Информационная поддержка школьников и студентов
Поиск по сайту

Нефть и газ. Месторождения нефти и газа в рф Где сосредоточены основные нефтегазовые месторождения

Общая площадь всего арктического шельфа превышает 26 млн км2. Площадь перспективной акватории российского сектора Арктики составляет не менее 5 млн км2. Почти все пространство Арктики расположено на блоке дорифейской континентальной коры. Согласно другой точке зрения существование дорифейской платформы отрицается. Если будет доказано существование дорифейской платформы, то к России отойдет значительная часть Северного Ледовитого океана. Таким образом, вопрос о дорифейской платформе имеет не только научную, но и экономическую значимость.

Последующие события (рифтогенез, формирование зон каледонид, мезозойский тектогенез, раскрытие океанических котловин и др.) определили формирование современной структуры этого региона. В пределах арктического шельфа выделились два крупных блока земной коры. Евразийский (Норвежско-Баренцево-Карский) блок охватывает одноименные моря, западную часть моря Лаптевых, архипелаги и острова (Шпицберген, Земля Франца-Иосифа, Северная Земля, Новая Земля и др.). Амеразийский блок включает восточную часть моря Лаптевых, Восточно-Сибирское море с Новосибирскими островами и Чукотское море с островами Врангеля и Геральда. Блоки разделены рифтовой зоной подводного хребта Гаккеля, ответвлениями этой зоны на юге, а также смежными с хребтом глубоководными котловинами. На режим и особенности нефтегазоносности выделенных в пределах этих блоков осадочных бассейнов существенное влияние оказывал рифтогенез.

В пределах арктической акватории выделяются крупные опущенные участки с повышенной мощностью отложений и поднятия, перспективные для поиска месторождений нефти и газа. На основе тектонического и литолого-стратиграфического анализов выявлены участки, которые можно рассматривать как отдельные провинции, включающие эти осадочные бассейны. Некоторые из них являются доказанными нефтегазоносными, другие рассматриваются как весьма перспективные .

Нефтегазоносные бассейны западного (евразийского) блока содержат значительные ресурсы нефти и газа, что доказано открытием уникального Штокмановского газового месторождения в Баренцевом море, нефтегазовых месторождений в Печорском море (Приразломное, Северо-Долгинское и другие), газовых в Карском море (Русановское и Ленинградское). В норвежском секторе Баренцева моря залежи углеводородов приурочены к нефтегазовому месторождению Сновит и нефтяному месторождению Голиас. По оценкам, проведенным ВНИИокеангеологией, ВНИГРИ и другими организациями, российская часть западно-арктического шельфа, включая Баренцево, Печорское и Карское моря, составляет более 75 % разведанных запасов всего российского шельфа - 8,2 млрд т усл. топлива. В пределах восточного (амеразийского) сектора российской Арктики еще не пробурено ни одной скважины и не открыто ни одного месторождения нефти и газа, но перспективы имеются, судя по наличию крупных месторождений в аналогичных толщах смежных районов Аляски. В восточной части шельфа Чукотского моря американскими компаниями пробурено несколько скважин, показавших признаки нефтеносности.

Согласно принятой в России точке зрения, основная часть акватории Северного Ледовитого океана и сопредельная территория суши Арктики расположена на дорифейской коре континентального типа. Глубина подошвы земной коры (граница Мохоровичича) изменяется от 40-42 км, уменьшаясь под зонами континентального рифтогенеза до 33-35, иногда до 25 км. Граница Конрада фиксируется на глубине 20-25 км.

В геологической истории бассейнов Арктики на удаленных участках выделяется несколько этапов рифтогенеза, часто синхронных . Синхронность проявления рифтогенеза позволяет наметить региональные геологические зоны, протягивающиеся на сотни и тысячи километров и характеризующиеся сходной геологической историей. В итоге удается составить прогноз нефтегазоносности в разобщенных, на первый взгляд, тектонических блоках.

На рисунке 5 представлена геоморфоогическая карта Северного Ледовитого океана.

Рис. 5.

В плане нефтегазоносности каждому осадочно-породному бассейну соответствует нефтегазоносный бассейн. В пределах западно-арктического шельфа выделяются Баренцевоморский, Тимано-Печорский, Южно-Карский, Западно-Сибирский, Северо-Карский, Енисей-Хатангский, Южно-Лаптевский нефтегазоносные бассейны, на территории восточного сектора российской Арктики - Восточно-Сибирский и Чукотский.

Баренцевоморский нефтегазоносный бассейн наиболее изучен, в его пределах выявлены только газовые и газоконденсатные месторождения (Штокмановское, Ледовое, Лудловское, Северо-Кильдинское и Мурманское).

