Информационная поддержка школьников и студентов
Поиск по сайту

Будущее космоса. Космические корабли будущего: проекты, проблемы, перспективы. Технологии Honeybee Robotics

К моменту высадки на Луну в 1969 году многие люди думали, что к началу 21 века космические путешествия станут обычным делом, мы сможем посещать другие планеты в нашей Солнечной системе и, возможно, даже рискнем отправиться в межзвездное пространство. К сожалению, такое будущее еще не наступило. Более того, люди вообще стали задаваться вопросом, нужны ли нам космические путешествия. Может быть, стоит оставить освоение космоса частным компаниям?

Но те, кто долгое время мечтал о том, что люди станут космической цивилизацией, утверждают, что предоставит хорошие преимущества и здесь, на Земле, в областях вроде здравоохранения, горнодобывающей промышленности и безопасности. Вдохновение тоже будет. Вот несколько наиболее убедительных аргументов для продолжения освоения космоса.

Защита от разрушительного астероида

Если мы не хотим однажды встретить судьбу динозавров, нам нужно защитить себя от угрозы попадания большого астероида. По данным NASA, примерно раз в 10 000 лет каменный или железный астероид размером с футбольное поле может врезаться в поверхность нашей планеты и вызвать цунами, возможно, достаточно большие, чтобы затопить прибрежные районы.

Но на деле бояться нужно настоящих монстров - астероидов в 100 метров в поперечнике или больше. Столкновение с таким гигантом вызовет огненный шторм из нагретых осколков и заполнит атмосферу пылью, блокирующей свет солнца, что уничтожит наши леса и поля. Если кто и выживет, он будет серьезно голодать. Мудро финансируемая космическая программа позволила бы нам обнаружить опасный объект задолго до того, как он поразит Землю, и отправить космический аппарат, который смог бы с помощью направленного взрыва направить астероид на другой курс.

Оно приведет к великим изобретениям

Очень много устройств, материалов и процессов, изначально разработанных для космической программы, нашли применение на Земле - их было так много, что у NASA появился офис, который ищет способы перепрофилирования космических технологий в продукты. К примеру, все мы знакомы с сухой заморозкой еды, но есть и другие варианты. В 1960-х ученые NASA разработали пластик, покрытый металлическим отражающим материалом. При использовании в одеяле он отражает 80% тепла тела его хозяину - это помогает жертвам катастрофы и пост-марафонцам оставаться в тепле.

Еще более интересной и ценной новинкой стал нитинол - гибкий, но упругий сплав, разработанный для того, чтобы спутники могли расправляться после того, как их упаковали в ракету. Сегодня ортодонты оснащают пациентов скобами, сделанными из этого материала.

Оно будет полезно для здоровья

Международная космическая станция породила множество медицинских инноваций, которые нашли применение на Земле, например, способ доставки противораковых лекарств непосредственно к опухоли; устройство, которое позволяет медсестре проводить УЗИ и передавать результаты врачу за тысячи километров; роботизированный манипулятор, который может выполнять сложную операцию внутри аппарата МРТ.

Ученые NASA, стремясь защитить астронавтов от потери костной и мышечной массы в условиях микрогравитации космоса, также помогли фармацевтической компании испытать Prolia, препарат, который сегодня может спасти пожилых людей от остеопороза. Легче было испытать лекарство на астронавтах, которые теряют 1,5% костной массы каждый месяц, нежели на пожилой женщине на Земле, которая теряет 1,5% ежегодно из-за остеопороза.

Исследование космоса - источник вдохновения

Если мы хотим, чтобы наши дети в этом мире стремились стать великими учеными и инженерами, а не рэперами, ведущими реалити-шоу или финансовыми магнатами, очень важно вдохновить их на правильную деятельность.

«Я могу стоять перед восьмиклассниками и говорить: кто хочет стать аэрокосмическим инженером, который построит самолет на 20% более энергоэффективный, чем тот, на котором летали ваши родители? Но это не работает. Однако если я спрошу: кто хочет быть аэрокосмический инженером, который спроектирует самолет, который будет ориентироваться в разреженной атмосфере Марса? Я получу лучших учеников в классе».

Это важно для государственной безопасности

Ведущие мировые страны должны обнаруживать и предотвращать враждебные намерения или террористические группы, которые могут развернуть оружие в космосе или атаковать навигационные, коммуникационные спутники и спутники наблюдения. И хотя США, Россия и Китай в 1967 году заключили договор о неприкосновенности территории в космосе, на нее могут позариться другие страны. И не факт, что договоры прошлого можно пересмотреть.

Даже если эти ведущие страны в большей части освоят ближайший космос, им нужно будет быть уверенными в том, что компании могут добывать полезные ископаемые на Луне или астероидах, не переживая, что их будут терроризировать или узурпировать. Очень важно настроить дипломатические каналы в космосе, с возможным военным использованием.

Нам нужно космическое сырье

В космосе есть золото, серебро, платина и другие ценные вещества. Много внимания привлекли мероприятия частных компаний, которые предусматривают добычу полезных ископаемых на астероидах, но космическим шахтерам не придется далеко ходить, чтобы найти богатые ресурсы.

Луна, к примеру, является потенциально прибыльным источником гелия-3 (используется для МРТ и в качестве потенциального топлива для атомных электростанций). На Земле гелий-3 настолько редкий, что его цена достигает 5000 долларов за литр. Также Луна может быть потенциально богатой редкоземельными элементами вроде европия и тантала, которые пользуются большим спросом для использования в электронике, солнечных панелях и других продвинутых устройствах.

Государства могут мирно работать вместе

Ранее мы уже упомянули о зловещей угрозе международного конфликта в космосе. Но все может быть и мирно, если вспомнить о сотрудничестве разных стран на Международной космической станции. Космическая программа США, например, позволяет другим странам, большим и не очень, объединять свои усилия в исследовании космоса.

Международное сотрудничество на поле космоса будет исключительно взаимовыгодным. С одной стороны, большие расходы были бы распределены на всех. С другой - это помогло бы установить тесные дипломатические отношения между странами и создать новые рабочие места для обеих сторон.

Оно помогло бы ответить на большой вопрос

Почти половина людей на Земле считает, что где-то в космосе есть жизнь. Четверть из них думает, что инопланетяне уже посещали нашу планету.

Однако все попытки найти в небе признаки других существ оказывались бесплодными. Возможно, потому что земная атмосфера мешает сообщениям доходить до нас. Вот почему те, кто занимается поиском внеземных цивилизаций, готовы разворачивать еще больше орбитальных обсерваторий вроде космического телескопа Джеймса Вебба. Этот спутник будет запущен в 2018 году и сможет искать химические признаки жизни в атмосферах далеких планет за пределами нашей Солнечной системы. Это только начало. Возможно, дополнительные космические усилия помогут нам, наконец, ответить на вопрос, одиноки ли мы.

Людям нужно утолять жажду исследований

Наши первобытные предки распространились из Восточной Африки по всей планете, и с тех пор мы не останавливаем движением. Мы ищем свежие территории за пределами Земли, поэтому единственный способ утолить это первобытное желание - отправиться в межзвездное путешествие на несколько поколений.

В 2007 году бывший администратор NASA Майкл Гриффин (на фото выше) провел различие между «приемлемыми причинами» и «реальными причинами» освоения космоса. Приемлемые причины могли бы включать экономические и национальные преимущества. Но реальные причины будут включать такие понятия, как любопытство, соревнование и создание наследия.

«Кто из нас не знаком с этим чудесным волшебным трепетом, когда мы видим что-нибудь новое, даже по телевизору, что никогда не видели раньше? - говорил Гриффин. - Когда мы делаем что-то ради реальных причин, не довольствуясь приемлемыми, мы производим наши лучшие достижения».

Нам нужно колонизировать космос, чтобы выжить

Наша способность выводить спутники в космос помогает нам наблюдать и бороться с насущными проблемами на Земле, от лесных пожаров и разливов нефти до истощения водоносных горизонтов, которые нужны людям для снабжения питьевой водой.

Но наш рост населения, жадность и легкомыслие приводят к серьезным экологическим последствиям и повреждениям нашей планеты. Оценки 2012 года говорили о том, что Земля сможет выдержать от 8 до 16 миллиардов человек - а ее население уже перешагнуло отметку в 7 миллиардов. Возможно, нам нужно быть готовыми к колонизации другой планеты, и чем быстрее, тем лучше.


Что произошло? Много чего, в том числе война во Вьетнаме, Уотергейтский скандал и т. п. Но если посмотреть в корень и избавиться от всего временного и несущественного, выяснится, что причина на самом деле одна: деньги.

Иногда мы забываем, что космические путешествия - дело очень дорогостоящее. Выведение всего одного фунта чего угодно на околоземную орбиту стоит 10 000 долларов. Представьте себе статую Джона Гленна из чистого золота в натуральную величину - и вы получите некоторое представление о стоимости подобных проектов. Полет на Луну потребовал бы около 100 000 долларов за фунт полезного груза. А полет к Марсу обошелся бы в 1 млн долларов за фунт (приблизительно на вес бриллиантов).

Тогда, в 1960-х, вопрос цены практически не рассматривался: все покрывало общее воодушевление и нарастание космической гонки с русскими. Зрелищные достижения храбрых астронавтов скрадывали цену космических полетов, тем более что обе стороны готовы были на многое, чтобы поддержать национальную честь. Но даже сверхдержавам не под силу нести такой груз в течение многих десятилетий.

Грустно это все! Прошло уже больше 300 лет с тех пор, как сэр Исаак Ньютон впервые записал законы движения, а мы по-прежнему находимся в плену простых вычислений. Чтобы закинуть объект на околоземную орбиту, его необходимо разогнать до скорости 7, 9 км/сек. Чтобы отправить объект в межпланетное путешествие и вывести за пределы действия поля тяготения Земли, надо придать ему скорость 11, 2 км/с (А чтобы достичь этой волшебной цифры - 11, 2 км/с, мы должны воспользоваться третьим законом динамики Ньютона: каждое действие порождает равное противодействие. Это означает, что ракета может ускоряться, выбрасывая в противоположном направлении раскаленные газы, примерно так же, как летает по комнате шарик, если надуть его и отпустить клапан.) Так что рассчитать стоимость космических путешествий по законам Ньютона совсем несложно. Не существует ни одного закона природы (ни физического, ни инженерного), который бы запрещал нам исследовать Солнечную систему; все дело в стоимости.

Но этого мало. Ракета должна нести на себе топливо, что существенно увеличивает ее нагрузку. Самолеты могут отчасти обойти эту проблему, захватывая кислород из атмосферы и направляя в двигатели. Но в космосе нет воздуха, и ракета должна нести с собой весь свой кислород и водород.

Помимо того, что данный факт делает космические путешествия весьма дорогим удовольствием, он является главной причиной того, что у нас нет ракетных ранцев и летающих автомобилей. Писатели-фантасты (но неученые) любят расписывать день, когда все мы наденем ракетные ранцы и полетим на работу - или отправимся на воскресный пикник на семейной летающей машине. Люди часто испытывают разочарование в футуристах, потому что их предсказания никогда не сбываются. (Именно поэтому вокруг так много статей и книг с циничными названиями вроде «Где мой ракетный ранец?».) Но чтобы понять причину, достаточно провести простое вычисление. Ракетные ранцы существуют; более того, нацисты даже пытались использовать их во время Второй мировой войны. Но перекись водорода, обычное в таких случаях топливо, быстро заканчивается, так что средний полет на ракетном ранце длится всего несколько минут. Точно так же летающие автомобили с вертолетными винтами сжигают жуткое количество топлива, что делает их слишком дорогими для обычного человека.

Конец лунной программы

Именно заоблачные цены на космические путешествия виной тому, что в настоящее время будущее пилотируемой космонавтики представляется настолько неопределенным. Джордж Буш, будучи президентом, в 2004 г. представил ясный, но довольно амбициозный проект космической программы. Во-первых, космический челнок Space Shuttle предполагалось отправить в отставку в 2010 г., а к 2015 г. заменить новой ракетной системой под названием Constellation («Созвездие») . Во-вторых, к 2020 г. предполагалось вернуться на Луну и со временем основать на спутнике нашей планеты постоянную обитаемую базу. В-третьих, все это должно было проложить дорогу к пилотируемому полету на Марс.

Однако даже за время после выдвижения плана Буша экономика космонавтики существенно изменилась, в основном из-за того, что Великая рецессия опустошила кошелек будущих космических путешествий. В докладе Комиссии Огастина, представленном в 2009 г. президенту Бараку Обаме, говорится, что при доступном уровне финансирования первоначальная программа невыполнима. В 2010 г. президент Обама осуществил соответствующие практические шаги, закрыв одновременно и программу Space Shuttle, и разработку замены для космических челноков, которая должна была подготовить почву для возвращения на Луну. В ближайшее время NASA, не имея собственных ракет для отправки наших астронавтов в космос, вынужденно будет полагаться на русских. С другой стороны, такая ситуация стимулирует усилия частных компаний по созданию ракет, необходимых для продолжения пилотируемой космической программы. NASA, отказавшись от своего славного прошлого, уже никогда не будет строить ракеты для пилотируемой программы . Сторонники плана Обамы говорят, что он означает начало новой эры освоения космоса, где верх возьмет частная инициатива. Критики говорят, что реализация этого плана превратит NASA в «агентство без цели».

Посадка на астероид

В докладе Комиссии Огастина предлагался так называемый гибкий путь, включающий несколько достаточно скромных целей, не требующих безумного расхода ракетного топлива: к примеру, это путешествие к недалекому астероиду, которому случится пролететь мимо Земли, или путешествие к лунам Марса. В докладе указывалось, что астероид-цель может пока просто отсутствовать на наших картах: быть может, это неизвестное блуждающее тело, которое предстоит открыть в ближайшем будущем.

Проблема, указывалось в докладе Комиссии, состоит в том, что ракетное топливо для посадки на Луну, и особенно на Марс, а также на взлет и возвращение окажется чрезмерно дорогим. Но поскольку гравитационное поле на астероиде и спутниках Марса очень слабое, топлива потребуется во много раз меньше. В докладе Огастина упоминалась также возможность посещения точек Лагранжа, т. е. таких мест в открытом космосе, где гравитационное притяжение Земли и Луны взаимно компенсируются. (Вполне возможно, что эти точки служат космической свалкой, где скапливается с древнейших времен весь мусор, собранный Солнечной системой и попавший в окрестности Земли; астронавты могли бы найти там интересные камни, датируемые временем формирования системы Земля-Луна.)

Действительно, посадка на астероид - задача недорогая, поскольку астероиды обладают чрезвычайно слабым гравитационным полем. (В этом также заключается причина того, что астероиды, как правило, не округлы, а отличаются неправильной формой. Все крупные объекты во Вселенной - звезды, планеты и спутники - круглы, потому что сила тяготения равномерно стягивает их к центру. Любая неправильность формы планеты постепенно сглаживается. Но сила тяжести на астероиде настолько слаба, что не может сжать астероид в шар.)

