательстве был восполнен. Да и сам повод для самоубийства теперь выглядел совершенно нелепым. Пауль разорвал прощальные письма и переписал завещание.
Вскоре он умер естественной смертью. Наследники были изрядно удивлены: 100 000 марок (более 1 000 000 нынешних фунтов стерлингов) передавались на счёт Королевского научного общества Гёттингена, которое в том же году объявило о проведении конкурса на соискание премии Вольфскеля. 100 000 марок полагались доказавшему теорему Ферма. За опровержение теоремы не полагалось ни пфеннига…
Большинство профессиональных математиков считали поиск доказательства Великой теоремы Ферма безнадёжным делом и решительно отказывались тратить время на такое бесполезное занятие. Зато любители порезвились на славу. Через несколько недель после объявления на Гёттингенский университет обрушилась лавина «доказательств». Профессор Э. М. Ландау, в обязанность которого входил разбор присланных доказательств, раздал своим студентам карточки:
Уважаемый(ая) . . . . . . . .
Благодарю Вас за присланную Вами рукопись с доказательством Великой теоремы Ферма. Первая ошибка находится на стр. ... в строке... . Из-за неё всё доказательство утрачивает силу.
Профессор Э. М. Ландау
В 1963 году Пауль Коэн, опираясь на выводы Гёделя, доказал неразрешимость одной из двадцати трех проблем Гильберта — гипотезы континуума. А что, если Великая теорема Ферма тоже неразрешима?! Но истинных фанатиков Великой теоремы это ничуть не разочаровало. Появление компьютеров неожиданно дало математикам новый метод доказательства. После Второй мировой войны группы программистов и математиков доказали Великую теорему Ферма при всех значениях n до 500, затем до 1 000, а позже до 10 000.
В 80-е годы Сэмюэль Вагстафф поднял предел до 25 000, а в 90-ых математики заявили, что Великая теорема Ферма верна при всех значениях n до 4 миллионов. Но если от бесконечности отнять даже триллион триллионов, она не станет меньше. Математиков не убеждает статистика. Доказать Великую теорему значило доказать её для ВСЕХ n, уходящих в бесконечность.
В 1954 году два молодых японских друга-математика занялись исследованием модулярных форм. Эти формы порождают ряды чисел, каждая - свой ряд. Случайно Танияма сравнил эти ряды с рядами, порождаемыми эллиптическими уравнениями. Они совпадали! Но модулярные формы - геометрические объекты, а эллиптические уравнения - алгебраические. Между столь разными объектами никогда не находили связи.
Тем не менее, друзья после тщательной проверки выдвинули гипотезу: у каждого эллиптического уравнения существует двойник - модулярная форма, и наоборот. Именно эта гипотеза стала фундаментом целого направления в математике, но до тех пор, пока гипотеза Таниямы-Симуры не была доказана, всё здание могло рухнуть в любой момент.
В 1984 году Герхард Фрей показал, что решение уравнения Ферма, если оно существует, можно включить в некоторое эллиптическое уравнение. Двумя годами позже профессор Кен Рибет доказал, что это гипотетическое уравнение не может иметь двойника в модулярном мире. Отныне Великая теорема Ферма была нерасторжимо связана с гипотезой Таниямы-Симуры. Доказав, что любая эллиптическая кривая модулярна, мы делаем вывод, что эллиптического уравнения с решением уравнения Ферма не существует, и Великая теорема Ферма была бы тотчас же доказана. Но в течение тридцати лет доказать гипотезу Таниямы-Симуры не удавалось, и надежд на успех оставалось всё меньше.
В 1963 году, когда ему было всего десять лет, Эндрю Уайлс уже был очарован математикой. Когда он узнал о Великой теореме, то понял, что не сможет отступиться от неё. Школьником, студентом, аспирантом он готовил себя к этой задаче.
Узнав о выводах Кена Рибета, Уайлс с головой ушёл в доказательство гипотезы Таниямы-Симуры. Он решил работать в полной изоляции и секретности. «Я понимал, что всё, что имеет какое-то отношение к Великой теореме Ферма, вызывает слишком большой интерес… Слишком много зрителей заведомо мешают достижению цели». Семь лет упорной работы принесли плоды, Уайлс наконец завершил доказательство гипотезы Таниямы-Симуры.
