Информационная поддержка школьников и студентов
Поиск по сайту

Курс лекций по физической химии. Физическая химия. Термодинамические процессы и их классификация

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

3 слайд

Описание слайда:

Газ – агрегатное состояние вещества, в котором молекулы движутся хаотически, расположены на большом расстоянии друг от друга. В твердых телах расстояния между частицами малы, сила притяжения соответствует силе отталкивания. Жидкость – агрегатное состояние, промежуточное между твердым и газообразным. В жидкости частицы расположены близко одна к другой и могут перемещаться друг относительно друга; жидкость, как и газ, не имеет определенной формы. Пла́зма - сильно разряжённый газ, в котором хаотически движущиеся электрически заряженные частицы - электроны и положительно заряженные ядра атомов или ионов.).

4 слайд

Описание слайда:

Агрегатные состояния одного и того же вещества не отличаются химическими св-ми и составом, а физические св-ва их неодинаковы. Пример - H2O(вода). Различия в физических св-вах обусловлены тем, что частицы в газообразных, жидких и твёрдых вещ-вах расположены на неодинаковом расстоянии друг от друга, благодаря чему силы притяжения, действующие между ними, проявляются в неодинаковой степени

5 слайд

Описание слайда:

Основные положения мкт Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными и состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы. Атомы и молекулы находятся в непрерывном хаотическом движении. Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

6 слайд

Описание слайда:

1. Учение об агрегатных состояниях 1.1 Введение Фазовый переход – переход вещества из одного агрегатного состояния в другое Ж-Г парообразование (испарение) Т-Г возгонка (сублимация) Г-Ж сжижение (конденсация) твердое и жидкое Г-Т десублимация (конденсация) состояние - конденсированное Т-Ж плавление Ж-Т отвердевание (замерзание) Фазовые переходы сопровождаются поглощением или выделением теплоты

7 слайд

Описание слайда:

1. Учение об агрегатных состояниях 1.2. Газообразное состояние вещества Газ – агрегатное состояние вещества, в котором составляющие его частицы (атомы, молекулы, ионы) не связаны или связаны очень слабо силами взаимодействия, движутся свободно, заполняя весь предоставленный им объем. Основные характеристики газов: имеют низкую плотность, т.к. частицы далеко отстоят друг от друга не имеют ни собственной формы, ни собственного объема; они полностью заполняют сосуд, в котором находятся, и принимают его форму легко сжимаются.

8 слайд

Описание слайда:

Уравнение состояния идеального газа Идеальный газ – теоретичекая модель газа, в которой пренебрегают размерами и взаимодействием частиц газа и учитывают лишь их упругие столкновения или Идеальный газ - газ в котором отсутствуют силы притяжения между молекулами.

9 слайд

Описание слайда:

частицы газа (атомы, молекулы, ионы) принимаются за материальные точки (т.е. не имеют объема) между частицами отсутствуют силы взаимного притяжения (межмолекулярные силы) взаимодействие между молекулами сводится к абсолютно упругим ударам (т.е. ударам, при которых кинетическая энергия полностью переносится с одного объекта на другой) частицы газа (атомы, молекулы, ионы) имеют объем частицы газа связаны между собой силами взаимодействия, которые уменьшаются с увеличением расстояния между частицами соударения между молекулами не являются абсолютно упругими Идеальный газ Реальный газ 1. Учение об агрегатных состояниях 1.2. Газообразное состояние вещества Реальный газ похож на идеальный при сильном разрежении и при обычных температурах

10 слайд

Описание слайда:

Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона) – соотношение, связывающее между собой значения давления, объема и температуры: где n - число молей газа, R = 8,31431 Дж/моль.К) - газовая постоянная Газ, подчиняющийся этому закону, называется идеальным. Газовые законы

11 слайд

Описание слайда:

Газовые законы При постоянной температуре и массе объем газа обратно пропорционален его давлению Объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре Постоянная Больцмана: k=R/NA=1,38 10-23 Дж/К

12 слайд

Описание слайда:

Идеальные газы обладают одинаковым мольным объемом. при н. у. = 22,4140 дм3 (л) При других температурах и давлениях эта величина будет другой! Газовые законы

13 слайд

Описание слайда:

Не подчиняются законам идеальных газов. Основными причинами отклонений являются взаимное притяжение молекул газа и наличие у них собственного объема Характеристикой отклонений может служить мольный объем Реальные газы

14 слайд

Описание слайда:

Реальные газы Реальные газы не подчиняются уравнению Менделеева –Клапейрона. Уравнение состояния реального газа (уравнение Ван-дер-Ваальса) для одного моля для n молей а – учитывает межмолекулярные взаимодействия; b – учитывает собственный объем молекул. Коэффициенты а и b для разных газов различны, поэтому уравнение Ван-дер-Ваальса не является универсальным. При низких давлениях и высоких температурах уравнение Ван-дер-Ваальса переходит в уравнение состояния идеального газа.