Одна из возможных целей такого полета - астероид Апофис, который в 2029 г. должен пройти угрожающе близко к Земле. Эта каменная глыба около 300 м в поперечнике, размером с большое футбольное поле, пройдет так близко к планете, что оставит снаружи некоторые из наших искусственных спутников. От взаимодействия с нашей планетой орбита астероида изменится, и если не повезет, в 2036 г. он может вновь вернуться к Земле; существует даже крошечный шанс (1 из 100 000), что он по возвращении попадет в Землю. Если бы такое действительно произошло, мощность удара равнялась бы 100 000 хиросимских бомб; при этом огненные смерчи, ударные волны и раскаленные обломки могли бы полностью опустошить территорию размером с Францию. (Для сравнения: гораздо менее крупный объект, размером, вероятно, с многоквартирный дом, упал в районе сибирской реки Подкаменная Тунгуска в 1908 г. и, взорвавшись с силой одной тысячи хиросимских бомб, повалил 2500 км 2 леса. Ударная волна от этого взрыва чувствовалась на расстоянии нескольких тысяч километров. Кроме того, падение породило необычное свечение неба над Азией и Европой, так что в Лондоне ночью на улице можно было читать газету.)

Визит к Апофису не окажется слишком тяжким грузом для бюджета NASA, поскольку астероид так и так должен пролететь совсем рядом , но посадка на него может оказаться проблемой. Из-за слабого гравитационного поля астероида корабль должен будет не сесть на него в традиционном смысле, а скорее пристыковаться. Кроме того, он вращается неравномерно, так что перед посадкой необходимо будет произвести точные измерения всех параметров. Вообще, интересно было бы посмотреть, насколько твердым является астероид. Некоторые ученые полагают, что он может оказаться просто кучей камней, которые удерживает вместе слабое поле тяготения; другие считают его твердым. В один прекрасный день знания о плотности астероидов могут оказаться жизненно важными для человечества; не исключено, что когда-нибудь нам придется дробить астероид на куски при помощи ядерного оружия. Если летящая в космическом пространстве каменная глыба, вместо того чтобы рассыпаться в порошок, расколется на несколько крупных кусков, их падение на Землю может оказаться даже опаснее, чем падение астероида целиком. Может быть, лучше будет подтолкнуть астероид слегка изменить его орбиту раньше, чем он сможет подлететь близко к Земле.

Приземление на спутник Марса

Хотя Комиссия Огастина не рекомендовала к реализации проект, связанный с пилотируемым полетом на Марс, у нас остается другая очень интересная возможность - отправить астронавтов на спутники Марса, Фобос и Деймос. Эти спутники намного меньше земной Луны и поэтому так же, как и астероиды, обладают очень слабым гравитационным полем. Помимо относительной дешевизны, у визита на спутник Марса имеется еще несколько преимуществ:


1. Во-первых, эти спутники можно было бы использовать как временные космические станции. С них можно без особых затрат анализировать планету, не опускаясь на ее поверхность.

2. Во-вторых, когда-нибудь они могут пригодиться как промежуточная ступень для экспедиции на Марс. От Фобоса до центра Красной планеты меньше 10 000 км, так что оттуда можно всего за несколько часов слетать вниз.

3. Вероятно, в этих спутниках имеются пещеры, которые можно было бы использовать для организации постоянной обитаемой базы и для защиты ее от метеоритов и космического излучения. На Фобосе, в частности, имеется громадный кратер Стикни; вероятно, это след удара громадного метеорита, едва не расколовшего спутник. Однако постепенно сила тяжести вновь собрала обломки воедино и восстановила спутник. Быть может, после этого давнего столкновения на Фобосе осталось множество пещер и трещин.

Возвращение на Луну

В докладе Огастина говорится и о новой экспедиции на Луну, но только в том случае, если финансирование космических программ будет увеличено и если на десять следующих лет на эту программу будет выделено по крайней мере 30 млрд долларов дополнительно. Поскольку это весьма маловероятно, лунную программу, по существу, можно считать закрытой, по крайней мере на ближайшие годы.

Отмененная лунная программа, носившая название Constellation, включала несколько основных компонент. Во-первых, это ракета-носитель «Арес V», первый сверхтяжелый носитель США после отставки «Сатурна» в начале 1970-х гг. Во-вторых, тяжелая ракета «Арес I» и корабль «Орион», способный нести шестерых астронавтов к околоземной космической станции или четверых - к Луне. И, наконец, посадочный модуль «Альтаир», который, собственно, и должен был опускаться на поверхность Луны.

У конструкционной схемы шаттла, где корабль крепился на боку, было несколько существенных недостатков, в том числе и тенденция носителя терять в процессе полета куски теплоизолирующей пены. Для корабля «Колумбия» это обернулось катастрофой: он сгорел при возвращении на землю, унеся с собой семерых храбрых астронавтов, - и все потому, что во время старта кусок пеноизоляции, оторвавшийся от внешнего топливного бака, угодил в кромку крыла и пробил в ней дыру. При входе в атмосферу горячие газы ворвались в корпус «Колумбии», убили всех внутри и вызвали разрушение корабля . В проекте Constellation, где обитаемый модуль предполагалось разместить непосредственно на верхушке ракеты, такой проблемы бы не возникло.

Пресса окрестила проект Constellation «программой Apollo на стероидах» - очень уж он напоминал лунную программу 1970-х гг. Длина ракеты «Арес I» должна была составить почти 100 м против 112, 5 м у «Сатурна V». Предполагалось, что эта ракета будет выводить в космос пилотируемый корабль «Орион», заменив таким образом устаревшие шаттлы. Для запуска модуля «Альтаир» и запаса топлива для полета к Луне NASA предполагало использовать ракету «Арес V» высотой 118 м, способную вывести на околоземную орбиту 188 т груза. Ракета «Арес V» должна была стать основой любой программы полета на Луну или Марс. (Хотя разработка «Ареса» прекращена, хорошо было бы сохранить из программы хоть что-нибудь для дальнейшего использования; разговоры об этом идут.)

Постоянная лунная база

Закрыв программу Constellation, президент Обама оставил открытыми несколько вариантов. Корабль «Орион», который должен был вновь доставить американских астронавтов к Луне и обратно, стали считать спасательным средством для Международной космической станции . Возможно, в будущем, когда экономика восстановится после кризиса, какая-нибудь другая администрация захочет вновь вернуться к лунной программе, в том числе и к проекту создания лунной базы.

Создание постоянной обитаемой базы на Луне неизбежно встретит множество препятствий. Первое из них - микрометеориты. Поскольку воздуха на Луне нет, камни с неба падают на ее поверхность беспрепятственно. В этом легко убедиться, просто взглянув на поверхность нашего спутника, сплошь испещренную следами давних столкновений с метеоритами; некоторым из них миллиарды лет.

Много лет назад, когда я учился в Университете Калифорнии в Беркли, мне довелось взглянуть на эту опасность собственными глазами. Привезенный астронавтами в начале 1970-х гг. лунный грунт произвел в научном мире настоящую сенсацию. Меня пригласили в лабораторию, где занимались анализом лунного грунта под микроскопом. Сначала я увидел камень - как мне показалось, совершенно обыкновенный камень (лунные породы очень напоминают земные), но стоило взглянуть в микроскоп… Я был потрясен! Весь камень был покрыт крошечными метеоритными кратерами, внутри которых просматривались еще более мелкие кратеры. Никогда прежде я не видел ничего подобного. Я понял, что в безатмосферном мире даже мельчайшая пылинка, ударив со скоростью больше 60 000 км/ч, легко способна убить - а если не убить, то продырявить скафандр. (Ученые представляют себе громадный ущерб, наносимый микрометеоритами, потому что они могут имитировать столкновения с ними. В лабораториях специально для изучения характера таких столкновений имеются громадные пушки, способные выстреливать металлическими шариками с громадными скоростями.)

Одно из возможных решений - построить лунную базу под поверхностью. Известно, что в древности Луна была вулканически активна, и астронавтам, возможно, удастся найти лавовую трубку, уходящую глубоко под землю. (Лавовые трубки - следы древних лавовых потоков, выгрызавших в глубине пещероподобные структуры и туннели.) В 2009 г. астрономы действительно обнаружили на Луне лавовую трубку размером с небоскреб, которая могла бы послужить основой для постоянной лунной базы.

Такая естественная пещера могла бы обеспечить астронавтам дешевую защиту от космических лучей и солнечных вспышек. Даже во время перелета с одного конца континента на другой (к примеру, из Нью-Йорка в Лос-Анджелес) мы подвергаемся действию радиации с уровнем примерно один миллибар в час (что эквивалентно рентгеновскому снимку у стоматолога). На Луне радиация может оказаться настолько сильной, что жилые помещения базы придется размещать глубоко под поверхностью. В условиях, где нет атмосферы, смертельный дождь из солнечных вспышек и космических лучей подвергнет астронавтов прямому риску преждевременного старения и даже рака.

Невесомость - тоже проблема, особенно при длительных сроках. В тренировочном центре NASA в Кливленде, штат Огайо, над астронавтами проводят различные эксперименты. Однажды я видел, как подвешенный в горизонтальном положении при помощи специальной сбруи испытуемый бегал по установленной вертикально бегущей дорожке. Ученые пытались определить выносливость субъекта в условиях невесомости.

Поговорив с врачами из NASA, я понял, что невесомость гораздо менее безобидна, чем кажется на первый взгляд. Один врач объяснил мне, что за несколько десятилетий длительные полеты американских астронавтов и русских космонавтов в условиях невесомости ясно показали: в невесомости в теле человека происходят существенные изменения, деградируют мышечные ткани, кости и сердечно-сосудистая система. Наше тело - результат миллионов лет развития в гравитационном поле Земли. В условиях продолжительного нахождения в более слабом гравитационном поле в биологических процессах происходит сбой.

Русские космонавты после примерно года в невесомости возвращаются на землю настолько слабыми, что едва могут ползти . В космосе даже при ежедневных тренировках мышцы атрофируются, кости теряют кальций, а сердечно-сосудистая система слабеет. После полета некоторым требуется на восстановление несколько месяцев, а некоторые изменения могут оказаться и необратимыми. Путешествие к Марсу может занять два года, и астронавты прилетят на место настолько ослабленными, что не смогут работать. (Одно из решений этой проблемы - закрутить межпланетный корабль, создав в нем искусственную силу тяжести. Механизм здесь тот же, что при вращении ведерка на веревке, когда вода не выливается из него даже в положении вверх дном. Но это очень дорого, потому что для поддержания вращения потребуется тяжелая и громоздкая техника , а каждый фунт дополнительного веса означает увеличение стоимости проекта на 10 000 долларов.)

Вода на Луне

Одно из недавних открытий может серьезно изменить условия лунной игры: на Луне обнаружен древний лед, оставшийся, вероятно, от давних столкновений с кометами. В 2009 г. лунный зонд NASA под названием LCROSS и его разгонный блок «Центавр» врезались в Луну в районе ее южного полюса. Скорость столкновения составила почти 2500 м/с; в результате вещество с поверхности было выброшено на высоту более километра и возник кратер около 20 м в поперечнике. Телезрители, вероятно, были немного разочарованы тем, что при столкновении не было обещанного красивого взрыва, но ученые остались довольны: столкновение получилось весьма информативным. Так, в выброшенном с поверхности веществе было обнаружено около 100 литров воды. А в 2010 г. прозвучало новое шокирующее заявление: в лунном материале вода составляет более 5 % по массе, так что на Луне, пожалуй, влаги больше, чем в некоторых районах Сахары.

Это открытие может иметь громадное значение: вполне возможно, что будущие астронавты смогут воспользоваться подлунными залежами льда для производства ракетного топлива (путем извлечения из воды водорода), для дыхания (путем получения кислорода), для защиты (поскольку вода поглощает радиацию) и для питья (естественно, в очищенном виде). Так что это открытие поможет сократить в несколько раз стоимость любой лунной программы.

Полученные результаты могут означать также, что при строительстве и в дальнейшем при снабжении базы астронавты смогут пользоваться местными ресурсами - водой и всевозможными минералами.

Середина века

(2030–2070 гг.)

Полет на Марс

В 2010 г. президент Обама, посетив Флориду, не только объявил о закрытии лунной программы, но и поддержал вместо этого полет на Марс и финансирование неопределенного пока тяжелого носителя, который сможет когда-нибудь доставить астронавтов в дальний космос, за пределы лунной орбиты. Он намекнул, что надеется дождаться дня - возможно, где-нибудь в середине 2030-х, - когда американские астронавты ступят на поверхность Марса. Некоторые астронавты, как Базз Олдрин, горячо поддержали план Обамы, причем именно потому, что Луну предлагалось пропустить. Олдрин как-то сказал мне, что, раз на Луне американцы уже были, теперь настоящим достижением будет только полет на Марс.

Из всех планет Солнечной системы только Марс кажется достаточно похожим на Землю, там могла зародиться какая-то форма жизни. (Меркурий, обжигаемый Солнцем, вероятно, слишком враждебен, чтобы на нем могла существовать жизнь, какой мы ее знаем. Газовые гиганты - Юпитер, Сатурн, Уран и Нептун - слишком холодны, чтобы поддерживать жизнь. Венера - во многом двойник Земли, но разгулявшийся парниковый эффект сделал условия там просто адскими: температура достигает +500 °C, состоящая в основном из углекислого газа атмосфера в 100 раз плотнее земной, а с неба дождем льет серная кислота. Попытавшись прогуляться по венерианской поверхности, вы задохнетесь и будете раздавлены насмерть, а ваши останки прожарятся и растворятся в серной кислоте.)

Марс, с другой стороны, когда-то был довольно влажной планетой. Там, как на Земле, были океаны и реки, давно исчезнувшие. Сегодня это промерзшая безжизненная пустыня. Возможно, однако, что когда-то - миллиарды лет назад - на Марсе процветала микрожизнь; не исключено даже, что и сейчас где-нибудь в горячих источниках живут бактерии.

После того как США твердо решат осуществить пилотируемую экспедицию на Марс, на ее реализацию уйдет еще 20–30 лет. Но нельзя не отметить, что и добраться до Марса человеку будет гораздо труднее, чем до Луны. Марс по сравнению с Луной - это качественный скачок сложности. До Луны можно долететь за три дня - до Марса придется добираться от полугода до года.

В июле 2009 г. ученые NASA прикинули, как может выглядеть реальная марсианская экспедиция. Около шести месяцев астронавты будут лететь к Марсу, затем проведут 18 месяцев на Красной планете, затем еще шесть месяцев уйдет на возвращение.

Всего к Марсу придется отправить около 700 т оборудования - это больше чем Международная космическая станция ценой 100 млрд долларов . Чтобы сэкономить на пище и воде, во время путешествия и работы на Марсе астронавтам придется очищать собственные продукты жизнедеятельности и использовать их для удобрения растений. На Марсе нет ни кислорода, ни почвы, ни воды, ни животных, ни растений, поэтому все придется везти с Земли. Местными ресурсами воспользоваться не удастся. Атмосфера Марса почти целиком состоит из углекислого газа, а атмосферное давление составляет всего 1 % земного. Любая прореха в скафандре будет означать быстрое падение давления и смерть.

Экспедиция будет настолько сложной, что ее придется разбить на несколько этапов. Поскольку везти топливо на обратный путь с Земли было бы слишком дорого, не исключено, что на Марс придется отправить отдельную ракету с топливом для дозаправки межпланетного аппарата. (Или, если из марсианского льда можно извлечь достаточно кислорода и водорода, можно будет использовать в качестве ракетного топлива именно их.)