В пределах акваториальной части Тимано-Печорского нефтегазоносного бассейна выявленные месторождения приурочены к зонам продолжения авлакогенов: Варандей-Адзьвинского (Варандей-море, Медынское-море, Долгинское и Приразломное) и Печоро-Колвинского (Поморское газовое). Северо-Гуляевское нефтегазовое месторождение связано с акваториальным продолжением Хорейверской впадины, а нефтяные Песчаноозерское и Ижемко-Таркское месторождения - с акваториальным продолжением Малоземельско-Колгуевской моноклинали.

В пределах Южно-Карского и севера Западно-Сибирского нефтегазоносных бассейнов выявлены уникальные и крупные месторождения на суше п-ова Ямал, а в акваториальной части открыты два уникальных месторождения газа (Русановское и Ленинградское) в Обской и Тазовской губах.

Наиболее благоприятными для формирования нефтегазоносности бассейна оказываются зоны рифтогенных прогибов и сформированные на их месте «сверхглубокие депрессии».

Преимущественно газовые месторождения связаны с инверсионными антиклинальными поднятиями. Они располагаются цепочками в пределах валов и образуют линейные зоны нефтегазонакопления. К таким перспективным зонам в пределах Баренцевоморской зоны рифтогенеза следует отнести все инверсионные структуры (Демидовско-Лудловский мегавал, Штокмановская седловина, поднятия Центральной банки и Ферсмана).

В пределах Южно-Карско-Ямальской зоны рифтогенеза наиболее перспективны на поиски нефтегазовых месторождений инверсионные валы (Нурминский, Малыгинский, Ямбургский, Гыданский, Преображенско-Зеленомысовский, Новопортовский, Уренгойский, Тазовский, Часельский, Верхне-Толькинский, Харампурский).

Интересной, с точки зрения нефтегазоносности, является область развития соляного тектогенеза в пределах Центрально-Баренцевской зоны рифтогенеза. К соляным куполам могут быть приурочены газовые скопления в подсолевом комплексе или же небольшие нефтяные скопления в надсолевом комплексе отложений.

Для формирования нефтяных скоплений наиболее благоприятными оказываются бортовые участки крупных прогибов или отдельные сводовые поднятия в пределах зон рифтогенеза, претерпевшие значительный подъем, который мог повторяться несколько раз в течение геологической истории развития бассейна. В результате мощный мезозойский разрез оказался размытым, а палеозойский разрез осадочного чехла залегает на глубине, доступной для бурения. К таким перспективным структурам на нефть можно отнести свод Федынского, а также бортовые участки Адмиралтейского вала . О возможности сохранения в палеозойских породах нефти свидетельствуют находки в них жидких битумов на крайнем севере Новой Земли, на о-ве Пионер, в западной части Енисей-Хатангского прогиба, на Северной Земле и Таймыре.

В пределах сверхглубоких депрессий максимальной продуктивностью обладают «тектонические узлы», то есть участки, которые попадают в область пересечения зон континентального рифтогенеза разной направленности, а возможно, и разного возраста. Эти «тектонические узлы» отражают пересечение зон с высокой глубинной энергией, что вызывает аномальность всех происходящих в них процессов, в том числе и нефтегазообразования и последующей миграции углеводородов. К таким участкам в пределах Баренцевоморского бассейна можно отнести область пересечения палеозойской субширотной зоны рифтогенеза и наложенной на нее субмеридиональной зоны триасового рифтогенеза, протягивающейся вдоль Новоземельской складчатой области и сформировавшей Южно-Баренцевскую и Северо-Баренцевскую впадины. В эту область попадают гигантское Штокмановское и два крупных месторождения газа (Лудловское и Ледовое).

В пределах Южно-Карско-Западно-Сибирского бассейна к таким тектоническим узлам можно отнести участки пересечения Енисей-Хатангского прогиба как с Южно-Карско-Ямальской зоной рифтогенеза, так и с рифтом моря Лаптевых. В пределах Западной Сибири к подобному тектоническому узлу приурочена большая часть газовых гигантов Ямала.

В западной части моря Лаптевых наиболее перспективны для поисковых работ на нефть и газ зона пересечения двух рифтогенных прогибов, зоны рифтогенеза моря Лаптевых и восточной части Енисей-Хатангского прогиба.

Вблизи пересечений рифтовых прогибов находится крупное Трофимовское поднятие, расположенное частично в дельте Лены, намечены и другие благоприятные структуры.