15 слайд

Описание слайда:

Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём. Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Жидкое состояние вещ-ва

16 слайд

Описание слайда:

колебательно-поступательное движение молекул, несжимаемость вследствие внутреннего давления, ассоциация (в случае полярных молекул), наличие ближнего порядка при отсутствии дальнего, поверхностное натяжение, вязкость. Свойства жидкостей:

17 слайд

Название: Физическая химия. Конспект лекций.

Данное учебное пособие предназначено для студентов химических факультетов высших учебных заведений педагогического и технического направления. Изложены основные концепции и процессы, составляющие современную физическую химию. Материал соответствует государственному стандарту. Пособие рекомендовано в помощь студентам при подготовке к экзаменам.

Физическая химия – наука, объясняющая химические явления и устанавливающая их закономерности на основе общих принципов физики.
Общая задача физической химии – предсказание временного хода химического процесса и конечного результата на основании данных о строении и свойствах молекул.
Термин «физическая химия» предложен М. В. Ломоносовым. Им же был прочитан первый курс по собственной книге «Введение в физическую химию». В 1860 г. Н. Н. Бекетов впервые вводит физическую химию в качестве особой учебной дисциплины, читает курс лекций в Харьковском университете, создает кафедру физической химии. В 1887 г. В. Оствальд в Лейпцигском университете организует кафедру физической химии. Он же выпускает первое периодическое издание по физической химии. Годом ранее И. А. Каблуков читает курс в Московском университете. К концу XIX в. определились три основных раздела физической химии: химическая термодинамика, химическая кинетика и электрохимия.
В настоящее время физическая химия полностью сформировалась как наука, включающая в себя химическую термодинамику (термохимию, фазовое равновесие), дополняющую химическую кинетику катализом, а также создала разнообразные физико-химические методы анализа.