Добравшись до Марса, астронавтам, вероятно, придется несколько недель адаптироваться к жизни на другой планете. Цикл дня и ночи там примерно такой же, как на Земле (марсианские сутки чуть дольше и составляют 24, 6 часов), а вот год на Марсе вдвое длиннее земного. Температура почти никогда не поднимается выше точки замерзания. Там бушуют жестокие пылевые бури. Пески на Марсе мелкие, как тальк, а пылевые бури нередко охватывают всю планету.

Терраформировать Марс?

Предположим, что к середине века астронавты побывают на Марсе и организуют там примитивную базу. Но этого мало. Вообще говоря, человечество наверняка будет всерьез рассматривать проект терраформирования Марса - превращения его в более приятную для жизни планету. Работы по этому проекту начнутся в лучшем случае в самом конце XXI века, скорее даже в начале следующего.

Уже сейчас ученые успели рассмотреть несколько способов сделать Марс более гостеприимным местом. Вероятно, простейший из них - добавить в атмосферу Красной планеты метан или другой парниковый газ. Метан - более мощный парниковый газ, чем двуокись углерода, так что метановая атмосфера будет удерживать солнечный свет и постепенно нагревать поверхность планеты. Температура поднимется выше точки замерзания. Кроме метана, в качестве вариантов рассматриваются и другие парниковые газы, такие как аммиак и фреон.

Как только температура пойдет вверх, начнет - впервые за миллиарды лет - таять вечная мерзлота, благодаря чему речные русла вновь наполнятся водой. Со временем, когда атмосфера станет более плотной, на Марсе могут вновь образоваться озера и даже океаны. В результате высвободится еще больше углекислого газа - возникнет положительная обратная связь.

В 2009 г. было обнаружено, что с поверхности Марса естественным образом выделяется метан. Источник этого газа по-прежнему остается загадкой. На Земле метан возникает в основном при гниении органических материалов, но на Марсе он может быть побочным продуктом каких-то геологических процессов. Если ученым удастся установить источник этого газа, то, может быть, удастся и увеличить его выход, а значит, изменить атмосферу планеты.

Еще одна возможность - направить в атмосферу Марса комету. Если удастся перехватить комету достаточно далеко от Солнца, даже небольшого воздействия - толчка специальным ракетным двигателем, столкновения под нужным углом с космическим аппаратом или даже просто гравитационного притяжения этого аппарата - может оказаться достаточно, чтобы нужным образом изменить орбиту космического скитальца. Кометы состоят в основном из воды, и в Солнечной системе их немало. (К примеру, ядро кометы Галлея по форме напоминает арахисовый орешек около 30 км в поперечнике и состоит в основном из льда и камня.) По мере приближения к Марсу комета начнет испытывать трение об атмосферу и потихоньку разрушаться, высвобождая воду в виде пара в атмосферу планеты.

Если подходящей кометы не найдется, можно будет задействовать вместо нее одну из ледяных лун Юпитера или, скажем, содержащий лед астероид, такой как Церера (ученые считают, что она на 20 % состоит из воды). Конечно, луну или астероид труднее будет направить в нужном нам направлении, поскольку, как правило, такие небесные тела находятся на стабильных орбитах. А дальше два варианта: можно будет оставить приведенную комету, луну или астероид на орбите Марса и позволить медленно разрушаться, высвобождая водяной пар в атмосферу, или обрушить это небесное тело на одну из полярных шапок Марса. Полярные области Красной планеты представляют собой замороженный углекислый газ, исчезающий в летние месяцы, и лед, составляющий основу и никогда не тающий. Если комета, луна или астероид упадут на ледяную шапку, высвободится громадное количество энергии и сухой лед испарится. Парниковый газ попадет в атмосферу и ускорит процесс глобального потепления на Марсе. В этом варианте также может возникнуть положительная обратная связь. Чем больше углекислого газа высвободится из приполярных областей планеты, тем выше поднимется температура и, следовательно, высвободится еще больше углекислого газа.

Еще одно предложение - взорвать на полярных ледяных шапках несколько ядерных бомб. Недостаток такого метода очевиден: не исключено, что высвобожденная вода окажется радиоактивной. Или можно попытаться построить там термоядерный реактор, который будет плавить лед приполярных областей.

Основным топливом для термоядерного реактора служит вода, а замороженной воды на Марсе достаточно.

Когда температура поднимется выше точки замерзания, на поверхности образуются мелкие водоемы, которые можно будет заселить некоторыми формами водорослей, которые на Земле прекрасно себя чувствуют в Антарктике. Атмосфера Марса, на 95 % состоящая из углекислого газа, им, вероятно, понравится. Можно также генетически модифицировать водоросли, чтобы обеспечить максимально быстрый их рост. Водоемы с водорослями ускорят терраформирование в нескольких отношениях. Во-первых, водоросли будут превращать углекислый газ в кислород. Во-вторых, они изменят цвет поверхности Марса и, соответственно, его отражательную способность. Более темная поверхность станет поглощать больше солнечного излучения. В-третьих, поскольку расти водоросли будут сами по себе, без всякой посторонней помощи, такой способ изменить обстановку на планете будет относительно дешевым. В-четвертых, водоросли можно использовать в пищу. Со временем такие озера с водорослями создадут почвенный слой и питательные вещества; этим смогут воспользоваться растения, которые еще больше ускорят выработку кислорода.

Ученые рассматривают также возможность окружить Марс спутниками, которые будут собирать солнечный свет и направлять его на поверхность планеты. Не исключено, что такие спутники даже сами по себе смогут поднять температуру на поверхности Марса до точки замерзания и выше. Как только это произойдет и начнется таяние вечной мерзлоты, дальше планета будет разогреваться сама, естественным образом.

Экономическая выгода?

Не стоит питать иллюзий и думать, что колонизация Луны и Марса сразу же принесет человечеству несчетные экономические блага. Когда Колумб в 1492 г. отплыл в Новый Свет, тем самым он открыл доступ к невиданным в истории сокровищам. Очень скоро конкистадоры начали присылать из вновь открытых мест на родину золото, награбленное у местных индейцев, в громадных количествах, а поселенцы - ценное сырье и сельскохозяйственные продукты. Затраты на экспедиции в Новый Свет более чем окупались несметными сокровищами, которые можно было там обрести.

Но колонии на Луне и Марсе - дело иное. Там нет воздуха, жидкой воды или плодородной почвы, так что все необходимое придется доставлять с Земли ракетами, а это невероятно дорого. Более того, в колонизации Луны, по крайней мере в ближайшей перспективе, нет особого военного смысла. Чтобы добраться с Земли на Луну или обратно, требуется в среднем трое суток, а ядерная война может начаться и закончиться всего часа за полтора - с момента запуска первых межконтинентальных баллистических ракет и до последних взрывов. Космическая кавалерия с Луны просто не успеет принять сколько-нибудь реальное участие в событиях на Земле. Вследствие этого Пентагон не финансирует никаких крупных программ по милитаризации Луны.

Это означает, что любые крупномасштабные операции по освоению иных миров будут направлены на благо не Земли, а новых космических колоний. Колонистам придется добывать металлы и другие полезные ископаемые для собственных нужд, поскольку возить их с Земли (да и на Землю тоже) слишком дорого. Добыча полезных ископаемых в поясе астероидов станет экономически выгодной только при наличии самодостаточных колоний, которые смогут сами использовать добытые материалы, а это произойдет в лучшем случае в самом конце этого столетия или, что более вероятно, позже.

Космический туризм

Но когда обычный гражданский человек сможет полететь в космос? Некоторые ученые, такие как покойный Джерард О’Нейл(Gerard O’Neill) из Принстонского университета, мечтали о космической колонии в виде гигантского колеса, где разместятся жилые отсеки, фабрики по очищению воды, отсеки для регенерации воздуха и т. п. Смысл подобных станций - в решении проблемы перенаселения. Однако в XXI веке мысль о том, что космические колонии могут решить или хотя бы облегчить эту проблему, по-прежнему останется фантазией. Для большинства представителей человечества Земля будет единственным домом еще по крайней мере на 100–200 лет.

Однако существует все же способ, при помощи которого обычный человек может в самом деле полететь в космос: в качестве туриста. Нашлись предприниматели, которые критикуют NASA за страшную неэффективность и бюрократию и готовы сами вложить деньги в космическую технику, считая, что рыночные механизмы помогут частным инвесторам снизить стоимость космических путешествий. Берт Рутан (Burt Rutan) и его инвесторы уже выиграли 4 октября 2004 г. приз Ansari X Prize в 10 млн долларов, запустив свой SpaceShipOne дважды в течение двух недель на высоту чуть больше 100 км над поверхностью земли. SpaceShipOne - первый ракетный корабль, успешно совершивший путешествие в космос на частные деньги. Его разработка обошлась примерно в 25 млн долларов. Поручителем при получении кредитов выступил миллиардер из Microsoft Пол Аллен (Paul Allen).

В настоящее время почти готов космический корабль SpaceShipTwo. Рутан считает, что очень скоро можно будет начать испытания, после завершения которых коммерческий космический корабль станет реальностью. Миллиардер Ричард Брэнсон из Virgin Atlantic создал компанию Virgin Galactic с космодромом в Нью-Мексико и длинным списком людей, готовых потратить 200 000 долларов на реализацию давней мечты о полете в космос. Virgin Galactic, которая станет, вероятно, первой крупной компанией, предлагающей коммерческие полеты в космос, уже заказала пять кораблей SpaceShipTwo. Если все пойдет, как планируется, стоимость космического путешествия упадет раз в десять.

На SpaceShipTwo использовано несколько способов сэкономить. Вместо того чтобы использовать громадные ракеты-носители, призванные закидывать полезный груз в космос непосредственно с Земли, Рутан помещает свой космический корабль на самолет и разгоняет при помощи обычных атмосферных реактивных двигателей. При этом в пределах атмосферы используется кислород. Затем на высоте около 16 км над землей корабль отделяется от самолета и включает собственные реактивные двигатели. Выйти на околоземную орбиту корабль не может, но имеющегося на нем запаса топлива хватает, чтобы подняться на 100 с лишним километров над поверхностью земли - туда, где почти нет атмосферы и где пассажиры могут увидеть, как небо постепенно становится черным. Двигатели способны разогнать корабль до скорости, соответствующей М=3, т. е. до трехкратной скорости звука (около 3500 км/ч). Этого, конечно, недостаточно, чтобы вывести его на орбиту (здесь, как уже говорилось, нужна скорость не менее 28 500 км/ч, что соответствует 7, 9 км/с), но для доставки пассажиров на кромку земной атмосферы и открытого космоса хватит. Вполне возможно, что в самом ближайшем будущем туристический полет в космос будет стоить не больше, чем сафари по Африке.

(Однако чтобы облететь вокруг Земли, вам придется заплатить гораздо больше и совершить полет на борт космической станции. Я однажды спросил миллиардера из Microsoft Чарльза Симоньи, в какую сумму обошелся ему билет на МКС. В сообщениях прессы мелькала цифра 20 млн долларов. Он ответил, что не хотел бы называть точную сумму, но что газетные отчеты ошибаются не сильно. Ему так понравилось в космосе, что немного позже он слетал на станцию еще раз. Так что космический туризм, даже в недалеком будущем, останется привилегией людей весьма состоятельных.)

В сентябре 2010 г. космический туризм получил дополнительный стимул в лице корпорации Boeing, которая объявила о своем выходе на этот рынок и запланировала первые полеты для космических туристов уже на 2015 г. Это вполне соответствовало бы планам президента Обамы передать пилотируемую космонавтику в частные руки. План Boeing предусматривает запуски к Международной космической станции с космодрома на мысе Канаверал капсулы с четырьмя членами экипажа и тремя свободными местами для космических туристов. Однако Boeing достаточно прямо высказался о финансировании частных космических проектов: большую часть денег придется заплатить налогоплательщикам. «Это ненадежный рынок, - говорит Джон Элбон (John Elbon), руководитель программы коммерческих космических запусков. - Если бы нам при всех имеющихся факторах риска пришлось рассчитывать только на средства Boeing, мы не сумели бы успешно завершить дело».

Темные лошадки

Чрезвычайно высокая стоимость космических путешествий сдерживает и коммерческий, и научный прогресс, так что человечество в настоящий момент нуждается в совершенно новой, революционной технологии. К середине века ученые и инженеры должны довести до ума новые ракеты-носители, чтобы снизить стоимость запусков.

Физик Фримен Дайсон выделил среди множества предложений несколько технологий, которые в данный момент проходят стадию эксперимента, но когда-нибудь, возможно, сделают космос доступным даже для обычного человека. Ни одно из этих предложений не гарантирует успеха, но в случае удачи стоимость доставки грузов в космос резко упадет. Первое из этих предложений - лазерные системы реактивной тяги: мощный лазерный луч от внешнего источника (к примеру, с Земли) направляется на основание ракеты, где вызывает мини-взрыв, ударная волна которого и приводит ракету в движение. Стабильный поток лазерных импульсов испаряет воду, и получившийся пар толкает ракету в космос. Главное преимущество лазерного реактивного двигателя состоит в том, что энергия для него поступает из внешнего источника - со стационарного лазера. Лазерная ракета по существу не несет топлива. (В противовес этому химические ракеты значительную часть энергии тратят на подъем и транспортировку топлива для своих же двигателей.)

Технология лазерного реактивного движения уже была продемонстрирована в лаборатории, где в 1997 г. прошла успешные испытания модели. Лейк Мирабо (Leik Mirabo) из Ренсселеровского политехнического института в Нью-Йорке создал рабочий прототип подобной ракеты и назвал его демонстратором технологии светокорабля. Одна из первых его летающих моделей весила 50 граммов и представляла собой «тарелку» диаметром около 15 см. Лазер мощностью 10 кВт генерировал серию лазерных взрывов в основании ракеты; воздушные ударные волны разгоняли ее с ускорением 2 g (что вдвое превосходит ускорение свободного падения на Земле и составляет примерно 19, 6 м/с 2) и звуками, напоминающими автоматные очереди. Светоракеты Мирабо поднимались в воздух более чем на 30 м (что примерно соответствует первым жидкостным ракетам Роберта Годдарда в 1930-х гг.).

Дайсон мечтает о том дне, когда лазерные системы реактивной тяги смогут выводить на орбиту Земли тяжелые грузы по цене всего пять долларов за фунт, что, безусловно, стало бы настоящей революцией в космической отрасли. Он представляет себе гигантский 1000-мегаваттный (что соответствует мощности стандартного атомного энергоблока) лазер, способный вытолкнуть на орбиту двухтонную ракету, состоящую из полезного груза и бака с водой в основании. Вода медленно просачивается сквозь крохотные поры в нижней стенке бака. И полезный груз, и бак весят по тонне. Когда лазерный луч падает на днище ракеты, вода мгновенно испаряется, порождая серию ударных волн, которые толкают ракету в космос. Ракета достигает ускорения 3 g и через шесть минут выходит на околоземную орбиту.