В 1993 году английский математик Эндрю Уайлс представил миру свое доказательство Великой теоремы Ферма (Уайльс прочитал свой сенсационный доклад на конференции в Институте сэра Исаака Ньютона в Кембридже.) , работа над которым продолжалась более семи лет.
Пока в печати продолжалась шумиха, началась серьёзная работа по проверке доказательства. Каждый фрагмент доказательства должен быть тщательно изучен прежде, чем доказательство может быть признано строгим и точным. Уайлс провёл беспокойное лето в ожидании отзывов рецензентов, надеясь, что ему удастся получить их одобрение. В конце августа эксперты нашли недостаточно обоснованное суждение.
Оказалось, что данное решение содержит грубую ошибку, хотя в целом и верно. Уайлс не сдался, призвал на помощь известного специалиста в теории чисел Ричарда Тейлора, и уже в 1994 году они опубликовали исправлен-ное и дополненное доказательство теоремы. Самое удивительное, что эта работа заняла целых 130 (!) полос в математическом журнале «Annals of Mathematics». Но и на этом история не закончилась — последняя точка была поставлена только в следующем, 1995 году, когда в свет вышел окончательный и «идеальный», с математи-ческой точки зрения, вариант доказательства.
«…через полминуты после начала праздничного обеда по случаю её дня рождения, я подарил Наде рукопись полного доказательства» (Эндрю Уальс). Я ещё не говорил, что математики странные люди?
На этот раз никаких сомнений в доказательстве не было. Две статьи были подвергнуты самому тщательному анализу и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».
С того момента прошло немало времени, однако в обществе до сих пор бытует мнение о неразрешимости Великой теоремы Фер-ма. Но даже те, кто знает о найденном доказательстве, продолжают работу в этом направлении — мало кого устраивает, что Великая теорема требует решения в 130 страниц!
Поэтому сейчас силы очень многих математиков (в основном это любители, а не профессио-нальные ученые) брошены на поиски простого и лаконичного до-казательства, однако этот путь, скорее всего, не приведет никуда...
источник
ФЕРМА ВЕЛИКАЯ ТЕОРЕМА - утверждение Пьера Ферма (французский юрист и по совместительству математик) о том, что диофантово уравнение X n + Y n = Z n , при показателе степени n>2, где n = целое число, не имеет решений в целых положительных числах. Авторский текст: "Невозможно разложить куб на два куба, или биквадрат на два биквадрата, или вообще степень, большую двух, на две степени с тем же самым показателем."
"Ферма и его теорема", Амадео Модильяни, 1920
Пьер придумал эту теорему 29 марта 1636-го года. А ещё через каких-то 29 лет скончался. Но тут-то всё и началось. Ведь состоятельный немецкий любитель математики по фамилии Вольфскель завещал сто тысяч марок тому, кто предъявит полное доказательство теоремы Ферма! Но ажиотаж вокруг теоремы был связан не только с этим, но и с профессиональным математическим азартом. Сам Ферма намекнул математическому сообществу, что знает доказательство - незадолго до смерти, в 1665-ом году он оставил на полях книги Диофанта Александрийского "Арифметика" следующую запись: "Я располагаю весьма поразительным доказательством, но оно слишком велико, чтобы его можно было разместить на полях."
Именно этот намёк (плюс, конечно, денежная премия) заставил математиков безуспешно тратить на поиск доказательства свои лучшие годы (по подсчётам американских учёных, только профессиональными математиками было потрачено на это 543 лет в общей сложности).
В какой-то момент (в 1901-ом) работа над теоремой Ферма приобрела сомнительную славу "работы, сродни поиску вечного двигателя" (появился даже уничижительный термин - "ферматисты"). И вдруг 23 июня 1993 года на математической конференции по теории чисел в Кембридже английский профессор математики из Принстонского университета (Нью-Джерси, США) Эндрю Уайлс объявил, что наконец-то доказал Ферма!
Доказательство, правда, было не только сложным, но и очевидно ошибочным, на что Уайлсу было указано его коллегами. Но профессор Уайлс всю жизнь мечтал доказать теорему, поэтому не удивительно что в мае 1994-го он представил на суд учёного сообщества новый, доработанный вариант доказательства. В нём не было стройности, красоты, и оно по-прежнему было весьма сложным - тот факт, что математики целый год (!) это доказательство анализировали, что бы понять, не является ли оно ошибочным, говорит сам за себя!