Оглавление
Введение
ЛЕКЦИЯ № 1. Идеальный газ. Уравнение состояния реального газа
1. Элементы молекулярно-кинетической теории
2. Уравнение состояния идеального газа
3. Кинетическая теория газов
4. Уравнение состояния реального газа
ЛЕКЦИЯ № 2. Химическая термодинамика
1. Системы и их классификация
2. Термодинамические параметры. Термодинамические показатели. Баланс напряжений
3. Первый закон термодинамики. Калорические коэффициенты. Связь между функциями CP и Cv
4. Изопроцессы в термодинамике. Энергия Гельмгольца
5. Процессы. Второй закон термодинамики
6. Цикл Карно
7. Невозможность вечного двигателя
ЛЕКЦИЯ № 3. Растворы
1. Общая характеристика растворов
2. Концентрация и способы ее выражения
3. Растворимость газов в жидкостях
4. Растворы неэлектролитов. Закон Рауля и его следствия
5. Осмос
6. Фугитивность
7. Закон Генри
ЛЕКЦИЯ № 4. Катализ
1. История открытия явления катализа
2. Механизм каталитического взаимодействия. Виды катализаторов
ЛЕКЦИЯ № 5. Химическое равновесие
1. Понятие химического равновесия. Закон действующих масс
2. Уравнение изотермы химической реакции
3. Уравнения изохоры, изобары химической реакции
4. Расчет KP (метод Темкина-Шварцмана)
5. Расчет равновесного состава химического равновесия
ЛЕКЦИЯ № 6. Химическая кинетика
1. Понятие химической кинетики
2. Факторы, влияющие на скорость химической реакции
ЛЕКЦИЯ № 7. Коррозия металлов
1. Основные понятия и терминология
2. Классификация процессов коррозии металлов
3. Виды коррозионных разрушений
4. Методы защиты от коррозии
ЛЕКЦИЯ № 8. Физико-химический анализ
1. Суть физико-химического анализа
2. Однокомпонентные системы
3. Физико-химические методы анализа состава сплавов
ЛЕКЦИЯ № 9. Термохимия
1. Понятие термохимии
2. Закон Гесса
3. Закон Кирхгоффа. Интегральная форма уравнений Кирхгоффа
ЛЕКЦИЯ № 10. Гальванические элементы
1. Понятие гальванического элемента
2. Химические источники тока
3. Регенерация и утилизация ХИТов
ЛЕКЦИЯ № 11. Электрохимия
1. Понятие электрохимии
2. Электродные процессы
3. Катодные и анодные процессы в гальванотехнике
4. Современные направления в развитии термодинамической и прикладной электрохимии
ЛЕКЦИЯ № 12. Теоретическая электрохимия
1. Ассоциации в растворах электролитов. Понятие о теории сильных электролитов. Активность
2. Термодинамика растворов электролитов. Типы ДЭС
3. Современные подходы к описанию термодинамических свойств растворов электролитов
4. Термодинамические характеристики ионов в растворах электролитов
5. Неравновесные явления в ионной системе
6. Равновесие в системе жидкость – жидкость
7. Понятие ДЭС. Модельные представления о строении ДЭС на границе раздела фаз
8. Проводники первого и второго рода
9. Электроды сравнения
ЛЕКЦИЯ № 13. Электрохимическая кинетика
1. Основные кинетические характеристики и методы их расчетов
2. Уравнения электрохимической кинетики, пределы их применимости
3. Кинетические особенности электроосаждения металлов и сплавов
4. Влияние природы растворителя на скорость электрохимических реакций
5. Электроосмос
6. Электрокапиллярные кривые
7. Электрохимическое перенапряжение (перенапряжение переноса заряда)
8. Факторы, влияющие на перенапряжение водорода. Перенапряжение кислорода
ЛЕКЦИЯ № 14. Применение теоретической и прикладной электрохимии
1. Прикладная электрохимия
2. Электрохимия углерода
3. Биоэлектрохимия
4. Стохастические процессы и самоорганизующиеся системы
5. Исследование явления высокотемпературной сверхпроводимости в оксидах сложного состава
6. Моделирование электрохимических процессов
7. Метод гальваностатических кривых
ЛЕКЦИЯ № 15. Третий закон термодинамики


Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Физическая химия. Конспект лекций. Березовчук А.В. 2009 - fileskachat.com, быстрое и бесплатное скачивание.

Физическая химия изучает взаимосвязь
химических процессов и физических явлений,
которые их сопровождают, устанавливает
закономерности между химическим
составом, строением веществ и их
свойствами, исследует механизм и скорость
химических реакций в зависимости от
условий их протекания.
Физическая химия возникла и развивалась на основе применения
физических методов исследования для изучения химических свойств
веществ, а также изучения влияния химического состава веществ и их
строения на физические свойства.

Основные этапы развития физической химии
Возникновение физической химии как самостоятельной
науки относится к середине XVIII в.
В 1752 – 1754 гг. – первый в мире курс физической химии
(Ломоносов М.В.)
Конец XVIII в. – исследования теплоемкостей и тепловых
эффектов реакций, проведенные Лавуазье и Лапласом (1779
– 1784 гг.)
В 1800 г. Бертло ввел понятие о химическом равновесии и
значении концентрации реагирующих веществ.
В первой половине XIX в. – развиты атомистические
представления Ломоносова в работах Дальтона, ГейЛюссака и Авогадро
1830 г. – найдены законы электролиза (исследования Деви,
Фарадея, Берцелиуса)
1840 г. – русским ученым Гессом был открыт основной
закон термохимии.

1865 г. – Бекетов снова ввел преподавание курса
физической химии в Харьковском университете.
XIX век:
Менделеев (периодический закон 1869 г., а также
исследование давления газов – уравнение состояния
идеального газа);
Гульдберг и Вааге – закон действия масс;
Вант – Гофф – математическое выражение
кинетических закономерностей;
Меншуткин – исследована кинетика химический
реакций в растворах и выяснена роль растворителя (1887
г.);
Аррениус – разработана теория электролитической
диссоциации (1887 г.) и исследовано влияние температуры
на скорость химических реакций (1889 г.).
Дж. Гиббс (1873 – 1878 гг.) – термодинамическая
теория равновесий.
Ле-Шателье в 1881 – 1885 гг. сформулировал
правило, создал количественную теорию
электролитической диссоциации.