Поскольку сама ракета топлива не несет, отсутствует и опасность катастрофического взрыва носителя. Для химических ракет даже сегодня, через 50 лет после Первого спутника, вероятность отказа составляет около 1 %. И отказы эти, как правило, смотрятся очень впечатляюще - кислород и водород взрываются гигантскими огненными шарами, а обломки дождем сыплются на стартовую площадку. Лазерная система, напротив, проста, безопасна и может использоваться не один раз с очень небольшими промежутками; нужны для ее работы только вода и лазер.

Более того, со временем эта система окупится. Если с ее помощью запускать по полмиллиона космических аппаратов в год, плата за запуск легко перекроет и операционные расходы, и стоимость разработки и строительства. Дайсон, однако, понимает, что до реализации этой мечты должно пройти еще не одно десятилетие. На фундаментальные исследования в области мощных лазеров потребуется гораздо больше денег, чем в состоянии выделить любой университет. Если финансирование разработки не возьмет на себя правительство или какая-нибудь крупная корпорация, лазерные системы реактивной тяги никогда не будут построены.

Здесь могла бы оказаться очень кстати премия фондах Prize. Я однажды беседовал с Питером Диамандисом, основавшим его в 1996 г., и убедился, что он прекрасно сознает ограниченность химических ракет. Даже со SpaceShipTwo, признался он мне, мы столкнулись с тем, что химические ракеты - это очень дорогой способ убежать от действия земного тяготения. Вследствие этого следующая премия X Prize достанется тому, кто сумеет создать ракету, движимую лучом энергии. (Но вместо лазерного луча здесь предполагается использовать другой, похожий на лазерный пучок электромагнитной энергии - микроволновой луч.)

Шумиха вокруг премии и сама многомиллионная награда, возможно, окажутся достаточными приманками для разжигания интереса к проблеме нехимических ракет, таких как микроволновая ракета, среди предпринимателей и изобретателей.

Существуют и другие экспериментальные ракетные конструкции, но их разработка сопряжена с иными рисками. Один из вариантов - газовая пушка, выстреливающая из громадного ствола некие снаряды, - что-то вроде снаряда в романе Жюля Верна «С Земли на Луну». Снаряд Верна, однако, не долетел бы до Луны, потому что порох не в состоянии разогнать его до скорости 11 км/с, необходимой для выхода из поля притяжения Земли. В газовой пушке вместо пороха снаряды с огромной скоростью будет выталкивать газ, сжатый под большим давлением в длинной трубке. Покойный Абрахам Герцберг (Abraham Hertzberg) из Университета Вашингтона в Сиэтле построил прототип такой пушки диаметром около 10 см и длиной около 10 м. Газ внутри пушки представляет собой смесь метана и воздуха, сжатую до 25 атмосфер. Газ поджигается, и снаряд разгоняется в стволе с ускорением 30 000 g, при котором большинство металлических предметов расплющиваются.

Герцберг доказал, что газовая пушка может работать. Но чтобы закинуть снаряд в космос, ствол ее должен быть гораздо длиннее, около 230 м; кроме того, вдоль траектории разгона в стволе пушки должны работать разные газы. Чтобы полезный груз набрал первую космическую скорость, в стволе необходимо организовать пять участков с разными рабочими газами.

Стоимость запуска из газовой пушки может оказаться даже ниже, чем при помощи лазерной системы. Однако запускать таким образом в космос пилотируемые аппараты слишком опасно: только твердый груз способен выдержать интенсивное ускорение в стволе.

Третья экспериментальная конструкция - «слингатрон», который, подобно праще, должен раскручивать груз, а затем выбрасывать его в воздух.

Прототип этого устройства был построен Дереком Тидманом (Derek Tidman); его настольная модель способна за несколько секунд раскрутить предмет и бросить его со скоростью до 100 м/с. Прототип слингатрона представляет собой трубку в виде бублика диаметром около метра. Сама трубка имеет диаметр около 2, 5 см и содержит небольшой стальной шарик. Шарик катается по кольцевой трубке, а небольшие моторчики подталкивают его и заставляют разгоняться.

Настоящий слингатрон, задачей которого будет забрасывать грузы на околоземную орбиту, должен быть значительно больше по размеру - диаметром около сотни километров; кроме того, он должен накачивать в шар энергию до тех пор, пока тот не разгонится до 11, 2 км/с. Шар будет вылетать из слингатрона с ускорением в 1000 g, что тоже очень много. Далеко не каждый груз сможет выдержать такое ускорение. Прежде чем будет построен настоящий слингатрон, предстоит решить множество технических проблем, самая важная из которых - минимизировать трение между шаром и трубкой.

На доработку каждого из трех названных проектов даже в самом лучшем случае уйдет не один десяток лет, и то только если финансирование возьмет на себя правительство или частный бизнес. В противном случае эти прототипы навсегда останутся на столах своих изобретателей.

Далекое будущее

(2070–2100 гг.)

Космический лифт

Не исключено, что к концу текущего века развитие нанотехнологий сделает возможным даже знаменитый космический лифт. Человек, подобно Джеку на бобовом стебле, сможет подняться по нему до облаков и выше. Мы будем входить в лифт, нажимать кнопку «вверх» и подниматься по волокну, представляющему собой углеродную нанотрубку длиной в тысячи километров. Понятно, что такая новинка могла бы перевернуть экономику космических путешествий и поставить все с ног на голову.

В 1895 г. русский физик Константин Циолковский, вдохновленный строительством Эйфелевой башни - самого высокого на тот момент сооружения в мире, задал себе простой вопрос: почему нельзя построить такую башню высотой до космоса? Если она будет достаточно высока, подсчитал он, она, согласно законам физики, никогда не упадет. Он назвал такую конструкцию «небесным дворцом».

Представьте себе шарик. Если вы начнете крутить его на веревочке, то центробежной силы будет вполне достаточно, чтобы удержать шарик от падения. Точно так же, если трос будет достаточно длинным, то центробежная сила удержит груз, закрепленный на его конце, от падения на землю. Вращения Земли будет достаточно, чтобы удержать трос в небе. Как только трос космического лифта протянется в небеса, любое транспортное средство, способное передвигаться по нему, сможет спокойно выехать в космос.

На бумаге такой фокус, похоже, работает. Но, к несчастью, если вы попробуете применить ньютоновы законы движения и рассчитать по ним натяжение троса, то окажется, что это натяжение превышает прочность стали: любой трос просто порвется, что делает космический лифт невозможным.

На протяжении многих лет и даже десятилетий идея космического лифта то забывалась, то снова обсуждалась, чтобы в очередной раз быть отвергнутой по той же причине. В 1957 г. русский ученый Юрий Арцутанов предложил свой вариант проекта, по которому строить лифт предполагалось не снизу вверх, а наоборот, сверху вниз. Предлагалось послать на орбиту космический корабль, который затем спустит оттуда трос; на земле его останется лишь закрепить. Фантасты тоже приложили руку к популяризации этого проекта. Артур Кларк вывел космический лифт в своем романе 1979 г. «Фонтаны рая», а Роберт Хайнлайн - в романе 1982 г. «Фрида».

Углеродные нанотрубки вновь возродили эту идею. Как мы уже видели, они обладают самой большой прочностью из всех известных материалов. Они прочнее стали, и потенциально по прочности нанотрубки могли бы противостоять нагрузкам, возникающим в конструкции космического лифта.

Проблема, однако, в том, чтобы создать трос из чистых углеродных нанотрубок длиной 80 000 км . Это невероятно сложная задача, ведь до сих пор ученым удалось получить в лаборатории лишь несколько сантиметров чистой углеродной нанотрубки. Можно, конечно, свить вместе миллиарды нановолокон, но эти волокна не будут цельными. Задача в том, чтобы создать длинную нанотрубку, в которой каждый атом углерода будет находиться строго на своем месте.

В 2009 г. ученые из Университета Райса объявили о важном открытии: полученные волокна не чистые, а композитные, но ими разработана достаточно гибкая технология, позволяющая создавать углеродные нанотрубки любой длины. Методом проб и ошибок исследователи обнаружили, что углеродные нанотрубки можно растворить в хлоросульфоновой кислоте, а затем выдавливать из носика, как из шприца. Таким методом можно изготовить волокно из углеродных нанотрубок любой длины, а толщина его составляет 50 микрон.

Одно из коммерческих применений волокна из углеродных нанотрубок - линии электропередач, ведь нанотрубки лучше меди проводят электричество, они легче и прочнее. Профессор инженерных дисциплин из Университета Райса Маттео Паскуали (Matteo Pasquali) говорит: «Для линий электропередач такого волокна требуются тонны, а способа сделать его пока нет. Нужно придумать всего одно чудо».

Хотя полученные волокна недостаточно чисты и не годятся для космического лифта, эти исследования позволяют надеяться, что когда-нибудь мы научимся выращивать чистые углеродные нанотрубки, достаточно прочные, чтобы поднять нас в небеса.

Но даже если предположить, что проблема производства длинных нанотрубок будет решена, перед учеными встанут другие практические проблемы. К примеру, трос космического лифта должен будет подняться гораздо выше орбит большинства спутников. Это значит, что орбита какого-нибудь спутника когда-нибудь непременно пересечется с трассой космического лифта и вызовет аварию. Поскольку низкие спутники летают со скоростью 7–8 км/с, столкновение может оказаться катастрофическим. Из этого следует, что лифт придется оснащать специальными ракетными двигателями, которые будут отодвигать трос лифта с пути пролетающих спутников и космических обломков.

Еще одна проблема - погода, т. е. ураганы, грозы и сильные ветра. Космический лифт необходимо закрепить на земле, может быть, на авианосце или нефтяной платформе в Тихом океане, но, чтобы не пострадать от разгула стихий, он должен быть гибким.

Кроме того, в кабине должна быть тревожная кнопка и спасательная капсула на случай обрыва троса. Если с тросом что-нибудь произойдет, кабинка лифта должна спланировать или опуститься на парашюте на землю, чтобы спасти пассажиров.

Чтобы ускорить начало исследований в области космических лифтов, NASA объявило несколько конкурсов. На Гонках космических лифтов под эгидой NASA разыгрываются призы на общую сумму 2 млн долларов. По правилам, чтобы выиграть конкурс лифтов, работающих за счет переданной по лучу энергии, следует построить устройство массой не более 50 кг, способное забраться по тросу на высоту 1 км со скоростью 2 м/с. Сложность в том, что это устройство не должно иметь топлива, батарей или электрического кабеля. Энергия для его движения должна передаваться с Земли по лучу.

Я своими глазами видел энтузиазм и энергию инженеров, которые работают над космическим лифтом и мечтают завоевать приз. Я даже летал в Сиэтл, чтобы встретиться с молодыми предприимчивыми инженерами группы под названием LaserMotive. Услышав «песню сирен» - призыв NASA, они взялись за разработку прототипов устройства, которое, вполне возможно, станет сердцем космического лифта.

Я вошел в большой ангар, арендованный молодыми людьми для испытаний. В одном конце ангара я увидел большой лазер, способный излучать мощный энергетический луч. В другом находился собственно космический лифт. Это был ящик около метра шириной с большим зеркалом. Зеркало отражало попавший на него лазерный луч на целую батарею солнечных элементов, превращавших его энергию в электричество. Электричество поступало на двигатель, и кабинка лифта медленно ползла вверх по короткому тросу. При таком устройстве кабинке с электрическим двигателем не нужно тащить за собой электрический кабель. Достаточно направить на нее лазерный луч с земли, и лифт сам собой поползет по тросу.

Лазер в ангаре был настолько мощным, что людям во время его работы приходилось защищать глаза специальными очками. После множества попыток молодым людям удалось наконец заставить свою машину ползти вверх. Один аспект проблемы космического лифта был решен, по крайней мере в теории.

Первоначально задание было таким сложным, что никто из участников не сумел его выполнить и завоевать обещанный приз. Однако в 2009 г. LaserMotive получила-таки приз. Состязания проходили на авиабазе Эдвардс в калифорнийской пустыне Мохаве. Вертолет с длинным тросом висел над пустыней, а устройства участников пытались по этому тросу подняться. Лифт команды LaserMotive сумел это сделать четырежды за два дня; лучшее показанное им время составило 228 секунд. Так что труды молодых инженеров, которые я наблюдал в том ангаре, принесли плоды.

Звездолеты

К концу этого столетия на Марсе и, возможно, где-нибудь в поясе астероидов, скорее всего, появятся научные станции, несмотря даже на нынешний кризис финансирования пилотируемой космонавтики. Следующей в очереди будет уже настоящая звезда. Сегодня межзвездный зонд был бы совершенно безнадежной затеей, но через сто лет ситуация может измениться.

Чтобы идея межзвездных путешествий стала реальностью, необходимо решить несколько фундаментальных задач. Первая из них - поиск нового принципа движения. Традиционной химической ракете на путь к ближайшей звезде потребовалось бы около 70 000 лет. К примеру, два «Вояджера», запущенные в 1977 г., поставили рекорд по удалению на максимальное расстояние от Земли. В настоящее время (май 2011 г.) первый из них удалился от Солнца на 17, 5 млрд км, но пройденное им расстояние - лишь крошечная доля пути до звезд.

Предложено несколько конструкций и принципов движения для межзвездных аппаратов. Это:


Солнечный парус;

Ядерная ракета;

Ракета с прямоточным термоядерным двигателем;

Нанокорабли.


Бывая на станции NASA Плам-Брук в Кливленде, штат Огайо, я встречался с одним из мечтателей и горячих сторонников идеи солнечного паруса. На этом полигоне построена самая большая в мире вакуумная камера для испытания спутников. Размеры этой камеры поражают воображение; это настоящая пещера около 30 м в поперечнике и 38 м в высоту, в которой запросто разместилось бы несколько многоэтажных жилых домов. Она также достаточно велика, чтобы испытывать в условиях космического вакуума спутники и части ракет. Масштаб проекта поражает. Я почувствовал, что мне оказана особая честь: я находился в том самом месте, где испытывались многие важнейшие американские спутники, межпланетные зонды и ракеты.

Итак, я встретился с одним из ведущих сторонников солнечного паруса, ученым из NASA Лесом Джонсоном (Les Johnson). Он рассказал мне, что с детства, читая фантастику, мечтал строить ракеты, способные долететь до звезд. Джонсон даже написал базовый курс по устройству солнечных парусов. Он считает, что этот принцип может быть реализован уже в ближайшие несколько десятилетий, но готов к тому, что реальный звездолет будет построен, скорее всего, через много лет после его смерти. Подобно каменщикам, строившим великие средневековые соборы, Джонсон понимает, что на создание аппарата для полета к звездам может потребоваться несколько человеческих жизней.

Принцип действия солнечного паруса основан на том факте, что свет хотя и не имеет массы покоя, но обладает импульсом, а значит, может оказывать давление. Давление, которое солнечный свет оказывает на все встреченные объекты, чрезвычайно мало, мы попросту не ощущаем его, но если солнечный парус будет достаточно велик и мы готовы будем ждать достаточно долго, то это давление сможет разогнать межзвездный корабль (в космосе интенсивность солнечного света в среднем в восемь раз выше, чем на Земле).