Но в итоге доказательство Уайлса было признано верным. А вот Пьеру Ферма его тот самый намёк в "Арифметике" математики не простили, и, фактически, стали считать его лжецом. Собственно, первым, кто рискнул усомниться в моральной чистоплотности Ферма был сам Эндрю Уайлс, который заметил, что "Ферма не мог располагать таким доказательством. Это доказательство ХХ века." Затем и среди других ученых укрепилось мнение, что Ферма "не мог доказать свою теорему другим путём, а доказать её тем путем, по которому пошёл Уайлс, Ферма не мог по объективным причинам."
На самом деле, Ферма конечно же мог доказать её, и чуть позже это доказательство будет аналитиками "Новой Аналитической Энциклопедии" воссоздано. Но - что же это за такие "объективные причины"?
Такая причина на самом деле только одна: в те годы, когда жил Ферма, не могла появиться гипотеза Таниямы, на которой и построил свой доказательство Эндрю Уайлс, ведь модулярные функции, которыми оперирует гипотеза Таниямы были открыты только в конце XIX века.
Как доказал теорему сам Уайлс? Вопрос непраздный - это важно для понимания того, каким образом свою теорему мог доказать сам Ферма. Уайлс построил своё доказательство на доказательстве гипотезы Таниямы, выдвинутой в 1955-ом 28-летним японским математиком Ютакой Таниямой.
Гипотеза звучит так: "каждой эллиптической кривой соответствует определенная модулярная форма". Эллиптические кривые, известные с давних пор, имеют двухмерный вид (располагаются на плоскости), модулярные же функции, имеют четырехмерный вид. Т.е гипотеза Таниямы соединила совершенно разные понятия - простые плоские кривые и невообразимые четырёхмерные формы. Сам факт соединения разномерных фигур в гипотезе показался учёным абсурдным, именно поэтому в 1955-ом ей не придали значения.
Однако осенью 1984 года о "гипотезе Таниямы" вдруг снова вспомнили, и не просто вспомнили, но связали её возможное доказательство с доказательством теоремы Ферма! Это сделал математик из Саарбрюкена Герхард Фрей, который сообщил учёному сообществу, что "если бы кому-нибудь удалось доказать гипотезу Таниямы, то тем самым была бы доказана и Великая теорема Ферма".
Что сделал Фрей? Он преобразовал уравнение Ферма в кубическое, затем обратил внимание на то, что эллиптическая кривая, полученная при помощи преобразованного в кубическое уравнения Ферма не может быть модулярной. Однако гипотеза Таниямы утверждала, что любая эллиптическая кривая может быть модулярной! Соответственно, эллиптическая кривая, построенная из уравнения Ферма не может существовать, значит не может быть целых решений и теоремы Ферма, значит она верна. Ну а в 1993-ем Эндрю Уайлс попросту доказал гипотезу Таниямы, а значит и теорему Ферма.
Однако, теорему Ферма можно доказать значительно проще, на основе той же самой многомерности, которой оперировали и Танияма, и Фрей.
Для начала, обратим внимание на условие, оговорённое самим Пьером Ферма - n>2. Для чего было нужно это условие? Да лишь для того, что при n=2 частным случаем теоремы Ферма становится обычная теорема Пифагора Х 2 +Y 2 =Z 2 , которое имеет бесчисленное множество целых решений - 3,4,5; 5,12,13; 7,24,25; 8,15,17; 12,16,20; 51,140,149 и так далее. Таким образом, теорема Пифагора является исключением из теоремы Ферма.
Но почему именно в случае с n=2 возникает подобное исключение? Всё становится на свои места, если увидеть взаимосвязь между степенью (n=2) и мерностью самой фигуры. Пифагоров треугольник - двухмерная фигура. Не удивительно, что Z (то есть гипотенуза), может быть выражена через катеты (X и Y), которые могут быть целыми числами. Размер угла (90) дает возможность рассматривать гипотенузу как вектор, а катеты - векторы, расположенные на осях и идущие из начала координат. Соответственно, можно выразить двумерный вектор, не лежащий ни на одной из осей, через векторы, на них лежащие.
Теперь, если перейти к третьему измерению, а значит к n=3, для того чтобы выразить трёхмерный вектор, будет недостаточно информации о двух векторах, а следовательно, выразить Z в уравнении Ферма можно будет как минимум через три слагаемых (три вектора, лежащих, соответственно, на трех осях системы координат).