XX век:
Резерфорд (1911 г.) – ядерная модель
атома.
Бор (1913 г.) – количественная теория
атома водорода.
Курнаков – новое направление в
исследованиях многокомпонентных систем:
развитие физико-химического анализа – учение о
зависимости свойств физико-химических систем от
состава.
Дебай и Хюккель (1923 г.) – теория
растворов сильных электролитов.
Шилов и Семенов – теория цепных
реакций и теория катализа.

Основные разделы физической химии. Их значение для фармации

Химическая термодинамика
Фазовое равновесие
Растворы
Электрохимия
Кинетика и катализ

Химическая термодинамика. Основные понятия

Химическая термодинамика рассматривает
энергетические аспекты (т.е. взаимные превращения
энергии, связанные с переходом энергии между телами в
форме теплоты и работы) различных процессов и
определяет условия их самопроизвольного протекания.
Предметом классической термодинамики является изучение законов
взаимных превращений различных видов энергии, связанных с переходами
энергии между телами в форме теплоты и работы.
Предметом химической термодинамики является применение законов
классической термодинамики к химическим и физико-химическим явлениям;
она рассматривает тепловые эффекты химических реакций, фазовые
переходы индивидуальных веществ и смесей, химические равновесия.

Объектом изучения в термодинамике
является термодинамическая система.
Системой называют отдельное тело или
группу тел, фактически или мысленно
отделенных от окружающей среды.
Окружающая среда – это все, что
находится в прямом или косвенном
контакте с системой.

Систему называют термодинамической,
если между телами, ее составляющими,
может происходить обмен теплотой и
веществом, и если система полностью
описывается термодинамическими
параметрами.
В зависимости от характера взаимодействия
с окружающей средой различают системы:
Открытая система – это …
и т.д. (самостоятельно)

Совокупность всех физических и химических
свойств системы называют состоянием системы.
Его характеризуют термодинамическими
параметрами, которые бывают:
Интенсивными – это такие свойства, которые не
зависят от массы и которые выравниваются при
контакте систем (температура, давление,
плотность, концентрация, химический потенциал).
Свойства системы, зависящие от массы, называют
экстенсивными (объём, масса, теплоёмкость,
внутренняя энергия, энтальпия, энтропия,
термодинамические потенциалы). Экстенсивное
свойство системы в целом равно сумме
соответствующих экстенсивных свойств отдельных
составляющих, входящих в данную систему
(свойство аддитивности).

Те физические величины, значение которых
полностью определяет состояние системы и
которые поддаются непосредственному
измерению, называются параметрами
состояния.
Функции этих параметров называются
функциями состояния (не поддаются
непосредственному измерению).
Свойства функций состояния:
1. Бесконечно малое изменение функции f является полным
дифференциалом (обозначается df).
2. Изменение f при переходе системы из состояния 1 в
состояние 2 не зависит от пути df
процесса,
f 2 f1 а определяется
лишь начальным и конечным её состояниями:
3. В результате циклического
df 0 процесса функция состояния не
изменяется:

Термодинамические процессы и их классификация

Самостоятельно!

Внутренняя энергия

Внутренняя энергия (U) характеризует общий запас
энергии системы. Она включает все виды энергии
движения и взаимодействия частиц, составляющих
систему: кинетическую энергию молекулярного движения
(поступательного и вращательного); межмолекулярную энергию
притяжения и отталкивания частиц; внутримолекулярную или
химическую энергию; энергию электронного возбуждения;
внутриядерную и лучистую энергию.
Величина внутренней энергии зависит от природы
вещества, его массы и температуры.
Полный запас U измерить невозможно (нет точки
отсчета), поэтому используют изменение внутренней
энергии (dU или U):
U=Uкон-Uнач, Дж/моль.
Внутренняя энергия – функция состояния, экстенсивная
величина.

Энтальпия

Энтальпия – это энергия, которой обладает
система, находящаяся при постоянном
давлении;
энтальпия численно равна сумме
внутренней энергии и потенциальной
энергии системы.
Н = U + pV.
ΔН = ΔU + pΔV.