Джонсон сказал мне, что его цель - создать гигантский солнечный парус из очень тонкого, но эластичного и упругого пластика. Этот парус должен быть несколько километров в поперечнике, и строить его предполагается в открытом космосе. Будучи собранным, он будет медленно обращаться вокруг Солнца, набирая постепенно все большую скорость. За несколько лет разгона парус выйдет по спирали за пределы Солнечной системы и устремится к звездам. Вообще, солнечный парус, как рассказал мне Джонсон, способен разогнать межзвездный зонд до 0, 1 % скорости света; соответственно, до ближайшей звезды он при таких условиях доберется лет за 400.

Джонсон пытается придумать что-нибудь, что позволило бы придать солнечному парусу дополнительное ускорение и сократить время полета. Один из возможных путей - разместить на Луне батарею мощных лазеров. Лазерные лучи, попадая на парус, будут передавать ему дополнительную энергию и, соответственно, дополнительную скорость при полете к звездам.

Одна из проблем звездолета под солнечным парусом состоит в том, что им чрезвычайно трудно управлять, а остановить и направить в противоположную сторону практически невозможно, потому что солнечный свет распространяется только в одну сторону - от Солнца. Одно из решений этой проблемы - развернуть парус и использовать для замедления свет от звезды-цели. Еще одна возможность - совершить гравитационный маневр около этой далекой звезды и, использовав эффект пращи, разогнаться для обратного путешествия. Третий вариант - сесть на какую-нибудь луну той звездной системы, построить на ней батарею лазеров и пуститься в обратный путь, пользуясь светом звезды и лазерными лучами.

Джонсон мечтает о звездах, но понимает, что реальность на данный момент выглядит куда скромнее его мечтаний. В 1993 г. русские развернули на корабле, отстыкованном от станции «Мир», 25-рефлектор из лавсана, но целью эксперимента была всего лишь демонстрация системы развертывания. Вторая попытка закончилась неудачей. В 2004 г. японцы успешно запустили два прототипа солнечного паруса, но опять же, целью было испытание системы развертывания, а не движения. В 2005 г. была предпринята амбициозная попытка развернуть настоящий солнечный парус под названием Cosmos 1, организованная Планетарным обществом, общественной организацией Cosmos Studios и Российской академией наук. Парус был запущен с российской подводной лодки, но запуск ракеты «Волна» оказался неудачным, и до орбиты солнечный парус не добрался.

А в 2008 г., когда команда из NASA попыталась запустить солнечный парус NanoSail-D , та же история произошла с ракетой Falcon 1.

Наконец в мае 2010 г. Японское агентство аэрокосмических исследований успешно запустило IKAROS - первый космический аппарат, который должен использовать технологию солнечного паруса в межпланетном пространстве. Аппарат был выведен на траекторию полета к Венере, успешно развернул квадратный парус с диагональю 20 м и продемонстрировал возможность управлять его ориентацией и менять скорость полета. В дальнейшем японцы планируют запустить еще один межпланетный зонд с солнечным парусом к Юпитеру.

Ядерная ракета

Ученые рассматривают также возможность использования ядерной энергии для межзвездных перелетов. Еще в 1953 г. Комиссия по атомной энергии США начала серьезные разработки ракет с атомными реакторами, начало которым было положено проектом Rover. В 1950-е и 1960-е гг. эксперименты с ядерными ракетами заканчивались в основном неудачно. Ядерные двигатели вели себя нестабильно и вообще оказывались слишком сложными для тогдашних систем управления. Кроме того, несложно показать, что энергетический выход обычного атомного реактора деления совершенно недостаточен для межзвездного космического аппарата. Средний промышленный атомный реактор производит примерно 1000 МВт энергии, а этого недостаточно, чтобы добраться до звезд.

Однако еще в 1950-е гг. ученые предложили использовать для межзвездных аппаратов атомные и водородные бомбы, а не реакторы. В проекте «Орион», к примеру, предполагалось разгонять ракету взрывными волнами от атомных бомб. Звездолет должен был сбрасывать позади себя серию атомных бомб, взрывы которых порождали бы мощные вспышки рентгеновского излучения. Ударная волна от этих взрывов должна была разгонять звездолет.

В 1959 г. физики из General Atomics оценили, что продвинутая версия «Ориона» диаметром 400 м должна весить 8 млн т, а энергию ей должна обеспечивать 1000 водородных бомб.

Горячим сторонником проекта «Орион» был физик Фримен Дайсон. «Для меня „Орион“ означал доступность всей Солнечной системы для распространения жизни. Он мог изменить ход истории, - говорит Дайсон. Кроме того, это был бы удобный способ избавиться от атомных бомб. - За один полет мы избавились бы от 2000 бомб».

Концом проекта «Орион», однако, стал заключенный в 1963 г. Договор об ограничении ядерных испытаний, запретивший наземные взрывы. Без испытаний невозможно было довести конструкцию «Ориона» до ума и проект закрыли.

Прямоточный термоядерный двигатель

Еще один проект ядерной ракеты выдвинул в 1960 г. Роберт Буссард (Robert W. Bussard); он предложил снабдить ракету термоядерным двигателем, похожим на обычный авиационный реактивный двигатель. Вообще, прямоточный двигатель захватывает воздух по ходу полета и уже внутри смешивает его с топливом. Затем топливно-воздушная смесь поджигается, и происходит химический взрыв, который создает движущую силу. Буссард предложил применить тот же принцип к термоядерному двигателю. Вместо того чтобы забирать воздух из атмосферы, как делает авиационный двигатель, прямоточный термоядерный двигатель будет собирать в межзвездном пространстве имеющийся там водород. Собранный газ предполагается сжать и нагреть при помощи электрических и магнитных полей до начала термоядерной реакции синтеза гелия, при которой выделится громадное количество энергии. Возникнет взрыв, и ракета получит толчок. А поскольку запасы водорода в межзвездном пространстве неисчерпаемы, прямоточный ядерный двигатель сможет, предположительно, работать вечно.

Конструкция корабля с прямоточным термоядерным двигателем напоминает рожок для мороженого. Воронка захватывает газообразный водород, который затем поступает в двигатель, нагревается и вступает в реакцию синтеза с другими атомами водорода. Буссард рассчитал, что прямоточный ядерный двигатель весом около 1000 т способен поддерживать постоянное ускорение около 10 м/с 2 (т. е. примерно равное ускорению свободного падения на Земле); в этом случае уже через год звездолет разгонится примерно до 77 % скорости света. Поскольку прямоточный ядерный двигатель не ограничен запасами топлива, звездолет с таким двигателем теоретически мог бы выйти за пределы нашей Галактики и всего за 23 года по корабельным часам добраться до Туманности Андромеды, расположенной на расстоянии в 2 млн световых лет от нас. (Согласно теории относительности Эйнштейна время в ускоряющемся корабле замедляется, так что астронавты в звездолете постареют всего на 23 года, даже если на Земле за это время пройдут миллионы лет.)

Однако и здесь существуют серьезные проблемы. Во-первых, в межзвездной среде встречаются в основном отдельные протоны, так что термоядерный двигатель должен будет жечь чистый водород, хотя эта реакция дает не так уж много энергии. (Водородный синтез может идти разными путями. В настоящее время на Земле ученые предпочитают вариант влияния дейтерия и трития, при котором выделяется значительно больше энергии. Однако в межзвездной среде водород находится в виде отдельных протонов, поэтому в прямоточных ядерных двигателях можно использовать только протон-протонную реакцию синтеза, при которой энергии выделяется гораздо меньше, чем при дейтерий-тритиевой реакции.) Однако Буссард показал, что если модифицировать топливную смесь добавлением некоторого количества углерода, то углерод, работая как катализатор, позволит получить громадное количество энергии, вполне достаточное для звездного корабля.

Во-вторых, воронка впереди звездолета, чтобы собирать достаточно водорода, должна быть огромной - диаметром порядка 160 км, так что собирать ее придется в космосе.

Существует и еще одна нерешенная проблема. В 1985 г. инженеры Роберт Зубрин (Robert Zubrin) и Дейна Эндрюс (Dana Andrews) показали, что сопротивление среды не даст звездолету с прямоточным термоядерным двигателем разогнаться до околосветовых скоростей. Сопротивление это обусловлено движением корабля и воронки в поле атомов водорода. Однако их расчеты основаны на некоторых предположениях, которые в будущем могут оказаться неприменимыми к кораблям с прямоточными двигателями.

В настоящее время, пока у нас нет четких представлений о процессе протон-протонного синтеза (а также о сопротивлении ионов водорода в межзвездной среде), перспективы прямоточного ядерного двигателя остаются неопределенными. Но если эти инженерные проблемы решаемы, такая конструкция наверняка окажется одной из лучших.

Ракеты на антивеществе

Еще один вариант - использовать для звездолета антивещество, величайший источник энергии во Вселенной. Антивещество противоположно веществу в том смысле, что все составляющие части атома там имеют противоположные заряды. К примеру, электрон обладает отрицательным зарядом, но антиэлектрон (позитрон) имеет положительный заряд. При контакте с веществом антивещество аннигилирует. Энергии при этом выделяется так много, что чайной ложки антивещества хватило бы, чтобы уничтожить весь Нью-Йорк.

Антивещество - настолько мощная штука, что злодеи в романе Дэна Брауна «Ангелы и демоны» сооружают из него бомбу и собираются взорвать Ватикан; антивещество по сюжету они крадут в крупнейшем европейском центре ядерных исследований CERN, расположенном в Швейцарии недалеко от Женевы. В отличие от водородной бомбы, эффективность которой составляет всего 1 %, эффективность бомбы из антивещества составила бы 100 %. При аннигиляции вещества и антивещества энергия выделяется в полном соответствии с уравнением Эйнштейна: E=mc 2 .

В принципе, антивещество представляет собой идеальное ракетное топливо. Согласно оценке Джеральда Смита (Gerald Smith) из Университета штата Пенсильвания, 4 мг антивещества было бы достаточно, чтобы долететь до Марса, а сотня граммов донесла бы корабль до ближайших звезд. При аннигиляции антивещества выделяется в миллиард раз больше энергии, чем можно получить из такого же количества современного ракетного топлива. Двигатель на антивеществе выглядел бы довольно просто. Можно просто впрыскивать частицы антивещества, одну за другой, в специальную камеру ракеты. Там они аннигилируют с обычным веществом, вызвав титанический взрыв. Нагретые газы затем выбрасываются с одного конца камеры, создавая реактивную тягу.

Мы пока очень далеки от воплощения этой мечты. Ученые сумели получить антиэлектроны и антипротоны, а также атомы антиводорода, в которых антиэлектрон циркулирует вокруг антипротона. Это было сделано и в CERN, и в Национальной ускорительной лаборатории имени Ферми (которую чаще называют Фермилаб) недалеко от Чикаго на теватроне, втором по величине ускорителе частиц в мире (крупнее него только Большой адронный коллайдер в CERN). В обеих лабораториях физики направили на мишень поток высокоэнергетических частиц и получили поток осколков, среди которых были и антипротоны. При помощи мощных магнитов антивещество отделили от обычного вещества. Затем полученные антипротоны замедлили и позволили им смешаться с антиэлектронами, в результате чего получились атомы антиводорода.

Дэйв МакГиннис, один из физиков Фермилаба, очень долго и много думал о практическом использовании антивещества. Мы с ним стояли рядом с теватроном, и Дэйв объяснял мне обескураживающую экономику антивещества. Единственный известный способ получить сколько-нибудь существенное количество антивещества, говорил он, - это воспользоваться мощным коллайдером вроде теватрона; но эти машины чрезвычайно дороги и позволяют получать антивещество лишь в очень малых количествах. К примеру, в 2004 г. коллайдер в CERN выдал ученым несколько триллионных долей грамма антивещества, и обошлось это удовольствие ученым в 20 млн долларов. При такой цене мировая экономика обанкротится прежде, чем удастся получить достаточно антивещества на одну звездную экспедицию. Сами по себе двигатели на антивеществе, подчеркнул МакГиннис, не представляют из себя ничего особенно сложного и уж наверняка не противоречат законам природы. Но стоимость такого двигателя не позволит реально построить его в ближайшем будущем.

Одна из причин такой бешеной дороговизны антивещества - громадные суммы, которые приходится выкладывать на строительство ускорителей и коллайдеров. Однако сами по себе ускорители - машины универсальные и используются в основном не для производства антивещества, а для получения всяких экзотических элементарных частиц. Это инструмент для физических исследований, а не промышленный аппарат.

Можно предположить, что разработка нового типа коллайдера, предназначенного специально для производства антивещества, могла бы намного снизить его стоимость. Затем массовое производство таких машин позволило бы получить значительное количество антивещества. Харольд Джерриш(Harold Gerrish) из NASA уверен, что цена антивещества может со временем опуститься до 5000 долларов за микрограмм.

Еще одна возможность воспользоваться антивеществом в качестве ракетного топлива заключается в том, чтобы найти в открытом космосе метеорит из антивещества. Если бы такой объект нашелся, его энергии, скорее всего, хватило бы не на один звездолет. Надо сказать, что в 2006 г. в составе российского спутника «Ресурс-ДК» запущен европейский прибор PAMELA, назначение которого - поиск естественного антивещества в открытом космосе.

Если в космосе удастся обнаружить антивещество, то для его сбора человечеству придется придумать что-нибудь вроде электромагнитной сети.

Так что, хотя межзвездные космические аппараты на антивеществе - идея вполне реальная и не противоречит законам природы, в XXI веке они скорее всего не появятся, разве что в самом конце века ученые смогут снизить стоимость антивещества до сколько-нибудь разумной величины. Но если это удастся сделать, проект звездолета на антивеществе наверняка будет рассматриваться одним из первых.

Нанокорабли

Мы давно привыкли к спецэффектам в фильмах вроде «Звездных войн» и «Звездного пути»; при мысли о звездолетах возникают образы громадных футуристических машин, ощетинившихся со всех сторон последними изобретениями в сфере высокотехнологичных приспособлений. А между тем есть и другая возможность: создавать при помощи нанотехнологий крохотные звездолеты, не крупнее наперстка или иглы, а то и еще меньших размеров. Мы заранее уверены, что звездолеты должны быть огромными, как «Энтерпрайз», и нести целый экипаж астронавтов. Но при помощи нанотехнологий основные функции звездолета можно будет заложить в минимальный объем, и тогда к звездам отправится не один громадный корабль, в котором экипаж должен будет жить многие годы, а миллионы крохотных нанокораблей. До места назначения долетит, возможно, лишь небольшая их часть, но главное будет сделано: добравшись до одного из спутников системы назначения, эти корабли построят завод и обеспечат производство неограниченного числа собственных копий.

Винт Серф считает, что нанокорабли можно использовать как для изучения Солнечной системы, так - со временем - и для полетов к звездам. Он говорит: «Если мы сконструируем маленькие, но мощные наноустройства, которые несложно будет перевозить и доставлять на поверхность, под поверхность и в атмосферу соседних с нами планет и спутников, исследование Солнечной системы станет значительно более эффективным… Эти же возможности можно распространить на межзвездные исследования».

Известно, что в природе млекопитающие производят на свет всего по несколько отпрысков и заботятся о том, чтобы все они выжили. Насекомые, напротив, производят на свет огромное количество детенышей, но выживает из них лишь небольшая часть. Обе стратегии достаточно успешны, чтобы позволить видам существовать на планете в течение многих миллионов лет. Точно так же мы можем послать в космос один очень дорогой звездолет - или миллионы крохотных звездолетиков, каждый из которых будет стоить копейки и потреблять совсем немного топлива.