Если n=4, значит, слагаемых должно быть уже 4, если n=5, то слагаемых должно быть 5 и так далее. В этом случае, целых решений будет хоть отбавляй. Например, 3 3 +4 3 +5 3 =6 3 и так далее (другие примеры для n=3, n=4 и так далее можете подобрать самостоятельно).
Что из всего этого следует? Из этого следует, что теорема Ферма действительно не имеет целых решений при n>2 - но лишь потому, что само по себе уравнение некорректно! С таким же успехом можно было бы пытаться выразить объём параллелепипеда через длины двух его рёбер - разумеется, это невозможно (целых решений никогда не будет найдено), но лишь потому, что для нахождения объёма параллелепипеда нужно знать длины всех трёх его рёбер.
Когда знаменитого математика Давида Гилберта спросили, какая задача сейчас для науки наиболее важна, он ответил "поймать муху на обратной стороне Луны". На резонный вопрос "А кому это надо?" он ответил так: "Это никому не надо. Но подумайте над тем, сколько важных сложнейших задач надо решить, чтобы это осуществить".
Другими словами, Ферма (юрист в первую очередь!) сыграл со всем математическим миром остроумную юридическую шутку, основанную на неверной постановке задачи. Он, фактически, предложил математикам найти ответ, почему муха на другой стороне Луны жить не может, а на полях "Арифметики" хотел написать лишь о том, что на Луне просто нет воздуха, т.е. целых решений его теоремы при n>2 быть не может лишь потому, что каждому значению n должно соответствовать определённое количество членов в левой части его уравнения.
Но была ли это просто шутка? Отнюдь. Гениальность Ферма заключается именно в том, что он фактически первый увидел взаимосвязь между степенью и мерностью математической фигуры - то есть, что абсолютно эквивалентно, количеством членов в левой части уравнения. Смысл его знаменитой теоремы был именно в том, чтобы не просто натолкнуть математический мир на идею этой взаимосвязи, но и инициировать доказательство существования этой взаимосвязи - интуитивно понятной, но математически пока не обоснованной.
Ферма как никто другой понимал, что установление взаимосвязи между, казалось бы, различными объектами чрезвычайно плодотворно не только в математике, но и в любой науке. Такая взаимосвязь указывает на какой-то глубокий принцип, лежащий в основе обоих объектов и позволяющий глубже понять их.
Например, первоначально физики рассматривали электричество и магнетизм как совершенно не связанные между собой явления, а в XIX веке теоретики и экспериментаторы поняли, что электричество и магнетизм тесно связаны между собой. В результате было достигнуто более глубокое понимание и электричества, и магнетизма. Электрические токи порождают магнитные поля, а магниты могут индуцировать электричество в проводниках, находящихся вблизи магнитов. Это привело к изобретению динамомашин и электромоторов. В конце концов было открыто, что свет представляет собой результат согласованных гармонических колебаний магнитного и электрического полей.
Математика времён Ферма состояла из островов знания в море незнания. На одном острове обитали геометры, занимающиеся изучением форм, на другом острове теории вероятностей математики изучали риски и случайность. Язык геометрии сильно отличался от языка теории вероятностей, а алгебраическая терминология была чужда тем, кто говорил только о статистике. К сожалению, математика и наших времён состоит примерно из таких же островов.
Ферма первым понял, что все эти острова взаимосвязаны. И его знаменитая теорема - ВЕЛИКАЯ ТЕОРЕМА ФЕРМА - отличное тому подтверждение.
Завистники утверждают, что французский математик Пьер Ферма вписал свое имя в историю всего одной фразой. На полях рукописи с формулировкой знаменитой теоремы в 1637 году он сделал пометку: "Я нашел удивительное решение, но здесь маловато места, чтобы его поместить". Тогда и началась удивительная математическая гонка, в которую наряду с выдающимися учеными включилась армия дилетантов.
В чем коварство задачи Ферма? На первый взгляд, она понятна даже школьнику.
В основе - известная каждому теорема Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: х 2 + у 2 = z 2 . Ферма утверждал: уравнение при любых степенях больше двух не имеет решения в целых числах.