Теплота и работа

Передача энергии от системы к окружающей среде и наоборот осуществляется
только в виде теплоты (Q) и работы (W) –
две формы передачи
энергии.
Форму передачи энергии от одной части системы к
другой вследствие неупорядоченного
(хаотического) движения молекул называют
теплотой, а путём упорядоченного
(организованного) движения молекул под
действием определённой силы - работой.
Работа и теплота связаны с процессом и являются
функциями процесса, а не состояния.
Измеряются в Дж/моль.

Первое начало термодинамики

Формулировки:
1. Энергия изолированной системы
постоянна.
2. Энергия не исчезает бесследно и не
возникает из ничего, переход ее из одного
вида в другой происходит в строго
эквивалентных количествах.
3. Вечный двигатель первого рода
невозможен, под которым подразумевается
машина, производящая работу без затраты
энергии.

4. Количество теплоты, подведенное к системе
или отведенное от нее, идет на изменение
внутренней энергии и на работу, совершаемую
системой или над системой.
Математическое выражение:
Для конечных изменений: Q= U + W
Для бесконечно малых элементарных процессов:
δQ = dU + δW = dU + pdV + δW’,
где δW – сумма всех видов работ, pdV механическая работа, δW’ – полезная работа (все,
кроме механической). Считая, что δW’ 0, тогда
pdV > δW’:
δQ = dU + pdV.

Первый закон термодинамики в применении к некоторым процессам

1. Изотермические процессы. Т = const.
δQ = dU + δW.
Т.к. U = 3/2 nRT, то dU = 0 и U = 0 тоже.
Тогда: δQ = δW; δW = pdV; W = pdV .
nRT
p
Из уравнения Менделеева – Клайперона V
Т.к.
V2
nRT
W
dV nRT ln
V
V1
p
p1V1 = p2V2, то W nRT ln 1 .
p2
V2
QT = WT nRT ln
V1
p1
nRT ln
p2
.
.

2. Изохорные процессы. V = const.
δQ = dU + δW.
δW = pdV; а т.к. V = const, то dV = 0 и V = 0.
Тогда δW = pdV = 0,
и для конечных изменений W = p V = 0.
Первый закон термодинамики в изохорных
процессах будет иметь следующий вид:
δQV = dU
для конечных изменений:
QV = U.

3. Изобарные процессы. р = const.
δQ = dU + δW;
δW = d(рV);
δQ = dU + d(рV) или δQ = d(U + pV) = dH,
т.к. Н = U + pV.
Для конечных изменений:
QР = U + р V = Н.
В случае идеального газа работа
вычисляется: W = р V = nR T.







Вехи истории физической химии Термин "физическая химия" принадлежит М.В. Ломоносову, который в 1752 впервые прочитал студентам Петербургского университета курс «Физической химия». Ему принадлежит след. определение: "Физическая химия есть наука, объясняющая на основе положений и опытов физики то, что происходит в смешанных телах при химических операциях".


Вехи истории физической химии В 1887 г. Оствальд был назначен первым профессором физической химии в Лейпцигском университете, где в числе его ассистентов и коллег работали Якоб Вант-Гофф, Сванте Аррениус и Вальтер Нернст. В этом же году Оствальд основал «Журнал физической химии» ("Zeitschrift für physikalische Chemie")


Деятельность провизора Соответствующие разделы физической химии или физико- химические методы анализа Промышленное производство лекарственных веществ Учение о химическом равновесии, химическая кинетика и катализ Извлечение лекарственных веществ из растительного и животного сырья Учение о фазовом равновесии, (экстрагирование), учение о растворах, учение о диффузии Приготовление лекарственных препаратов и лекарственных форм Свойства дисперсных систем, фазовые равновесия, поверхностные явления, свойства растворов и др. Определение физической совместимости лекарственных веществ Фазовые и химические равновесия, рас­творы, термический анализ Анализ лекарственных веществ в субстанции, в лекарственных формах, в природных объектах, в экстрактах Физико-химические методы анализа: опти­че­ские - спектрофотометрия, фотоколори­ме­т­рия, нефелометрия, турбидиметрия и т. д.; электрохимические - потенциометрическое, кондуктометрическое, амперометрическое титро­вание, полярография и т.д. хроматографические - адсорбционная, рас­пре­делительная хроматография, колоночная, тонкослойная, бумажная, элек­ трофо­ре­тическая хроматография и др. Определение и продление сроков годности лекарственных препаратов Кинетика, катализ, фотохимия Выбор способа введения лекарств в организм человека Учение о растворах (осмос, взаимная растворимость веществ), учение о фазовом равновесии (экстракция, распред­еление, диффузия), кислотно-ос­нов­­ный катализ, кинетика, свойства дисперсных систем Исследование поведения лекарственных веществ в организме Диффузия, свойства гелей, свойства повер­х­ностно--активных и высокомолекулярных веществ, кинетика, учение о растворах, учение о химическом равновесии и др.