Сама концепция нанокораблей основана на очень успешной стратегии, которая широко используется в природе: стратегии стаи. Птицы, пчелы и другие подобные им часто летают стаями или роями. Дело не только в том, что большое число сородичей гарантирует безопасность; кроме того, стая работает как система раннего предупреждения. Если в одном конце стаи происходит что-то опасное - к примеру, нападение хищника, вся стая мгновенно получает информацию об этом. Стая весьма эффективна и энергетически. Птицы, летая характерной V-образной фигурой - клином, используют турбулентные потоки от крыла соседа впереди и тем самым облегчают себе полет.

Ученые говорят о рое, стае или муравьиной семье как о «сверхорганизме», который в некоторых случаях обладает собственным разумом, не зависящим от способностей отдельных составляющих его особей. Нервная система муравья, к примеру, очень проста, а мозг очень мал, но вместе муравьиная семья способна построить сложнейшее сооружение - муравейник. Ученые надеются воспользоваться уроками природы при разработке «стайных» роботов, которым однажды, возможно, предстоит отправиться в далекий путь к иным планетам и звездам.

В чем-то все это напоминает концепцию «разумной пыли», разработкой которой занимается Пентагон: миллиарды частиц, снабженных крохотными датчиками, рассеиваются в воздухе и осуществляют разведку. Каждый датчик сам по себе разума не имеет и дает лишь крохотную крупинку информации, но вместе они могут обеспечить своим хозяевам горы всевозможных данных. DARPA спонсировало исследования в этой области с прицелом на военное применение в будущем - к примеру, при помощи разумной пыли можно следить за вражескими позициями на поле боя. В 2007 и 2009 гг. ВВС США выпустили подробные планы вооружения на ближайшие несколько десятилетий; там есть все - от продвинутых версий беспилотного самолета Predator (сегодня он стоит 4, 5 млн долларов) до огромных стай крохотных дешевых датчиков размером с булавочную головку.

Ученых также интересует эта концепция. Стаи разумной пыли пригодились бы для наблюдения в реальном времени за ураганом с тысяч различных точек; точно так же можно было бы наблюдать за грозами, вулканическими извержениями, землетрясениями, наводнениями, лесными пожарами и другими природными явлениями. В фильме «Смерч», к примеру, мы наблюдаем за командой отважных охотников за ураганами, которые рискуют жизнью и здоровьем, размещая датчики вокруг торнадо. Мало того что это очень рискованно, но и еще не слишком эффективно. Вместо того чтобы с риском для жизни расставлять несколько датчиков вокруг вулканического кратера во время извержения или вокруг гуляющего по степи столба торнадо и получать с них информацию о температуре, влажности и скорости ветра, гораздо эффективнее было бы рассеять в воздухе разумную пыль и получить данные одновременно с тысяч различных точек, разбросанных по площади в сотни квадратных километров. В компьютере эти данные сложатся в трехмерную картинку, которая в реальном времени покажет вам развитие урагана или различные фазы извержения. Коммерческие предприятия уже работают над образцами подобных крошечных датчиков, и некоторые из них размерами действительно не превосходят булавочной головки.

Еще одно преимущество нанокораблей состоит в том, что им, чтобы добраться до космического пространства, требуется совсем немного топлива. Если громадные ракеты-носители способны разогнаться лишь до скорости 11 км/с, то крошечные объекты вроде нанокораблей относительно несложно вывести в космос с невероятно высокими скоростями. Скажем, элементарные частицы можно разгонять до субсветовых скоростей при помощи обычного электрического поля. Если придать наночастицам небольшой электрический заряд, их тоже легко можно будет разгонять электрическим полем.

Вместо того чтобы тратить огромные средства на отправку межпланетных зондов, можно наделить каждый нанокорабль способностью к самокопированию; таким образом, даже один нанобот сможет построить фабрику по производству наноботов или даже лунную базу. После этого новые самокопирующиеся зонды отправятся исследовать иные миры. (Проблема в том, чтобы создать первого нанобота, способного к самокопированию, а это пока еще дело очень далекого будущего.)

В 1980 г. NASA воспринимало идею самокопирующегося робота достаточно серьезно, чтобы заказать в Университете Санта-Клары специальное исследование под названием «Продвинутая автоматика для космических задач» и подробно рассмотреть несколько возможных вариантов. Один из сценариев, рассмотренных учеными NASA, предусматривал отправку небольших самокопирующихся роботов на Луну. Там роботы должны были наладить производство себе подобных из подручных материалов.

Отчет по этой программе был посвящен в основном созданию химического завода по переработке лунного грунта (реголита). Предполагалось, к примеру, что робот приземлится на Луну, разделится на составляющие его части, а затем соберет из них новую конфигурацию, - в точности как игрушечный робот-трансформер. Так, робот мог собрать большие параболические зеркала, чтобы сфокусировать солнечный свет и начать плавить реголит. Затем он при помощи плавиковой кислоты извлек бы из расплава реголита пригодные к использованию металлы и другие вещества. Из металлов можно было бы построить лунную базу. Со временем робот соорудил бы и небольшой лунный заводик по производству собственных копий.

Исходя из данных этого отчета, Институт перспективных концепций NASA запустил целую серию проектов, основанных на использовании самовоспроизводящихся роботов. Мейсон Пек (Mason Peck) из Корнеллского университета был одним из тех, кто всерьез принял идею крошечных звездолетов.

Я побывал у Пека в лаборатории и своими глазами видел верстак, заваленный всевозможными компонентами, которым однажды, может быть, суждено отправиться в космос. Рядом с верстаком имелась и небольшая чистая комната с пластиковыми стенами, где собирались тонкие компоненты будущих спутников.

Представление Пека об исследовании космического пространства очень отличается от всего, что мы видим в голливудских фильмах. Он предполагает возможность создания микросхемы размером сантиметр на сантиметр и весом один грамм, которую можно разогнать до 1 % скорости света. К примеру, он может воспользоваться эффектом пращи, при помощи которого NASA разгоняет свои межпланетные станции до огромных скоростей. Этот гравитационный маневр предусматривает облет планеты; примерно так же камень в праще, удерживаемый ремнем-гравитацией, разгоняется, летя по кругу, и выстреливает в нужном направлении. Здесь тяготение планеты помогает придать космическому аппарату дополнительную скорость.

Но Пек вместо тяготения хочет использовать магнитные силы. Он рассчитывает заставить микрозвездолет описать петлю в магнитном поле Юпитера, которое в 20 000 раз превосходит по интенсивности магнитное поле Земли и вполне сравнимо с полями в земных ускорителях, способных разгонять элементарные частицы до энергий в триллионы электронвольт.

Он показал мне образец - микросхему, которая, по его замыслу, могла бы однажды отправиться в долгое путешествие вокруг Юпитера. Это был крошечный квадратик размером меньше кончика пальца, буквально набитый всякой научной всячиной . Вообще, межзвездный аппарат Пека будет очень простым. С одной стороны на чипе имеется солнечная батарея, которая должна обеспечивать его энергией для связи, с другой - радиопередатчик, видеокамера и другие датчики. Этот аппарат не имеет двигателя, а разогнать его должно будет магнитное поле Юпитера. (К сожалению, в 2007 г. Институт перспективных концепций NASA, с 1998 г. финансировавший этот и другие инновационные проекты для космической программы, был закрыт в связи с сокращением бюджетных расходов.)

Мы видим, что представление Пека о звездолетах сильно отличается от принятого в научной фантастике, где громадные звездные корабли бороздят просторы Вселенной под управлением команды отважных астронавтов. К примеру, если бы на одной из лун Юпитера появилась научная база, на орбиту вокруг газового гиганта можно было бы выпустить десятки таких маленьких кораблей. Если бы, помимо всего прочего, на этой луне появилась батарея лазерных пушек, крохотные корабли можно было бы разогнать до скорости, составляющей заметную долю от скорости света, придав им ускорение при помощи лазерного луча.

Чуть позже я задал Пеку простой вопрос: может ли он уменьшить свой чип до размеров молекулы при помощи нанотехнологий? Тогда не потребуется даже магнитное поле Юпитера - их можно будет разогнать до субсветовых скоростей в обычном ускорителе, построенном на Луне. Он сказал, что это возможно, но подробности он еще не прорабатывал.

Так что мы взяли лист бумаги и вместе начали исписывать его уравнениями и прикидывать, что из этого получится. (Именно так мы, ученые, общаемся между собой - идем с мелом к доске или берем лист бумаги и пытаемся решить проблему при помощи различных формул.) Мы написали уравнение для силы Лоренца, которую Пек предполагает использовать для разгона своих кораблей возле Юпитера. Затем мы мысленно уменьшили корабли до размеров молекул и мысленно же поместили их в гипотетический ускоритель вроде Большого адронного коллайдера. Мы быстро поняли, что при помощи обычного ускорителя, размещенного на Луне, наши нанозвездолеты можно без особых проблем разогнать до скоростей, близких к скорости света. Уменьшив размеры звездолета с сантиметровой пластинки до молекулы, мы получили возможность уменьшить необходимый для их разгона ускоритель; теперь вместо Юпитера мы могли воспользоваться традиционным ускорителем частиц. Идея показалась нам вполне реальной.

Однако, проанализировав уравнения еще раз, мы пришли к общему выводу: единственная проблема здесь - стабильность и прочность нанозвездолетов. Не разорвет ли ускоритель наши молекулы на части? Подобно мячику на веревочке, эти нанокорабли при разгоне до околосветовых скоростей будут испытывать на себе действие центробежных сил. Кроме того, они будут электрически заряжены, так что даже электрические силы будут угрожать их целостности. Общий вывод: да, нанокорабли - это реальная возможность, но потребуются десятилетия исследований, прежде чем чип Пека можно будет уменьшить до размеров молекулы и усилить настолько, чтобы разгон до околосветовой скорости не мог ему ничем повредить.

А пока Мейсон Пек мечтает отправить рой нанозвездолетов к ближайшей звезде в надежде на то, что хотя бы некоторые из них преодолеют разделяющее нас межзвездное пространство. Но что они будут делать, когда прибудут на место назначения?

Здесь на сцену выходит проект Пэй Чжана (Pei Zhang) из Университета Карнеги - Меллон в Кремниевой долине. Он создал целую флотилию минивертолетов, которым когда-нибудь, возможно, суждено подняться в атмосферу чужой планеты. Он с гордостью показывал мне свой рой миниботов, напоминающих игрушечные вертолетики. Однако внешняя простота обманчива. Я прекрасно видел, что в каждом из них имеется чип, набитый сложнейшей электроникой. Одним нажатием кнопки Чжан поднял в воздух четыре минибота, который тут же разлетелись в разные стороны и начали передавать нам информацию. Очень скоро я был окружен миниботами со всех сторон.

Такие вертолетики, рассказал мне Чжан, должны оказывать помощь в критических обстоятельствах вроде пожара или взрыва; их задача - сбор информации и разведка. Со временем миниботы можно будет оснастить телекамерами и датчиками температуры, давления, направления ветра и т. д.; в случае природной или техногенной катастрофы такая информация может оказаться жизненно важной. Тысячи миниботов можно будет выпускать над полем сражения, лесным пожаром или (почему бы нет?) над неизученным инопланетным ландшафтом. Все они непрерывно поддерживают связь между собой. Если один минибот наталкивается на препятствие, остальные сразу же узнают об этом.

Итак, один из сценариев межзвездных путешествий - выстрелить в направлении ближайшей звезды тысячами дешевых одноразовых чипов, похожих на чип Мейсона Пека, летящих с околосветовой скоростью. Если хотя бы небольшая их часть доберется до места назначения, минизвездолеты выпустят крылья или винты и, подобно механическому рою Пэй Чжана, полетят над невиданным инопланетным ландшафтом. Информацию они будут посылать по радио прямо на Землю . Как только будут обнаружены перспективные планеты, в путь отправится второе поколение минизвездолетов; их задачей уже будет постройка у далекой звезды заводов по выпуску все тех же минизвездолетов, которые затем отправятся к следующей звезде. Процесс будет развиваться бесконечно.

Исход с Земли?

К 2100 г. мы, скорее всего, отправим астронавтов на Марс и в пояс астероидов, исследуем луны Юпитера и всерьез займемся задачей отправки зонда к звездам.

Но как же человечество? Появятся ли у нас космические колонии и смогут ли они решить проблему перенаселенности? Найдем ли мы новый дом в космосе? Начнет ли род человеческий к 2100 г. покидать Землю?

Нет. Учитывая стоимость космических путешествий, большинство людей не поднимутся на борт космического корабля и не увидят далеких планет ни в 2100 г., ни даже много позже. Возможно, горсточка астронавтов успеет к этому времени создать несколько крохотных аванпостов человечества на других планетах и спутниках, но человечество в целом останется прикованным к Земле.

Раз Земля будет домом человечества еще не одно столетие, зададимся вопросом: как будет развиваться человеческая цивилизация? Какое влияние на образ жизни, труд и общество будет оказывать наука? Наука - двигатель процветания, поэтому стоит подумать о том, как она изменит в будущем человеческую цивилизацию и наше благосостояние.

Примечания:

Основой определения координат пользователя является измерение не частотных сдвигов, а лишь времени прохождения сигналов от нескольких спутников, находящихся на разных (но известных в каждый момент) расстояниях от него. Для определения трех пространственных координат в принципе достаточно обработать сигналы от четырех спутников, хотя обычно приемник «берет в расчет» все исправные спутники, которые он слышит в данный момент. Существует также более точный (но и более сложный в реализации) метод, основанный на измерении фазы принимаемого сигнала. - Прим. пер.

Или на другом земном языке, в зависимости от того, где снят фильм. - Прим. пер.

Проект TPF действительно долгое время фигурировал в перспективных планах NASA, но всегда оставался «бумажным проектом», далеким от этапа практической реализации. В проекте бюджета на 2012 финансовый год нет ни его, ни второго проекта из того же тематического направления - «Фотограф землеподобных планет» (TPI). Возможно, их наследником будет миссия New Worlds для получения изображений и спектроскопии землеподобных планет, однако о сроках ее запуска ничего сказать нельзя. - Прим. пер.

В действительности речь шла не о чувствительности, а о качестве изготовления поверхности зеркала. - Прим. пер.

Этот проект был выбран в феврале 2009 г. для совместной реализации силами NASA и Европейского космического агентства. В начале 2011 г. американцы вышли из проекта из-за нехватки средств, а Европа отложила свое решение об участии в нем до февраля 2012 г. Упомянутый далее проект Ice Clipper предлагался на конкурс NASA еще в 1997 г. и не был принят. - Прим. пер.

Увы, и в этом текст устарел. Как и EJSM, этот совместный проект лишился в начале 2011 г. поддержки США и находится в стадии пересмотра, претендуя на те же средства в бюджете EKA, что и EJSM и Международная рентгеновская обсерватория IXO. Лишь один из этих трех проектов в урезанном виде может быть утвержден к реализации в 2012 г., а запуск может состояться после 2020 г. - Прим. пер.

И в некоторых из них подвергается сомнению. - Прим. пер.

Строго говоря, так называлась программа NASA, призванная выполнить требования Буша, основные положения которой описаны автором ниже. - Прим. пер.