Перспективы Северо-Чукотского прогиба восточного сектора Российской Арктики оцениваются в основном, по аналогии с Аляской, на основании предполагаемой близости характера разрезов. В северной части Аляски известно около 40 месторождений, из которых разрабатывается около 10. Крупнейшим месторождением в бассейне арктического склона является месторождение Прадхо-Бей, приуроченное к поднятию размером 21?52 км2. Начальные промышленные запасы этого месторождения составляли 1,78 млрд т нефти и 735 млрд м3 газа. Основная залежь находится в пермотриасовых отложениях, песчаниках триаса и нижних горизонтах юры (формация Ивишак группы Садлерочит и вышележащие формации Шублик и Саг-Ривер). Вокруг Прадхо-Бей расположена целая группа более мелких месторождений-сателлитов. Западнее находится месторождение Купарук-Ривер, запасы нефти в песчаниках неокома оцениваются в 200 млн т. В скважинах, пробуренных на шельфе Чукотского моря, известны многочисленные нефте- и газопроявления из известняков формации Лисберн в скв. Попкорн и Даймон; из формации Ивишак триасового возраста в скв. Клондайк получены притоки нефти. Многочисленные нефтепроявления отмечены выше мелового несогласия в породах свит Пебл Шейл, Торок и Нанушук.

В разрезе Чукотского моря выделяются благоприятные структуры, в том числе крупные линейные поднятия, с которыми могут быть связаны зоны нефтегазонакопления. Широко развиты зоны выклинивания и стратиграфического срезания . В пределах Северо-Чукотского прогиба есть благоприятные для нефтегазонакопления структурные формы многих типов (складки, зоны литологического выклинивания, стратиграфического срезания, возможно, диапировые складки), которые являются объектами поиска нефти и газа. Этот прогиб можно рассматривать как нефтегазоносный бассейн, представляющий в восточном секторе российской Арктики наибольший интерес . Перспективы нефтегазоносности следует связывать с надвигами Врангелевско-Геральдской зоны поднятий, где на доступной глубине могут быть вскрыты отложения триаса и верхнего палеозоя. Глинистые породы альба (формация Торок на Аляске) служат эффективным флюидоупором.

Перспективы Северо-Чукотского, Восточно-Сибирского прогибов, котловины Подводников и, возможно, Амундсена и других сверхглубоких впадин Восточной Арктики связаны, прежде всего, с верхнемеловыми и кайнозойскими отложениями. Их мощность превышает 10 км. Помимо центральных частей прогибов перспективами обладают также и их бортовые зоны, такие как склоны поднятий Де-Лонга и Северо-Чукотского. Кроме того, высокие перспективы имеют и инверсионные поднятия палеозойских прогибов там, где они доступны для бурения (Врангелевско-Геральдская зона поднятий).

Приведенный выше обзор показывает, что в центральных, наиболее опущенных частях осадочных бассейнов Арктики сосредоточены главные потенциальные ресурсы газа и нефти. Преимущественно газоносны наиболее опущенные части бассейнов из-за вытеснения нефтяных флюидов газовыми в бортовые зоны прогибов. Нефтеносность связана с мезо-кайнозойским комплексом северо-восточного шельфа, а также с относительно приподнятыми блоками, не испытавшими погружения на глубину 5-6 км западного сектора Арктики. Эти закономерности в пределах отдельных структур различной природы могут быть выявлены только при региональном, широком подходе к изучению Арктики и рассмотрении ее как единого целого на протяжении длительной истории геологического развития

Российская Федерация по праву считается одним из ведущих мировых экспортёров нефти.

Ежегодно в стране добывается порядка 505 000 000 тонн «чёрного золота».

На сегодняшний день разрабатываемые по объёмам разведанных природных запасов нефти вывели Россию на 7-е месте в мире.

Основные месторождения- Это Саматлорское, Ромашкинское, Приобское, Лянторское, Фёдоровское, Мамонтовское

Самотлорское

Самое крупное месторождение нефти в России находится на 6-м месте в мировом списке. Долгое время его местоположение считалось государственной тайной.

В настоящий момент эта информация больше не является секретной. Разработки на нём ведутся уже более 45 лет, его использование продлится до конца ХХ1 века.

  • Разведано в 1965 году. Экспедицией руководил В.А. Абазаров.
  • Начало эксплуатации: 1969 г.
  • Местоположение: Нижневартовский район Ханты-Манскийского АО.
  • Геологические запасы: около 7 100 000 000 тонн.
  • Извлекаемые запасы: около 2 700 000 000 тонн.
  • Способ добычи: буровые вышки на искусственно созданных островах, кустовое бурение.

За годы эксплуатации было добыто более 2 300 000 000 тонн углеводородов. В настоящий момент на месторождении проводятся работы по интенсификации добычи. Планируется построить более 570 новых скважин. Основная часть разработок принадлежит НК «Роснефть».

Ромашкинское

Относится к Волго-Уральскому нефтегазоносному бассейну. Является стратегически важным для страны. В течение нескольких десятилетий подряд служит своеобразным «полигоном» для испытания новых технологий нефтедобычи.