Казалось бы, просто. Протяни руку, и вот ответ. Неудивительно, что академии разных стран, научные институты, даже редакции газет были завалены десятками тысяч доказательств. Их число беспрецедентно, уступает разве что проектам "вечных двигателей". Но если эти сумасшедшие идеи серьезная наука давно не рассматривает, то работы "фермистов" честно и заинтересованно изучает. И, увы, находит ошибки. Говорят, что за три с лишним века образовалось целое математическое кладбище решений теоремы.
Не зря говорят: близок локоть, а не укусишь. Проходили года, десятилетия, века, и задача Ферма представлялась все более удивительной и заманчивой. Вроде бы простенькая, она оказалась не по зубам стремительно наращивающему мускулы прогрессу. Человек уже расщепил атом, добрался до гена, ступил на Луну, а Ферма не давался, продолжая манить потомков ложными надеждами.
Однако попытки одолеть научную вершину не прошли даром. Первый шаг сделал великий Эйлер, доказав теорему для четвертой степени, затем для третьей. В конце XIX века немец Эрнст Куммер довел число степеней до ста. Наконец, вооружившись компьютерами, ученые увеличили эту цифру до 100 тысяч. Но Ферма-то говорил о любых степенях. В этом состояла вся загвоздка.
Конечно, мучились ученые над задачей не из-за спортивного интереса. Знаменитый математик Давид Гильберт говорил, что теорема - это пример, как вроде бы малозначительная проблема может оказать на науку огромное влияние. Работая над ней, ученые открыли совершенно новые математические горизонты, например, были заложены фундаменты теории чисел, алгебры, теории функций.
И все же Великая теорема была в 1995 году покорена. Ее решение представил американец из Принстонского университета Эндрю Уайлс, и оно официально признано научным сообществом. Более семи лет жизни отдал он, чтобы найти доказательство. По мнению ученых, эта выдающаяся работа свела воедино труды многих математиков, восстановив утраченные связи между разными ее разделами.
Итак, вершина взята, и наука ответ получила, - сказал корреспонденту "РГ" ученый секретарь Отделения математики Российской академии наук, доктор технических наук Юрий Вишняков. - Теорема доказана, пусть и не простейшим способом, на чем настаивал сам Ферма. А теперь желающие могут печатать свои варианты.
Однако семейство "фермистов" вовсе не собирается признавать доказательство Уайлса. Нет, они не опровергают решение американца, ведь оно очень сложное, а потому понятно лишь узкому кругу специалистов. Но не проходит недели, чтобы в Интернете ни появилось новое откровение очередного энтузиаста, "наконец-то поставившего точку в многолетней эпопее".
Кстати, буквально вчера в редакцию "РГ" позвонил один из старейших в нашей стране "фермистов" Всеволод Ярош: "А вы знаете, что теорему Ферма я доказал еще до Уайлса. Более того, потом нашел у него ошибку, о чем написал выдающемуся нашему математику академику Арнольду с просьбой напечатать об этом в научном журнале. Теперь жду ответа. Переписываюсь по этому поводу и с французской академией наук".
И вот только что, как сообщается в ряде СМИ, с "легким изяществом раскрыл великую тайну математики", еще один энтузиаст - бывший генеральный конструктор ПО "Полет" из Омска, доктор технических наук Александр Ильин. Решение оказалось настолько простым и коротким, что поместилось на маленьком участке газетной площади одного из центральных изданий.
Редакция "РГ" обратилась в ведущий в стране Институт математики им. Стеклова РАН с просьбой оценить это решение. Ученые были категоричны: нельзя комментировать газетную публикацию. Но после долгих уговоров и учитывая повышенный интерес к знаменитой задаче, согласились. По их словам, в опубликованном очередном доказательстве допущено несколько принципиальных ошибок. Кстати, их вполне мог бы заметить даже студент математического факультета.
И все же редакция хотела получить информацию из первых рук. Тем более что вчера в академии авиации и воздухоплавания Ильин должен был представить свое доказательство. Однако оказалось, что о такой академии мало кто знает даже среди специалистов. А когда все-таки с величайшим трудом удалось разыскать телефон ученого секретаря этой организации, то, как выяснилось, он даже не подозревал, что именно у них должно состояться столь историческое событие. Словом, корреспонденту "РГ" стать свидетелем мировой сенсации так и не удалось.