Ракеты-то как раз у США есть и их не надо придумывать с нуля: корабль «Орион» может быть запущен тяжелым вариантом - носителем Delta IV, а более легкие частные корабли - на ракетах Atlas V или Falcon-9. А вот ни одного готового пилотируемого корабля нет и в ближайшие три-четыре года не будет. - Прим. пер.

Дело, разумеется, не в расстоянии, а в наборе и снижении требуемой для перелетов скорости. Желательно также ограничить продолжительность экспедиции, чтобы свести к минимуму радиационное воздействие на экипаж. В сумме эти ограничения могут вылиться в схему полета с весьма большим расходом топлива и, соответственно, высокой массой экспедиционного комплекса и его стоимостью. - Прим. пер.

Это неверно. Горячие газы проникли внутрь левого крыла «Колумбии» и после продолжительного нагрева лишили его прочности. Крыло деформировалось, корабль потерял единственно правильную ориентацию при торможении в верхних слоях атмосферы и был разрушен аэродинамическими силами. Астронавтов погубили разгерметизация и невыносимые ударные перегрузки. - Прим. пер.

В феврале 2010 г. администрация Обамы объявила о полном закрытии программы Constellation, включая и корабль «Орион», однако уже в апреле согласилась сохранить его в варианте корабля-спасателя для МКС. В 2011 г. был достигнут консенсус касательно немедленного начала финансирования сверхтяжелого носителя SLS на базе элементов шаттла и продолжения работ по «Ориону» без формального объявления целей перспективной пилотируемой программы. - Прим. пер.

Ничего подобного! Во-первых, летающие сейчас вместе по полгода русские и американцы приземляются в добром здравии и уже в день посадки способны хотя и с опаской, но ходить. Во-вторых, таким же было состояние советских и российских космонавтов после рекордных полетов продолжительностью 366 и 438 суток, так как разработанные у нас средства борьбы с воздействием факторов космического полета достаточны и для таких сроков. В-третьих, едва могли ползти Андриян Николаев и Виталий Севастьянов после рекордного для своего времени 18-суточного полета на «Союзе-9» в 1970 г., когда практически никаких мер профилактики еще не применялось. - Прим. пер.

Закрутка корабля или его части вокруг оси реализуется достаточно просто и почти не требует дополнительного расхода топлива. Другое дело, что работать экипажу в таких условиях может быть не слишком удобно. Впрочем, экспериментальных данных на сей счет фактически нет. - Прим. пер.

Эта популярная оценка стоимости МКС неверна, так как в нее искусственно включены затраты на все полеты шаттлов за период ее строительства и эксплуатации. Проектирование и изготовление компонентов станции, научной аппаратуры, а также управление полетом оцениваются сейчас примерно в 58 млрд долларов за почти 30 лет (1984–2011). - Прим. пер.

Космический лифт не может кончаться на высоте геостационарной орбиты - для того, чтобы он висел неподвижно и мог служить опорой для движения транспортных кабин, систему надо оснастить противовесом на высоте до 100 000 км. - Прим. пер.

Второй экземпляр этого КА, NanoSail-D2, был запущен 20 ноября 2010 г. вместе со спутником Fastsat, отделился от него 17 января 2011 г. и успешно развернул космический парус площадью 10 м2. - Прим. пер.

В мае 2011 г. три экспериментальных «чипоспутника» команды Пека были доставлены на МКС для ресурсных испытаний в условиях открытого космоса. - Прим. пер.

Такая передача сама по себе представляет собой сложнейшую задачу. - Прим. пер.


Вступительная заставка сериала «Пространство»: схематичное изображение распространения человечества по Солнечной системе

Я подготовил для журнала «Популярная механика» небольшую статью - прогноз развития космонавтики. В материал «5 сценариев будущего» (№ 4, 2016) вошла лишь малая часть статьи - всего один абзац:) Публикую полную версию!

Часть первая: ближайшее будущее — 2020-2030

В начале нового десятилетия человек вернется в окололунное пространство, в ходе осуществления программы NASA «Гибкий путь» (Flexible Path). Новая американская сверхтяжелая ракета Space Launch System (SLS), первый пуск которой запланирован на 2018 год, в этом поможет. Полезная нагрузка — 70 т на первом этапе, до 130 т на последующих. Напомню, у российского «Протона» полезная нагрузка лишь 22 т, у новой «Ангары-А5» — около 24 т. В США также строится государственный космический корабль Orion.

SLS
Источник: NASA

Американские частники обеспечат доставку астронавтов и грузов на МКС. Вначале два корабля — Dragon V2 и CST-100, затем подтянутся и другие (возможно, крылатые — например, Dream Chaser не только в грузовом, но и в пассажирском варианте).

МКС будут эксплуатировать как минимум до 2024 года (возможно и дольше, особенно российский сегмент).

Затем NASA объявит конкурс на новую околоземную базу, в котором победит, вероятно, Bigelow Aerospace с проектом станции с надувными модулями.

Можно прогнозировать к концу 2020-х годов наличие на орбите нескольких частных пилотируемых орбитальных станций различного назначения (от туризма до орбитальной сборки спутников).

С использованием тяжелой ракеты (с грузоподъемностью немного больше 50 т, иногда ее классифицирует как сверхтяжелую) Falcon Heavy и Dragon V2, сделанных в фирме Илона Маска, вполне вероятны туристические полеты на орбиту вокруг Луны — не просто облет, а именно работа на окололунной орбите — ближе к середине 2020-х.

Также ближе к середине-концу 2020-х вероятен конкурс от NASA на создание лунной транспортной инфраструктуры (частные экспедиции и частная лунная база). По недавно опубликованным оценкам частникам потребуется около $10 млрд государственного финансирования, чтобы вернуться на Луну в обозримое (меньше 10 лет) время.

Макет лунной базы частной компании Bigelow Aerospace
Источник: Bigelow Aerospace

Таким образом, «Гибкий путь» ведет NASA на Марс (экспедиция к Фобосу — в начале 30-х, на поверхность Марса — только в 40-х, если не будет мощного ускоряющего импульса от общества), а низкую околоземную орбиту и даже Луну отдадут частному бизнесу.

Кроме того, будут введены в строй новые телескопы, которые позволят найти не только десятки тысяч экзопланет, но и измерить прямым наблюдениям спектры атмосфер ближайших из них. Рискну предположить, что до 30-го года будут получены доказательства существования внеземной жизни (кислородная атмосфера, ИК-сигнатуры растительности и т.д.), и вновь возникнет вопрос о Великом фильтре и парадоксе Ферми.

Состоятся новые полеты зондов к астероидам, газовым гигантам (к спутнику Юпитера Европе, к спутникам Сатурна Титану и Энцеладу, а также к Урану или Нептуну), появятся первые частные межпланетные зонды (Луна, Венера, возможно, и Марс с астероидами).

Разговоры о добычи ресурсов на астроидах до 30-го года так и останутся разговорами. Разве что частники проведут совместно с государственными агентствами небольшие технологические эксперименты.

Начнут массово летать туристические суборбитальные системы — сотни людей побывают на границе космоса.

Китай в начале 20-х построит свою многомодульную орбитальную станцию, а к середине — концу десятилетия осуществит пилотируемый облет Луны. Также запустит множество межпланетных зондов (например, китайский марсоход), но на первое место в космонавтике не выйдет. Хотя и будет находиться на третьем-четвертом — сразу за США и крупными частниками.

Россия в лучшем случае сохранит «прагматичный космос» — связь, навигацию, дистанционное зондирование Земли, а также советское наследие по пилотируемой космонавтике. К российскому сегменту МКС будут летать космонавты на «Союзах», и после выхода США из проекта, вероятно, российский сегмент образует отдельную станцию — намного меньше советского «Мира» и даже меньше китайской станции. Но этого хватит, чтобы сохранить отрасль. Даже по средствам выведения Россия откатится на 3-4 место. Но этого будет хватать, чтобы выполнять задачи народно-хозяйственного значения. В плохом варианте после завершения эксплуатации МКС пилотируемое направление в космонавтике в России будет полностью закрыто, а в наиболее оптимистичном варианте — будет объявлена лунная программа с реальными (а не в середине 2030-х) сроками и четким контролем, что позволит уже в середине 2020-х провести высадки на Луну. Но такой сценарий, увы, маловероятен.

К клубу космических держав присоединятся новые страны, в том числе несколько стран с пилотируемыми программами — Индия, Иран, даже Северная Корея. И это не говоря о частных фирмах: пилотируемых орбитальных частных аппаратов к концу десятилетия будет много — но вряд ли больше десятка.

Множество небольших фирм создаст свои сверхлегкие и легкие ракеты. Причем некоторые из них постепенно будут наращивать полезную нагрузку — и выходить в средние и даже тяжелые классы.

Принципиально новых средств выведения не появится, люди будут летать на ракетах, однако многоразовость первых ступеней или спасение двигателей станут нормой. Вероятно, будут проводиться эксперименты с аэрокосмическими многоразовыми системами, новыми топливами, конструкциями. Возможно, к концу 20-х будет построен и начнет летать одноступенчатый многоразовый носитель.

Часть вторая: превращение человечества в космическую цивилизацию — от 2030 до конца XXI века

На Луне множество баз — как государственных, так и частных. Естественный спутник Земли используется как ресурсная база (энергия, лед, различные составляющие реголита), опытный и научный полигон, где проверяются космические технологии для дальних полетов, в затененных кратерах размещены инфракрасные телескопы, а на обратной стороне — радиотелескопы.

Луна включена в земную экономику — энергия лунных электростанций (поля солнечных батарей и солнечных концентраторов построенных из местных ресурсов) передается как на космические буксиры в околоземном пространстве, так и на Землю. Решена задача доставки вещества с поверхности Луны на низкую околоземную орбиту (торможение в атмосфере и захват). Лунный водород и кислород используется в окололунных и околоземных заправочных станциях. Конечно, все это только первые эксперименты, но уже на них частные фирмы делают состояния. Гелий-3 пока добывается только в небольших количествах для экспериментов связанных с термоядерными ракетными двигателями.

На Марсе — научная станция-колония. Совместный проект «частников» (в основном — Илона Маска) и государств (в основном — США). Люди имеют возможность вернуться на Землю, однако многие улетают в новый мир навсегда. Первые эксперименты по возможному терраформированию планеты. На Фобосе — перевалочная база для тяжелых межпланетных кораблей.

Марсианская база
Источник: Bryan Versteeg

По всей Солнечной системе множество зондов, цель которых — подготовка к освоению, поиск ресурсов. Полеты скоростных аппаратов с ядерными энергодвигательными установками в пояс Койпера к недавно обнаруженному газовому гиганту — девятой планете. Роверы на Меркурии, аэростатные, плавающие, летающие зонды на Венере, изучение спутников планет-гигантов (например, подводные лодки в морях Титана).

Распределенные сети космических телескопов позволяют фиксировать экзопланеты прямым наблюдением и даже составить карты (очень низкого разрешения) планет у ближайших звезд. В фокус гравитационной линзы Солнца отправлены большие автоматические обсерватории.

Развернуты и работают одноступенчатые многоразовые средства выведения, на Луне активно используются не ракетные способы доставки грузов — механические и электромагнитные катапульты.

Летает множество туристических космических станций. Есть несколько станций — научных институтов с искусственной гравитацией (станция-тор).

Тяжелые пилотируемые межпланетные корабли не только достигли Марса и обеспечили развертывание на Красной планете базы-колонии, но и активно исследуют пояс астероидов. Множество экспедиций отправлено к околоземным астероидам, осуществлена экспедиция на орбиту Венеры. Началась подготовка к развертыванию исследовательских баз у планет-гигантов — Юпитера и Сатурна. Возможно, планеты-гиганты станут целью первого испытательного полета межпланетного корабля с термоядерным двигателем с магнитным удержанием плазмы.

Запуск метеозонда на Титане

Несмотря на существующие космические программы и достижения, полученные в результате освоения космоса, многие сомневаются, что человечеству нужен Космос и считают, что потраченные на него деньги могли бы принести пользу совсем в другой сфере жизни.

Поэтому попробуем разобраться, зачем люди осваивают космос ?

С незапамятных времен человеческий взор всегда был обращен к небесам, в Космос. Именно там поколения людей старались найти ответы на многие вопросы, предсказывали будущее или искали разумные цивилизации. С течением тысячелетий интерес человека к космосу не угас, а еще больше усилился, благодаря развитию науки и техники. Многие считают, что в будущем космос является для человечества единственным спасением, когда на планете не останется никаких условий для существования.

Уже сейчас в результате космических программ человек смог добраться до Луны и определить, что это не совсем бесполезный спутник, вращающийся вокруг планеты, а целый мир, который может решить многие наши проблемы. На Луне обнаружены большие залежи драгоценных металлов, водяной лед и огромное количество гелия-3 — высокоэнергетического вещества.

Луна может выступать не только донором в решении энергетических и ресурсных проблем человечества, она может быть полезной в решении экологической проблемы Земли. Например, на спутник можно было бы отправлять отработанные ядерные отходы или вынести грязное производство. Кроме этого, невесомость является идеальным условием при производстве некоторых лекарственных препаратов и высокоточной техники.

Кроме Луны в последние десятилетия взор человека обращен и к Марсу. По мнению некоторых ученых эта планета, при определенных условиях, может стать идеальным местом существования нашей цивилизации.

Уже сейчас смело можно сказать, что космическая индустрия намного упростила нашу повседневную жизнь. Благодаря ей, мы имеем цифровые фото- и видеокамеры, систему навигации GPS, спутниковое телевидение, сотовую связь, интернет, удобную одежду, посуду… Все эти блага современной цивилизации получили широкое распространение и являются продуктом космических технологий, которые были созданы в результате развития программ по освоению Космоса.

Наличие этих достижений является существенным фактом против регулярного скептического вопроса: «Зачем люди осваивают космос? ».

Достижения космической индустрии

За последние 50 лет, благодаря освоению космоса и космическим программам, запатентовано более полусотни тысяч различных изобретений, начиная от сотовой связи и заканчивая тефлоновой сковородкой. Кроме этого, еще чуть больше полувека назад невозможно было предположить, что в будущем Космос будет открыт для туристических полетов. Хотелось бы отметить и работу над программами по защите нашей планеты от космических тел – метеоритов, астероидов и комет, а также решение топливно-энергетических проблем.

Что мы получили от освоения космоса?

1. Бытовые вещи. Тефлоновые сковородки, молнии и липучки. Многие скептики усмехнутся и будут утверждать, что эти вещи были получены в земных условиях. Никто не будет спорить, но наиболее востребованными они оказались именно для космоса, где были «обкатаны» и после чего «подарены» нашей повседневной жизни.

Свойства тефлона в космических условиях оказались просто незаменимы, ведь это вещество сохраняет свои эластичные свойства в большом диапазоне температур (-70…+270 градусов). Тефлон невозможно намочить водой или растворителями, поэтому его широко использовали для обеспечения теплоизоляции космических кораблей шаттлов Apollo.

Несмотря на то, что «молния» была запатентована еще в начале 20 века, наиболее востребованной и практичной она стала именно в экипировке космонавтов. Та же история была и с «липучками», «увидевшими свет» в конце 40-хх гг. прошлого века.