  • Открыто в 1948 году бригадой С. Кузьмина и Р. Халикова.
  • Начало эксплуатации: 1952 г.
  • Местоположение: Лениногорский район, г. Альметьевск, Татарстан.
  • Геологические запасы: около 5 000 000 000 тонн.
  • Извлекаемые запасы: около 3 000 000 000 тонн.
  • Способ добычи: метод внутриконтурного заводнения, бурение турбобуром на воде.

Из недр месторождения уже извлечено более 2 200 000 000 тонн нефти. На 2010 год объём разведанных запасов составляет 320 900 000 тонн. Разработку ведёт «Татнефть».

Приобское

Многопластовое низкопродуктивное месторождение. Обладает большим потенциалом, но для его реализации требуются значительные финансовые вложения. Разработку осложняет заболоченность территории, затопляемость, близкое расположение мест нереста рыб.

  • Разведано в 1982 году.
  • Начало эксплуатации: 1988 год.
  • Местоположение: Ханты-Мансийский АО, г. Ханты-Мансийск.
  • Геологические запасы: 5 000 000 000 тонн.
  • Извлекаемые запасы: 2 400 000 000 тонн.
  • Способ добычи: технологии гидравлического разрыва пластов, бурение на воде.

Месторождение относится к Западно-Сибирскому нефтегазоносному бассейну. Более 80% его находится в пойме реки Обь. Уже извлечено около 1 350 000 000 тонн углеводородов. Разработку ведут компании «Роснефть» и «Газпром нефть».

Лянторское

Считается одним из самых сложных для разработки российских месторождений. Относится к Западно-Сибирской нефтегазоносной провинции.

  • Разведано в 1965 году.
  • Начало эксплуатации: 1978 год.
  • Местоположение: Ханты-Мансийский АО, Сургутский район, г. Лянтор.
  • Извлекаемые запасы: 380 000 000 тонн.
  • Способ добычи: девятиточечная обращённая система разработки, фонтанный способ эксплуатации скважин.

Основной оператор месторождения – ОАО «Сургутнефтегаз».

Фёдоровское

Относится к Сургутскому своду, юго-восточная часть Чернореченского поднятия. Входит в класс гигантских месторождений.

  • Открытие: 1971 год.
  • Начало эксплуатации: 1971 год
  • Местоположение: Ханты-Мансийский АО, г. Сургут.
  • Геологические запасы: 2 000 000 000 тонн.
  • Извлекаемые запасы: 189 900 000 тонн.
  • Способ добычи: горизонтальное бурение, ГРП, физико-химический метод обработки призабойной зоны, и т.д.

Является основой ресурсной базы «Сургутнефтегаза». С момента ввода в эксплуатацию на месторождении добыто более 571 000 000 тонн нефти.

Мамонтовское

Относится к классу крупных. Залежи углеводородов находятся на глубине примерно 2 – 2,5 км.

  • Разведано в 1965 году. Руководитель экспедиции – И.Г. Шаповалов.
  • Начало эксплуатации: 1970 год.
  • Местоположение: Ханты-Мансийский АО, г. Пыть-Ях.
  • Геологические запасы: 1 400 000 000 тонн.
  • Извлекаемые запасы: 93 400 000 тонн.

По своему геологическому строению месторождение является сложным. С начала эксплуатации выкачано 561 000 000 тонн нефти. Разработка в данный момент ведётся компанией «Роснефть».

Большое количество нефти проливается при её перевозке, читайте по ссылке , какие экологические проблемы возникают в связи с этим у Азовского моря

Разведка продолжается

В нашей стране есть перспективные места, где добыча может достичь больших объемов.

В 2013 году было открыто месторождение Великое. По первоначальным оценкам, геологические запасы нефти в нём приближаются к 300 000 000 тонн. Точной информации о том, какая часть из этого объёма углеводородов является извлекаемой, пока нет.

Великое – одно из самых крупных нефтяных месторождений, открытых на суше за последние десятилетия. Лицензию на его разработку получила компания «АФБ». Вероятно, в качестве партнёров она будет привлекать и других операторов.

В 2015 году планируется начать освоение Баженовской свиты – это самое крупное

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат по дисциплине «Геология и нефтегазоносные акватории»

Баренцевоморская газонефтеносная провинция

Баренцевоморская газонефтеносная провинция (рис.1) расположена в пределах шельфа Баренцева моря западной Арктической части России. В геотектоническом отношении приурочена к эпикаледонской окраинно-континентальной шельфовой плите общей площадью свыше 1,3 млн км2. С севера она обрамляется протяженной линейно вытянутой системой геоантиклиналей и срединных массивов Гренландско-Карской зоны, на западе и северо-западе Свальбардской антеклизой, включающей поднятия островов Медвежий, Северо-Восточная Земля. На юго-западе провинция ограничена северо-восточным склоном Балтийского щита, на юге системой протяженных ступенчатых сбросов отделяется от Тимано-Печорской синеклизы, а на юго-востоке и востоке Урало-Новоземельской орогенной зоной отделяется от Западно-Сибирской плиты.