Много лет назад я получил письмо из Ташкента от Валерия Муратова, судя по почерку, человека юношеского возраста, проживавшего тогда на улице Коммунистической в доме № 31. Парень был настроен решительно: "Сразу к делу. Сколько вы мне заплатите за доказательство теоремы Ферма? Меня устраивает не менее 500 рублей. В другое время я бы доказал вам бесплатно, но сейчас мне нужны деньги..."
Удивительный парадокс: мало кто знает, кто такой Ферма, когда он жил и что сделал. Еще меньше людей могут даже в самых общих словах описать его великую теорему. Но всем известно, что есть какая-то теорема Ферма, над доказательством которой математики всего мира бьются уже более 300 лет, а доказать не могут!
Людей честолюбивых много, и само сознание того, что есть нечто, чего другие сделать не могут, еще больше подстегивает их честолюбие. Поэтому в академии, научные институты и даже редакции газет всего мира приходили и приходят тысячи (!) доказательств Великой теоремы, — невиданный и никем никогда не побитый рекорд псевдонаучной самодеятельности. Существует даже термин: "ферматисты", т. е. люди, одержимые желанием доказать Великую теорему, которые совершенно измучили математиков-профессионалов требованиями оценить их труды. Известный немецкий математик Эдмунд Ландау даже заготовил стандартку, по которой и отвечал: "В вашем доказательстве теоремы Ферма ошибка на странице... ", а номер страницы проставляли его аспиранты. И вот летом 1994 года газеты всего мира сообщают нечто совершенно сенсационное: Великая теорема доказана!
Итак, кто такой Ферма, в чем суть проблемы и решена ли она действительно? Пьер Ферма родился в 1601 году в семье кожевника, человека состоятельного и уважаемого, — он занимал должность второго консула в родном городке Бомоне, — это что-то вроде помощника мэра. Пьер учился сначала у монахов-францисканцев, потом на юридическом факультете в Тулузе, где затем занимался адвокатурой. Однако круг интересов Ферма выходил далеко за рамки юриспруденции. Особенно занимала его классическая филология, известны его комментарии к текстам древних авторов. И вторая страсть — математика.
В XVII веке, как, впрочем, и долгие годы спустя, не существовало такой профессии: математик. Поэтому все великие математики того времени были математиками "по совместительству": Рене Декарт служил в армии, Франсуа Виет был юристом, Франческо Кавальери — монахом. Научных журналов тогда не было, и классик науки Пьер Ферма при жизни не опубликовал ни одной научной работы. Существовал достаточно узкий круг "любителей", которые решали разные для них интересные задачи и писали по этому поводу письма друг другу, иногда спорили (как Ферма с Декартом), но, в основном, оставались единомышленниками. Они и стали основателями новой математики, сеятелями гениальных зерен, из которых пошло в рост, набирая силу и ветвясь, могучее древо современных математических знаний.
Так вот, таким же "любителем" был и Ферма. В Тулузе, где он прожил 34 года, все знали его, прежде всего, как советника следственной палаты и опытнейшего юриста. В 30 лет он женился, имел трех сыновей и двух дочерей, иногда отлучался в служебные командировки и во время одной из них скоропостижно скончался в возрасте 63 лет. Все! Жизнь этого человека, современника "Трех мушкетеров", удивительна бедна событиями и лишена приключений. Приключения достались на долю его Великой теоремы. Не будем говорить обо всем математическом наследии Ферма, да и трудно рассказать о нем популярно. Поверьте на слово: наследие это велико и разнообразно. Утверждение, что Великая теорема — вершина его творчества, весьма спорно. Просто судьба Великой теоремы удивительно интересна, и огромный мир людей, непосвященных в таинства математики, всегда интересовала не сама теорема, а все, что вокруг нее...
Корни всей этой истории надо искать в античности, столь любимой Ферма. Примерно в III веке жил в Александрии греческий математик Диофант, — ученый своеобразно, нестандартно мыслящий и нестандартно мысли свои излагающий. Из 13 томов его "Арифметики" до нас дошло только 6. Как раз, когда Ферма исполнилось 20 лет, вышел новый перевод его сочинений. Ферма очень увлекался Диофантом, и эти сочинения были его настольной книгой. На ее полях Ферма и записал свою Великую теорему, которая в самом простом современном виде выглядит так: уравнение Xn + Yn = Zn не имеет решения в целых числах при п — больше 2. (При п = 2 решение очевидно: З2 + 42 = 52). Там же, на полях Диофантова тома, Ферма добавляет: "Я открыл это поистине чудесное доказательство, но эти поля для него слишком узки".