ОСНОВНЫЕ ПОНЯТИЯ ТЕРМОДИНАМИКИ Система – совокупность веществ (компонентов) в указанном фазовом состоянии, находящихся во взаимодействии и отделённых от окружающей среды граничной поверхностью Гомогенной называется однородная с., внутри которой нет поверхности раздела между частями системы с различными свойствами (ж. или тв. растворы, сухие газовые смеси) Гетерогенные с. имеют поверхности раздела между частями с различными свойствами и состоят из двух или более фаз.


ОСНОВНЫЕ ПОНЯТИЯ ТЕРМОДИНАМИКИ Фаза – совокупность всех гомогенных частей системы, одинаковых по химическому составу, структуре и по всем интенсивным свойствам и отделённых от других частей поверхностью раздела Компонент – самостоятельно существующее химическое соединение, входящее в состав фазы Открытая система Закрытая система Изолированная система


ОСНОВНЫЕ ПОНЯТИЯ ТЕРМОДИНАМИКИ Экстенсивные свойства зависят от количества вещества (объем, теплоёмкость, энтропия) Интенсивные свойства не зависят от количества вещества (плотность, температура) Функции состояния – свойства, которые зависят от начального и конечного состояния и не зависят от пути перехода.


ОСНОВНЫЕ ПОНЯТИЯ ТЕРМОДИНАМИКИ Внутренняя энергия (U) – функция состояния, характеризующая общий запас энергии системы Работа (W) – макроскопическая форма передачи энергии (в форме кинетической энергии направленного движения частиц) Теплота (Q) – передача энергии путём столкновения молекул (теплообмена). Микроскопическая (неупорядоченная) форма передачи энергии. ТЕПЛОТА И РАБОТА ЯВЛЯЮТСЯ ФУНКЦИЯМИ ПРОЦЕССА!




НУЛЕВОЙ ЗАКОН ТЕРМОДИНАМИКИ 1931 г. Фаулер СЛИ СИСТЕМЫ «А» И «В» КАЖДАЯ НАХОДЯТСЯ В ТЕПЛОВОМ РАВНОВЕСИИ С СИСТЕМОЙ «С», ТО МОЖНО УТВЕРЖДАТЬ, ЧТО «А» И «В» НАХОДЯТСЯ В ТЕПЛОВОМ РАВНОВЕСИИ ДРУГ С ДРУГОМ Данный постулат лежит в основе измерений температуры






ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ (ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ) Если система не совершает работы, то любое изменение внутренней энергии осуществляется только за счёт поглощения или выделения теплоты, т.е. при w = 0 U = Q Если система не получает и не отдаёт теплоты, то совершаемая ею работа производится только за счёт убыли внутренней энергии, т.е. при Q = 0 U = w или w = U - отсюда следует, что невозможно создать вечный двигатель (механизм) бесконечно долго произво­дя­щий работу без притока энергии извне








ТЕРМОХИМИЯ (основные понятия) Теплота образования H f (от formation - образование) Теплота сгорания H с (от combustion - сгорание) Стандартные условия (1 атм = Па), 298 К (25 о С) ЕСЛИ термохимическая или термодинамическая величина приведена для стандартного состояния, то это отмечается знаком « о »: H о f ; H o с; U о








ВТОРОЕ СЛЕДСТВИЕ ЗАКОНА ГЕССА Если совершаются две реакции, приводящие из различных начальных состояний к одинаковым конечным, то разность между их тепловыми эффектами равна тепловому эффекту реакции перехода от одного начального состояния к другому начальному С (гр) + О 2 = CO 2 393,51 к Дж/моль С (алм) + О 2 = CO 2 395,39 к Дж/моль


ТРЕТЬЕ СЛЕДСТВИЕ ЗАКОНА ГЕССА Если совершаются две реакции, приводящие из одинаковых начальных состояний к различным конечным, то разность между их тепловыми эффектами равна тепловому эффекту реакции перехода из одного конечного состояния к другому конечному С (гр) + О 2 CO 2 393,505 к Дж/моль CO + 1/2 O 2 CO 2 282,964 к Дж/моль С (гр) + 1/2 O 2 CO + H r H r = 393,505 (282,964) = 110,541 к Дж/моль.

















ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ Теплота не может самопроизвольно передаваться от более холодного тела к более горячему Энергия различных видов стремится перейти в теплоту, а теплота стремится рассеяться Однако рассеяние энергии среди компонентов системы может быть вычислено методами статистической термодинамики








ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ для идеально упорядоченного кристалла при абсолютном нуле температуры, когда тепловое движение частиц отсутствует, термодинамическая вероятность W равна 1. Значит, в соответствии с уравнением Больц­мана, его энтропия равна нулю: S 0 = k ln 1 = 0






















- -


ХИМИЧЕСКОЕ РАВНОВЕСИЕ 1. Термодинамический признак равновесия (энергии Гиббса и Гельмгольца не изменяются) 2. Кинетический признак равновесия (скорости прямой и обратной реакций одинаковы) ЗАДАЧИ: оптимизация состава равновесной смеси веществ; расчёт равновесного выхода продуктов химической реакции











Принцип Ле-Шателье ЕСЛИ СИСТЕМА НАХОДИТСЯ В СОСТОЯНИИ РАВНОВЕСИЯ, ТО ПРИ ДЕЙСТВИИ НА НЕЁ СИЛ, ВЫЗЫВАЮЩИХ НАРУШЕНИЕ РАВНОВЕСИЯ, СИСТЕМА ПЕРЕХОДИТ В ТАКОЕ СОСТОЯНИЕ, В КОТОРОМ ЭФФЕКТ ВНЕШНЕГО ВОЗДЕЙСТВИЯ ОСЛАБЕВАЕТ Принцип Ле-Шателье определяет смещение химических и фазовых равновесий при изменении температуры, давления или состава системы


Урав­не­ния изотермы химической реакции Якоб Вант-Гофф () (ученик Фридриха Кекуле) «ФАНТАСТИЧЕСКАЯ ЧЕПУХА!» Адольф Кольбе «Поживем- увидим…»






ОСНОВНЫЕ ПОНЯТИЯ Фаза – совокупность всех гомогенных частей системы, одинаковых по химическому составу, структуре и по всем интенсивным свойствам и отделённых от других частей поверхностью раздела Компонент – самостоятельно существующее химическое соединение, входящее в состав фазы Поверхность раздела (межфазная граница)




ПРАВИЛО ФАЗ ГИББСА С = 0 - система называется нонвариантной; изменение любого параметра состояния приводит к изменению числа фаз. С = 1 - система называется моновариантной; только один из параметров может быть изменён без изменения числа фаз. С = 2 - система называется бивариантной.





Для фазовых полей С = К Ф + 2 = = 2 Для линий равновесия С = К Ф + 2 = = 1 Для тройной точки С = К Ф + 2 = = 0


РАСТВОРЫ 1. Термодинамически устойчивые гомогенные молекулярно- диспесные системы 2. Однофазные системы переменного или гетерогенного состава, состоящие из двух или более компонентов. Как правило выделяют растворитель и растворенное вещество. Основные виды – растворы неэлектролитов и растворы электролитов.











Первый закон Коновалова Жидкости закипают тогда, когда давление пара над ними становится равным атмосферному давлению. Чистые жидкости кипят при постоянной температуре (Т кип) В растворах иначе: Насыщенный пар по сравнению с равновесным раствором относительно богаче тем компонентом, добавление которого к системе повышает полное давление пара. Пар в равновесной бинарной системе по сравнению с жидкостью обогащён легкокипящим компонентом.
Второй закон Коновалова Экстремумы на диаграмме кипения отвечают такому равновесию раствора и насыщенного пара, при котором составы обеих фаз одинаковы Азеотропными растворами называют растворы, которые при определённом соотношении компонентов, имеют состав пара одинаковый с составом жидкости (т.е. смесь ведёт себя как чистое вещество).