Рис.1. Баренцевоморская газонефтеносная провинция

Нефтегазоносные области: А - Южно-Баренцевская, Б - Центрально-Баренцевская, В - Северо-Баренцевская, Г - Адмиралтейская, Д - Северо-Карская.

Месторождения: 1 - Штокмановское, 2 - Лудловское, 3 - Северо-Кильдинское, 4 -- Мурманское

Осадочный чехол Баренцевоморской провинции залегает на гетерогенном складчатом преимущественно докембрийском фундаменте, представленном архейско-протерозойскими кристаллическими породами.

Разрез осадочного чехла, как и фундамента, изучен фрагментарно. В его строении принимают участие осадочные породы: нижне-верхнепалеозойского терригенно-карбонатного, верхнепермско-триасового преимущественно терригенного и юрско-мелового терригенного комплексов суммарной мощностью по данным сейсморазведки до 18 км.

Палеозой по данным глубоких скважин и выходам на поверхность представлен терригенными и карбонатными отложениями кембрия, ордовика, силура, девона, карбона и перми различной мощности. Особенно широко в акватории Баренцева моря развиты мезозойские отложения: триаса, представленного почти всеми отделами, юры, терригенные отложения которой наиболее полно вскрыты в южной части Баренцева моря, и мела.

Кайнозой распространен неравномерно. Мощные разрезы терригенных отложений палеогена и эоцена изучены только в северо-западных и западных районах Баренцева моря. Для Баренцева моря характерны нерасчлененные отложения плиоцена и четвертичной системы мощностью 0 -- 50 м.

В Баренцевоморской провинции можно выделить Западно-Баренцевскую, Южно-Баренцевскую, Центрально-Баренцевскую, Восточно-Баренцевскую газонефтеносные области и перспективную Северо-Баренцевскую область.

В 1982 г. в Баренцевоморской газонефтеносной провинции в триасовых отложениях были открыты Мурманское и Северо-Кильдинское газовые месторождения. Однако, основные перспективы газонефтеносности следует связывать с юрскими терригенными отложениями. В 1988 г. в центральной части Баренцева моря было открыто уникальное Штокмановское газоконденсатное месторождение (с запасами около 3 трлн м 3). В юрских отложениях в 1990 г. было открыто крупнейшее Лудловское газовое месторождение.

Наиболее продуктивными являются пласты Ю 0 (келловей), Ю 1 (ааленский-байосский), Ю 2 , (нижняя юра).

Мурманское газовое месторождение имеет сложное многопластовое строение. Всего выделено около 20 продуктивных пластов песчаников ранне-средпетриасового возраста. По запасам месторождение относится к крупным.

Штокмановское газоконденсатное месторождение открыто в 1988 г. Месторождение по запасам УВ уникальное. Размеры структуры по замкнутой изогисе-2075 (Ю 3) 48*36 км, амплитуда 295 метров, по замкнутой изогипсе -2470 (Ю 2) - 47*33 км, амплитуда 305 метров. Ловушка пластовая сводовая. Основной газоносный комплекс -- юрские и нижнемеловые отложения, представленные песчаниками, алевролитами и аргиллитами. Глубина залегания продуктивных пластов в сводовой части структуры 600--2920 м. Продуктивные пласты расположены на глубине 2317 м (I 2 пл. Ю 3), 2237 м (I 2 пл. Ю 2), 2108 м (I 2 пл. Ю 1) и 1814 м (I 3 пл. Ю 0). Максимальные дебиты газа получены из пласта Ю 0 1665 тыс. м 3 /сут.

Значительные объемы осадочного чехла, сосредоточенные в отрицательных структурах, позволяют предполагать высокий нефтегазогенерирующий потенциал провинции, а обширные поднятия, примыкающие к этим очагам генерации и содержащиеся в разрезе региональные коллекторы и покрышки, говорят о больших аккумулирующих возможностях в пределах всей Баренцевоморской провинции, что дает основание рассматривать ее как одну из наиболее перспективных экваториальных провинций России. Особый интерес представляет Штокмановско-Лунинский газонефтеносный район, в который входят Штокмановско-Ледовая, Лудловская и Лунинская седловины. По величине запасов два месторождения района (Штокмановское, Ледовое) относятся к уникальным и одно (Лудловское) -- к крупным.