На первый взгляд, вещица простенькая, но когда другие математики начали доказывать эту "простенькую" теорему, ни у кого ничего не получалось лет сто. Наконец, великий Леонард Эйлер доказал ее для п = 4, потом через 20 (!) лет — для п = 3. И снова работа застопорилась на многие годы. Следующая победа принадлежит немцу Петеру Дирихле (1805—1859) и французу Андриену Лежандру (1752—1833), — они признали, что Ферма прав при п = 5. Потом француз Габриель Ламе (1795—1870) сделал то же для п = 7. Наконец, в середине прошлого века немец Эрнст Куммер (1810—1893) доказал Великую теорему для всех значений п меньше или равных 100. Причем доказал методами, которые не могли быть известны Ферма, чем еще более усилил флер таинственности вокруг Великой теоремы.
Таким образом, получалось, что доказывали теорему Ферма "по кусочкам", а "целиком" ни у кого не получалось. Новые попытки доказательств приводили лишь к количественному увеличению значений п. Все понимали, что, затратив бездну труда, можно доказать Великую теорему для сколь угодно большого числа п, но Ферма-то говорил о любом его значении больше 2! Вот в этой-то разнице между "сколько угодно большим" и "любым" и сосредотачивался весь смысл проблемы.
Однако надо отметить, что попытки доказать теорему Фермга не были просто некоей математической игрой, рсшсением сложного ребуса. В процессе этих доказательств открывались новые математичес кие горизонты, возникали и решались задачи, становившиеся новыми ветгвями математического древа. Великий немецкий математик Давид Гильберт (1862—1943) приводил Великую теорему, как пример того, "какое побуждающее влияние на науку может оказать специальная и на первыш взгляд малозначительная проблема". Тот же Куммер, работая над теоремой Ферма, сам доказал теоремы, которые легли в фундамент теории чисел, алгебры и теории функций. Так что доказательство Великой теорсемы — не спорт, а настоящая наука.
Время шло, и на помощь профеессиональным "фсрматнтстам" пришла электроника. Электронные мозги но)вых методов выдумать не могли, но зато брали скоростыю. Примерно к началу 80-х годов теорема Ферма с помощью ЭВМ была доказана для n меньше или равной 5500. Постепенно эта цифра выросла до 100 000, но все понимали, что подобное "накопление" — дело чисстой техники, ничего не дающее ни уму ни сердцу. Крепость Великой теоремы "в лоб" взять не смогли щ начали искать обходные маневрья.
В середине 80-х годов молодой немеадкий математик Г. Филытингс доказал так называемую "гипотезу Морделла", которая, кстати, тоже "не давалась в руки" никому из математиков 61 год. Возникла надежда, что теперь, так сказать, "атакой с фланга", может быть решена и теорема Ферма. Однако тогда ничего не получилось. В 1986 году немецкий математик Герхард Фрей в Эссеще предложил новый метод доказательства. Не берусь объяснить его строго, но не на маатематическом, а на общечеловеческом языке он звучит примерно так: если мы убедимся, что доказательство некой другой теоремы есть косвенное, неким образом трансформированное доказательство теоремы Ферма, то, следовательно, мы докажем Великую теорему. Через год американец Кеннет Рибет из Беркли показал, что Фрей прав и, действительно, можно одно доказательство свести к другому. По этому пути пошли многие математики в разных странах мира. У нас очень много для доказательства Великой теоремы сделал Виктор Александрович Колыванов. Трехсотлетние стены неприступной крепости зашатались. Математики поняли, что долго она не устоит.
Летом 1993 года в старинном Кембридже, в Институте математических наук имени Исаака Ньютона собрались 75 виднейших математиков мира, чтобы обсудить свои проблемы. Среди них был и американский профессор Эндрю Уайлс из Принстонскош университета, — крупный специалист в теории чисел. Все знали, что он уже много лет занимается Великой теоремой. Уайлс сделал три доклада и на последнем — 23 июня 1993 года — в самом конце, отвернувшись от доски, сказал с улыбкой:
— Пожалуй, я продолжать не буду...