Именно благодаря «обкатке» в космосе этих новшеств, широкий рынок смог по достоинству оценить новые разработки, с лихвой многократно окупивших космическую программу Apollo.

2. Безопасность. Существующие космические технологии могут стать на страже безопасности нашей планеты, чтобы мы могли избежать участи динозавров. Самым ярким современным примером опасности из космоса является Тунгусский метеорит, упавший на территории Сибири в начале прошлого века. Чтобы избежать подобных катаклизмов, необходимо развивать космические программы и технологии, которые не только помогут обнаружить опасные космические тела, но и позволят управлять ими или уничтожить, чтобы избежать столкновения с Землей.

3. Энергетическая надежда — гелий-3. Наилучшим решением энергетического вопроса землян может стать добыча с поверхности Луны изотопа гелия-3, который можно использовать в термоядерных реакторах.

Почему так важно изучение космоса?

Энергетическая эффективность этого вещества настолько велика, что для получения необходимого количества энергии понадобиться малая доля гелия-3. Однако загвоздка состоит в том, что на Земле еще не существует технологии получения гелия-3 из лунного грунта.

4. Спутниковые коммуникации. Идея запустить на околоземную орбиту спутники была предложена в конце 40-хх гг. 20 столетия. Изначально планировалось использовать их для ретрансляции радио- и телесигнала и для наблюдения за погодой. Однако первые спутники были использованы в военных целях для шпионажа.

После окончания «холодной войны» на орбиту стали запускаться коммерческие спутники, которые и сейчас работают в области метеорологии, геологической разведки, транслируют радиосигнал, интернет и занимаются спутниковой навигацией (система GPS).

5. Цифровая фото- и видеотехника «родилась» на космических просторах. Для исследования космоса, снимков Земли и космических объектов потребовалось разработать электронные телескопы, основу которых составляла ПСЗ-матрица, собранная из кремниевых светочувствительных фотодиодов. Венцом творения ученых стал телескоп Hubble, работа которого началась в 1991 году. Современная цифровая техника, телевидение, медицинские микроскопы – все это детища космических фототехнологий.

Зачем люди осваивают космос?

Вот десять ответов на вопрос: «Зачем люди осваивают космос?».

  1. Развитие технологии, часть которых нашло применение и в повседневной жизни.
  2. Научные открытия, которые пополнят наши знания о Вселенной и продвигают фундаментальные науки.
  3. Решение энергетических и ресурсных проблем, благодаря залежам полезных веществ на других планетах и небесных телах.
  4. Решение вопроса трудоустройства населения: благодаря развитию космической индустрии, сотни тысяч людей обеспечены работой.
  5. Развитие космического туризма, который в перспективе обещает стать самым крупным и прибыльным направлением.
  6. Развитие военных технологий, создание космического оружия.
  7. Защита человечества от участи динозавров: разработка космических технологий, направленных на защиту нашей планеты от «вторжения» небесных тел.
  8. Создание колоний на Луне и Марсе на случай земных катаклизмов или неизбежного перенаселения планеты.
  9. Поднятие престижа своей страны, который зависит от успеха космических программ.
  10. Космос может стать единой целью, вокруг которой сплотится все человечество, невзирая на национальную или религиозную принадлежность.

И самый главный ответ на вопрос, «Зачем люди осваивают космос?»: Космос позволит нам заглянуть в прошлое, понять настоящее и увидеть будущее. Кроме этого, Космос – это просто интересно и необычайно красиво!

Интересное о разном

Комментарии (0)

Можно выделить несколько простых факторов, которые подчеркивают важность и необходимость освоения космического пространства. Прежде всего, понимание эволюции Солнечной системы, а также особенности ее формирования. Исследования планет нашей Солнечной системы, включая Меркурий, Венеру, Марс, Юпитер, Сатурн и т.д.

Почему космические исследования важны для каждого из нас

Собрано огромное количество различных данных, которые помогли ученым-астрономам разгадать тайну формирования нашей звёздной системы, и ответить на вопрос, почему возникла жизнь только на Земле, а на других планетах её нет.

Последняя миссия освоения космоса, положит конец всем фантастическим идеям жизни на Марсе и подтвердит нахождение воды на этой красной планете. Знание структуры Солнечной системы, природы планет и их гравитационной динамики можно принять в качестве готового шаблона, который поможет нам в определении существующих вне Солнечной системы планет. Которые вращаются вокруг других звезд, на которых также может быть жизнь. Необходимо изучать планеты, как потенциальные места, как будущие обитаемые миры.

Почему так важны космические исследования? Когда Луи Амстронг впервые высадился на Луне, она сказал, что один маленький шаг для человека стал гигантским скачком вперёд для всего человечества. Действительно, космические исследования являются одним из главных среди величайших достижений всего человеческого рода.

Впервые были разбиты оковы гравитации, для того, чтобы полностью исследовать неведомые до сегодня миры за пределами нашей планеты. В результате космической гонки между странами - «гигантами» технической мысли - СССР и США, несколько десятилетий назад состоялась первая высадка землян на Луну. Сейчас космические исследования Солнечной системы продолжаются благодаря деятельности НАСА (Национальное управление по аэронавтике и исследованию космического пространства), ЕКА (Европейское космическое агентство) и других космических агентств по всему миру.

Каждый запуск космического летального аппарата обходится в значительную сумму денег, которая платится из кармана налогоплательщика. Во времена экономической рецессии, многие задумываются над тем, являются ли расходы на космические исследования оправданными, ведь существует намного больше проблем, которые остаются нерешенными и требуют особого внимания, но без освоения Космоса мы тоже не можем обойтись. С развитием Космонавтики человечеству стало известно немного больше, чем то, в какой Вселенной мы с вами живем, а и то, что лежит за неосязаемыми пределами планеты Земля.

Можно выделить несколько простых факторов, которые подчеркивают важность и необходимость освоения космического пространства. Прежде всего, понимание эволюции Солнечной системы, а также особенности ее формирования. Исследования планет нашей Солнечной системы, включая Меркурий, Венеру, Марс, Юпитер, Сатурн и т.д. Собрано огромное количество различных данных, которые помогли ученым-астрономам разгадать тайну формирования нашей звёздной системы, и ответить на вопрос, почему возникла жизнь только на Земле, а на других планетах её нет.

Последняя миссия освоения космоса, положит конец всем фантастическим идеям жизни на Марсе и подтвердит нахождение воды на этой красной планете. Знание структуры Солнечной системы, природы планет и их гравитационной динамики можно принять в качестве готового шаблона, который поможет нам в определении существующих вне Солнечной системы планет. Которые вращаются вокруг других звезд, на которых также может быть жизнь.

Почему для человека важно развитие космоса

Необходимо изучать планеты, как потенциальные места, как будущие обитаемые миры.

Изучать Космос необходимо также для разработки современных технологий, которые позволят землянам обосноваться в этих мирах, а для этого необходимо знание их материальных ресурсов, существующей атмосферы, состава, состояния их поверхности и т.д. Одна из главных причин для исследования Луны и планет, таких как Марс - поиск полезных ископаемых. Ведь в будущем, когда человечество исчерпает все их запасы, нам придется искать их в другом месте. Данные космических исследований пригодится в будущем, когда будут разработаны технологии, которые могут сделать реальными добычу полезных ископаемых вне нашей планеты.

Необходимо постоянное изучение астероидов в качестве угрозы для освоения Космоса. Данные об их природе могут помочь нам приблизиться к разгадке формирования Солнечной системы. Существующий пояс астероидов, между орбитами Марса и Юпитера, содержат сотни тысяч астероидов, которые можно назвать потенциальной угрозой для планеты Земля. Под воздействием астероидов много тысячелетий тому назад произошло массовое вымирания, можно предположить, что в будущем это также возможно. Изучение этих астероидов является важнейшей задачей, которая является неотъемлемой частью освоения космического пространства.

Пять предпринимателей, экспертов и ученых рассказали McKinsey о том, как добывать кислород на Марсе, почему пришло время ускорить эволюцию человека и где взять деньги на космическую экспансию нашей цивилизации

Иллюстрация: The Firefly and Serenity Database

Технологическая революция меняет процесс освоения космоса. Благодаря новым разработкам исследователи решают все более сложные вопросы, связанные с изучением и колонизацией других планет. Экономика и модели финансирования бизнеса поменялись, так что частные предприятия теперь запускают проекты, которые когда-то могли позволить себе только государства. Бизнесмены-миллиардеры делают ставку на будущее, в котором путешествия на Марс и обратно - это реальность, а не мечта поклонника научной фантастики.

Как адаптироваться к этой новой реальности? Пять экспертов в области космической науки и техники поделились своими взглядами на будущее освоения космоса в рамках Imagine Get-Together - регулярной дискуссии, организуемой McKinsey.

Джеффри Хоффман, бывший астронавт и профессор кафедры аэронавтики и астронавтики Массачусетского технологического института

Новые исследовательские технологии и подходы резко меняют космические миссии, равно как и готовность к пилотируемым миссиям на Марс. Я участвую в эксперименте по производству кислорода на Марсе, или MOXIE; эта технология отправится на Марс на Rover в 2020 году и доберется туда в феврале 2021 года. Это один из первых крупных экспериментов по использованию местных ресурсов - и выживанию на поверхности. Есть много способов получить кислород на Марсе. Можно найти там воду и извлекать кислород из нее, или раскопать почву и получить кислород таким способом. Но для всего этого требуется проведение горных работ, и вы должны быть рядом с ресурсами.

Наш эксперимент устраняет это ограничение. Атмосфера Марса на 95% состоит из углекислого газа. Используя инструмент размером с большую обувную коробку, мы собираемся закачивать и сжимать атмосферу Марса до атмосферного давления Земли и подавать ее в блок электролиза, чтобы получить почти на 100% чистый кислород. Это небольшой эксперимент - он будет производить около десяти граммов кислорода в час (вдвое меньше, чем нужно человеку). Но это только начало - совместный, довольно сложный эксперимент MIT и NASA. Когда вы расщепляете углекислый газ, вы получаете оксид углерода и кислород. Но если вы позволите процессу зайти слишком далеко, оксид углерода будет разделен на углерод и кислород, углерод засорит аппаратуру, и та остановится. Лучшим вариантом было бы отправить марсоход или космический корабль на Марс на один цикл Марса (около 26 месяцев) раньше вместе с блоком для производства кислорода, чтобы изготовить топливо для возвращения обратно. Через полтора года, как только мы убедимся, что сможем совершить обратный путь, можно будет отправить на Марс и экипаж.

Достижения в области материаловедения делают такие проекты возможными. Мы разрабатываем наноматериалы, биоматериалы - более сильные, более легкие вещества, которые могут дольше лететь в космосе, но использовать меньше ресурсов. Они побуждают космических ученых рассматривать возможности, которые раньше могли показаться нереальными.

Джон Морс, соучредитель, председатель и генеральный директор некоммерческой научно-исследовательской организации BoldlyGo

Есть значительные достижения в области дистанционного контроля спутников, а стоимость полета в космос резко снижается. Космическая наука может использовать эти достижения. Но нужен и интерес крупных исследовательских фондов и состоятельных людей к пограничным космическим миссиям, которые будут иметь глобальное значение и оставят солидное наследие.

Благотворительные пожертвования и коммерческие интересы могут способствовать новой волне космических научных миссий, и не только CubeSats - миниатюрных и относительно недорогих спутников. Модель частного финансирования наземных телескопов, таких как 200-дюймовый телескоп Хейла на горе Паломар или два десятиметровых телескопа Кека на Гавайях, существует уже 200 лет, и пришло время адаптировать ее к космической науке и исследованиям. Некоторые крупные современные наземные телескопы стоят миллиарды долларов - хватило бы на строительство двух миссий Кеплера.

Джон Серафини, старший вице-президент венчурного фонда Allied Minds, ориентированного на космические стартапы

Стартапы в жанре Space 2.0 не продвигают себя, ссылаясь на будущие доходы и годовые планы роста. Они отталкиваются от стратегического видения и доходов, которые планируются в далеком будущем. Мы считаем, что в процессе финансирования таких компаний должно быть больше дисциплины. Мы разрабатываем инвестиционную гипотезу, определяем и лицензируем технологии, которые соответствуют этой гипотезе, а затем строим стартапы.

Например, одна из наших компаний сосредоточена на решении практической проблемы передачи данных. Она использует оптическую технологию для передачи информации на наземную станцию. Эта технология работает быстрее, чем более привычные радиочастоты. Стороны, использующие оптический передатчик, могут с меньшими усилиями и меньшими финансовыми затратами переносить терабайты данных. Передатчик небольшой, но он быстро передает данные даже при ограниченной пропускной способности. В конечном счете этот стартап намерен создать сеть ретрансляционных узлов для получения данных со спутников и перемещения их на землю - всего за несколько секунд от загрузки в космосе до получения на наземных серверах.

Митчелл Бернсайд Клапп, бывший сотрудник DARPA, президент и основатель Embassy Aerospace

Есть много навыков, абсолютно необходимых для колонизации и расширения человеческих усилий в космосе, которые мы еще не освоили. Мы знаем, что могут сделать люди. Мы знаем, что могут делать роботы. Но то, что роботы и люди могут делать вместе, работая в команде, — это сравнительно неизученная область. Скажем, я использую робота, который чистит пол. Все, что я делаю — это ставлю задачу для робота. Если бы я убирал дом, а робот держал какие-то вещи, пока я протирал полки, а затем помогал мне ставить их обратно, или если бы робот видел, что у меня заканчиваются чистящие средства, и принес мне новую порцию, это было бы настоящее сотрудничество робота и человека.

Можно представить себе мир, в котором мы сотрудничаем и развиваем способности, которых у каждого из нас по отдельности нет. Именно по этому принципу нам нужно инвестировать в космос. Если мы организуем нашу работу вокруг создания космической экономики и будем отталкиваться от этого, это будет замечательный прорыв для человеческой цивилизации.

Приямвада Натараджан, профессор астрономии и физики Йельского университета

Будущее космоса - это не просто инженерная проблема, это гораздо более сложная биологическая проблема. Инженерную проблему мы можем решить, в этом секторе много проектов и инноваций. Но нам не хватает идей и инструментов для понимания того, как органические молекулы в наших телах и растениях будут реагировать на радиацию на Марсе - на радиацию такой интенсивности, какой мы никогда раньше не подвергались.

Нам нужно дополнительно изучить технологии радиационной защиты; возможно, даже задействовать другие формы жизни, такие как цианобактерии, для создания радиационно-устойчивых покрытий. Мы, скорее всего, столкнемся с массой раковых заболеваний, намного более частых, чем мы привыкли на Земле. Если главная цель - создание колонии на Марсе, то необходимо создать ресурсы и механизмы разрешения физиологических и когнитивных изменений, которые возникнут из-за радиации и прочего влияния среды. Возможно, было бы разумнее сначала подумать о создании лунной базы для подготовки к марсианской жизни. Даже если мы сможем построить подземные колонии, как рассчитывают некоторые инвесторы, кислород будет оставаться проблемой, если только мы не сможем клонировать множество видов, которым вообще не нужен кислород, или, по крайней мере, нужен в небольших количествах. Колонизация Марса также может потребовать громадных биологических сдвигов - человек должен стать более приспособляемым.