геологический акватория газонефтеносный

Акватория Каспийского моря

Акватория Каспийского моря (рис. 2) находится в области разновозрастной складчатости. Большой Кавказский хребет разделяет Каспийское море на северную и южную части, которые имеют различную тектонику. В южной части акватории распространена альпийская складчатость. Встречаются такие тектонические структуры, как антиклинорий и межгорная впадина. На севере акватории фундамент имеет герцинский, а чехол -- юрско-неогеновый возраст. Каспийское море состоит из 5 секторов: 1) российский (Ракушечное, Самарское, Хвалынское, Карчагинское и Филоновское месторождения); 2) казахстанский (Кашаганское месторождение); 3) туркменский; 4) азербайджанский (месторождения Азери, Чираг, Генюшли, Шах-Дениз); 5) Иранский.

В северной части акватории на герцинском фундаменте залегают породы юрского возраста. Разрез чехла начинается с отложений средней юры, мощность которой до 350 метров. Выше залегают породы нижнего мела (песчаники, глины, алевролиты, соли, известняки) мощностью до 1750 метров и верхнего мела (трещиноватые известняки, мергели) -- 350 метров. Далее располагаются породы палеогенового возраста палеоценовой (глины, мергели), эоценовой (глины, мергели, известняки) и олигоценовой (глины, сидериты, песчаники, мергели) систем мощностью 735 метров. Выше -- неогеновые отложения нижнего миоценового отдела (глины, мергели, песчаники, прослои известняков) мощностью до 1090 метров, верхнего миоценового отдела (глины, песчаники, оолитовые известняки, ракушечники, мергели) -- 2050 метров и плиоценового отдела (песчаники, глины, конгломераты, туфы, галечники) -- 1220 метров. Далее распространены четвертичные плейстоценовые породы Q1, Q2, Q3 и Q4 (мощность до 350 метров), приуроченные к трансгрессивным циклам Каспийского моря:

бакинская трансгрессия Q1 -- бакинский ярус (глины, алевролиты, пески). Трансгрессия проникала по Малышевскому прогибу в Ставропольский район;

хазаровская трансгрессия Q2 (аллювиальные отложения: зелено-серые пески, глины);

хвалынская трансгрессия Q3 (глины, пески). При ней море достигло наибольших размеров;

новокаспийская трансгрессия Q4 (аллювий, эоловые отложения).

На территории северной части Каспийской акватории находятся месторождения им. Корчагина, Хвалынское, Ракушечное. Продуктивные отложения в юре, меле палеогене и неогене.

Нефтегазоконденсатное месторождение им. Корчагина открыто в 2000 году, разрабатывается с 2009 года, имеет 6 залежей в средней и верхней юре, нижнем меле и палеогене. Глубина моря в районе месторождения 11-13 метров.

Хвалынское месторождение открыто в 2000 году. На месторождении открыты три газоконденсатных залежи в альбских I3, барремских I3 и титонских K1 отложениях и нефтяная залежь в киммериджских K1 отложениях. Продуктивные отложения на глубине 3021-3040 метров. Глубина моря в районе месторождения 25-30 метров.

Ракушечное газовое месторождение имеет три залежи в нижней, верхней юре и нижнем меле (альб).

Карачаганакское нефтегазоконденсатное месторождение расположено в Бурлинском районе Западно-Казахстанской области, в 150 км к востоку от г. Уральска. Открыто в 1979 г. Приурочено к крупному поднятию, представленному рифовой постройкой высотой до 1700 м с размерами 16x29 км. Залежь нефтегазоконденсатная, массивная. Высота газоконденсатной части достигает 1420 м, толщина нефтяного слоя равна 200 м. Продуктивными являются биогермные и биоморфно-детритовые иззестняки, доломиты и переходные разности. Возрастной диапазон продуктивных отложений достаточно широкий -- от заволжского горизонта верхнего девона до артинского яруса нижней перми. Среднее значение пористости равно 9,4% для нефтяной и 10,7% для газоконденсатной части месторождения. Средняя проницаемость по газонасыщенной части резервуара равна 0,08 мкм2, нефтенасыщенной -- 0,05 мкм2. Средняя эффективная толщина газонасыщенных коллекторов составляет 200 м, нефтенасыщенных - 45,7 м. Максимальная эффективная газонасыщенная толщина достигает 814 м, нефтенасыщенная -- 170 м.

Южная часть Каспийской акватории приурочена к межгорной впадине альпийской складчатости. Южно-Каспийская котловина на западе граничит с Куринской впадиной, на востоке к ней примыкает Западно-Туркменская впадина.