Вначале наступила мертвая тишина, затем — обвал аплодисментов. Сидящие в зале были достаточно квалифицированы, чтобы понять: Великая теорема Ферма доказана! Во всяком случае, никто из присутствующих не обнаружил в приведенном доказательстве каких-либо погрешностей. Заместитель директора Ньютоновского института Питер Годдард заявил журналистам:
— Большинство экспертов не думали, что узнают разгадку до конца своей жизни. Это одно из крупнейших достижений математики нашего столетия...
Прошло несколько месяцев, никаких замечаний и опровержений не последовало. Правда, Уайлс доказательства своего не опубликовал, а лишь разослал, так называемые, припринты своей работы очень узкому кругу своих коллег, что, естественно, мешает математикам комментировать эту научную сенсацию, и я понимаю академика Людвига Дмитриевича Фаддеева, который сказал:
— Смогу утверждать, что сенсация произошла, когда увижу доказательство своими глазами.
Фаддеев считает, что вероятность победы Уайлса весьма велика.
— Мой отец, известный специалист в теории чисел, был, например, уверен, что теорема будет доказана, но не элементарными средствами, — добавил он.
Скептически отнесся к новости другой наш академик, — Виктор Павлович Маслов, который считает, что доказательство Великой теоремы вообще не является актуальной математической проблемой. По своим научным интересам Маслов — председатель совета по прикладной математике — далек от "ферматистов", и, когда он говорит о том, что полное решение Великой теоремы представляет лишь спортивный интерес, его понять можно. Однако смею заметить, что понятие актуальности в любой науке есть величина переменная. 90 лет назад Резерфорду, наверное, тоже говорили: "Ну, хорошо, ну теория радиоактивного распада... И что? Какой от нее прок?.."
Работа над доказательством Великой теоремы уже дала очень много математике, и можно надеется, что даст еще.
— То, что сделал Уайлс, продвинет математиков в другие области, — сказал Питер Годдард. — Скорее, это не закрывает одно из направлений мысли, а ставит новые вопросы, которые потребуют ответа...
Профессор МГУ Михаил Ильич Зеликин так объяснил мне сегодняшнюю ситуацию:
Никто не видит в работе Уайлса каких-то ошибок. Но чтобы работа эта стала научным фактом, необходимо, чтобы несколько авторитетных математиков независимо друг от друга повторили это доказательство и подтвердили его правильность. Это непременное условие осознания работы Уайлса математической общественностью...
Как много времени потребуется для этого?
Этот вопрос я задал одному из ведущих наших специалистов в области теории чисел, доктору физико-математических наук Алексею Николаевичу Паршину.
— У Эндрю Уайлса еще много времени впереди...
Дело в том, что 13 сентября 1907 года немецкий математик П. Вольфскель, который, в отличие от подавляющего большинства математиков, был человек богатый, завещал тому, кто в ближайшие 100 лет докажет Великую теорему, 100 тысяч марок. В начале века проценты с завещанной суммы шли в казну знаменитого Гетгангентского университета. На эти деньги приглашали ведущих математиков для чтения лекций, вели научную работу. В то время председателем комиссии по присуждению премии был уже упоминавшийся мною Давид Гильберт. Выплачивать премию ему очень не хотелось.
— К счастью, — говорил великий математик, — кажется, у нас нет математика, кроме меня, которому была бы под силу эта задача, я же никогда не решусь зарезать курицу, которая несет нам золотые яйца-
До срока — 2007 года, обозначенного Вольфскелем, осталось немного лет, и, мне кажется, над "курицей Гильберта" нависла серьезная опасность. Но не в премии, собственно, дело. Дело в пытливости мысли и человеческом упорстве. Триста с лишним лет бились, а все же доказали!
И еще. Для меня самое интересное во всей этой истории: как доказал свою Великую теорему сам Ферма? Ведь все сегодняшние математические ухищрения были ему неведомы. И доказал ли он ее вообще? Ведь есть версия, что доказал вроде бы, но сам нашел ошибку, а потому и доказательства другим математикам рассылать не стал, а зачеркнуть запись на полях Диофантова тома забыл. Поэтому, мне кажется, что доказательство Великой теоремы, очевидно, состоялось, но тайна теоремы Ферма осталась, и вряд ли мы когда-нибудь раскроем ее...
Может быть, Ферма и ошибся тогда, но он не ошибался, когда писал: "Быть может, потомство будет признательно мне за то, что я показал ему, что древние не все знали, и это может проникнуть в сознание тех, которые придут после меня для передачи факела сыновьям..."