Разрез чехла на территории Куринской впадины начинается с отложений нижней юры (глина, песчаник, слюдистые сланцы) мощностью 3000 метров. Выше залегают среднемеловые отложения (сланцы) -- 1500 метро. Далее терригенные флишоидные отложения верхней юры мощностью 3000 метров. Выше нижний мел (песчаники, глины, конгломераты, туфы, известняки) -- до 4000 метров и верхний мел (глины, конгломераты, туфы, известняки) -- 2200метров. Далее размещаются породы нижнего, среднего палеогена (глины, мергели, песчаники) мощностью 900 метров и верхнего палеогена майкопской серии (глина, алевролит, песчаник) -- 2500 метров. Выше залегают отложения нижнего неогена (флишоидное переслаивание песчаника, глин и мергелей) мощностью до 2000 метров и верхнего неогена (глина, песчаник, конгломераты) 5250 метров. В неогеновой системе начинается орогенез, а в четвертичной происходят трансгрессии аналогичные трансгрессиям в северной части Каспийской акватории. Мощность четвертичных отложений достигает 560 метров. В Центрально-Каспийской котловине такой же тип разреза, что и в Куринской впадине.

Разрез чехла Западно-Туркменской впадины начинается с палеогена. С палеогена по нижний неоген породы представлены глинами, алевролитами, песчаниками. Эти отложения продуктивны (нефтяное месторождение Алегул). Выше залегают породы верхнего неогена, представленные классическим флишем красноцветных пород (глина алевролит, песчаник). В четвертичной системе также происходят трансгрессии аналогичные трансгрессиям в северной части Каспийской акватории и Центрально-Каспийской котловины.

В южной части Каспийской акватории находятся месторождения: Локбата, Нефтяные Камни и Челекен. На месторождении Челекен продуктивны красноцветные флишоидные отложения неогеновой системы плиоценового отдела.

По подсчитанным ресурсам УВ ведущее место в Прикаспийской НГП занимают Астраханско-Калмыцкая ГНО, в которой сосредоточено наибольшее количество газа и нефти, Южно-Эмбинская и Волгоградско-Карачаганакская НГО.

Сопоставление распределения перспективных и прогнозных ресурсов по нефтегазоносным областям и районам показало, что наибольший их процент сосредоточен в нефтегазоносных районах южной части провинции (Астраханско-Актюбинская система поднятий).

Прогнозная часть ресурсов УВ провинции оценена до глубины 7 км.

Основная часть прогнозных ресурсов УВ в провинции приурочена к глубинам от 3 до 5 км.

Значительные перспективы нефтегазоносности связаны с Казахстанским шельфом, где уже открыто крупное нефтяное месторождение Кашаган.

Карская акватория

Акватория Карского моря, перекрывающая одноименный шельф, располагается между архипелагами островов Новой Земли на западе и Северной Земли на востоке, а также полуостровами Пай-Хой и Таймыр. На северо-западе региона Карский шельф отделен от архипелага Земли Франца-Иосифа трогом Святой Анны. Шельф Карского моря является северным продолжением Западно-Сибирской нефтегазоносной провинции. Море расположено преимущественно на шельфе; много островов. Преобладают глубины 50--100 метров, наибольшая глубина 620 метров. Два жёлоба -- Святой Анны и Воронина -- прорезают шельф с севера на юг. Восточно-Новоземельский жёлоб с глубинами 200--400 метров идёт вдоль восточных берегов Новой Земли. Мелководное (до 50 метров) Центральное Карское плато расположено между желобами.

Герцинский фундамент Карской аквтории очень схож с Уральским. Он сложен палеозойскими и протерозойскими породами, которые распределены в западной части моря и представлены гранито-гнейсами и сланцами. На востоке, в основном, фундамент гетерогенный. Он состоит из пород герцинского, байкальского и каледонского возраста. В чехле триасовые отложенния (тампейская серия) представлены мелко- и среднезернистыми песчаниками с хорошей сортировкой и шлифовкой материала. Это означает, что образовались они в мелководных условиях и являются хорошим коллектором. Весь разрез терригенный, карбонаты отсутствуют. Триасовые отложения продуктивны. Также чехол представлен зимней свитой (песчаники), левинской (глины), джангодской(песчаники), шараповской (пласт Ю11), китербютской (тогурская пачка), надояхинской(песчаники, пласт Ю10) свитами. Выше залегают породы верхней юры. Это лайдингская (глины), выемская (пласты Ю7-9), малышевская (песчаники, пласты Ю2-4) свиты. Далее - породы даниловской свиты (пласт Ю2, темно-серая не битуминозная глина). Выше располагаются меловые отложения аптской свиты (глины), в основании которой новопортовская толща. Берриас-готеривские породы представлены флишем, который состоит из 25 пластов. Выше пласты Тп1-Тп26. Первые тринадцать из них вмещают залежи газоконденсата. Далее залегают отложения альбского яруса яронгской свиты, представленные глинами (это конец нижнего мела). Выше - марресалинская свита, которая является аналогом уатской свиты. В среднем меле в сеноманском ярусе находятся пласты ПК1-10. Первые четыре из них слагает алеврито-песчанная толща, продуктивная на газ (Харасавейское, Бабаненковское месторождения). Выше - верхнемеловые отложения, представленные кузнецовской, березовской и ганькинской свитами (глины). Ганькинская свита -- это классическая покрышка для газа. Далее залегают нижне-, средне- и верхнепалеогеновые отложения, представленные глинисто-песчаной толщей. В верхнем палеогене новомихайловской свиты существует водоносный горизонт, из которого добывается питьевая вода.

Стратиграфия разреза Карской акватории: N 1 -альпийская складчатость (возраст 35 млн. лет); K2 -мезозоиды (возраст 60 млн. лет); P 2 - герцениды (возраст 300-350 млн.лет); S 2 - каледониды (возраст 400 млн. лет); Є 1 - байкалиды (возраст 570 млн. лет); далее PR.

Практически вся акватория Карского моря входит в состав Западно-Сибирской нефтегазоносной провинции. В ее пределах выделяются Южно-Карская газонефтеносная область с доказанной промышленной газоносностью меловых отложений и две перспективные нефтегазоносные области: Западно-Карская и Притаймырская. Кроме того, в пределы акватории частично заходят выявленные на прилегающей суше Южно-Ямальская и Ямало-Гыданская нефтегазоносные области (рис.). Все перечисленные области соответствуют надпорядковым тектоническим элементам Западно-Сибирской эпигерцинской плиты.

Газоносные комплексы Карской акватории: 1) нижнеюрский комплекс (джангорская свита); 2) среднеюрский комплекс (выемская, малышевская свиты); 3) нижнемеловой неокомский комплекс (новопортовская толща); 4) аптский комплекс (танапчинская свита); 5) сеноманский комплекс (марресалинская свита).

На территории Карской акватории выявлены месторождения: Ленинградское (запасы более 1 трлн м3), Русановское (запасы 780 млрд м3), Белоостровное; на территории сопредельной суши - Бованенковское, Штокмановское, Харасавейское месторождения.

Русановское газоконденсатное месторождение расположено на п-ве Ямал в 230 км северо-западнее от мыса Харасавэй. Открыто в 1989 году. Месторождение по запасам уникальное, имеет 7 продуктивных горизонтов и расположено в Южно-Карской впадине (Русановско-Ленинградский вал). Ловушка пластовая сводовая. Главный газоносный комплекс - меловые терригенные породы, сложенные песчаниками, алевролитами, аргиллитами с прослоями углей. Средние значения пористости 20-21%. Максимальный дебит газа на месторождении 529 тыс. м 3 /сут.

Ленинградское газоконденсатное месторождение открыто в альб-сеноманских отложениях, коллекторы которых преимущественно представленыалевритистыми песчаниками с пористостью более 20% и низкой и средней проницаемостью. Месторождение является многозалежным (свыше 10), залежи пластовые сводовые. Газ сухой, конденсат присутствует лишь в аптских отложениях. По предварительным оценкам месторождение относится к уникальным.

В заключение необходимо отметить, что акватория Карского моря обладает огромными потенциальными ресурсами углеводородного сырья, степень ее изученности на современном этапе недостаточна, поэтому, несмотря на неблагоприятные климатические условия освоения этого региона, необходимо ведение широкомасштабных поисково-разведочных работ, которые позволили бы превратить этот регион в крупную нефтегазодобывающую базу на севере России.

Акватория Анадырьского залива

Анадырьский залив -- залив Берингова моря между Чукотским полуостровом и берегом материка Азии. К западу от залива располагается Чукотско-Сихотэ Алинский пояс. Максимальная глубина акватории -- 105 метров. На побережье г. Анадырь. В залив впадает река Анадырь. Кора в акватории океанического типа. Разрез чехла представлен верхним мелом, палеогеном и неогеном. Флишоидные неогеновые толщи продуктивны.

Акватория входит в Анадырско-Навариинскую НГО Притихоокеанской НГП.

На территории акватории около 10 месторождений, 4 из них введены в разработку:

1) Верхнетелекайское нефтегазоконденсатное многопластовое месторождение имеет 4 залежи, которые располагаются в складке размером 2 * 7 километров и амплитудой 200 метров. Продуктивные отложения представлены флишевой формацией (туфо-песчаниками, туфо-вулканическими породами). Дебит нефти составляет 175 тонн в сутки, газа -- 140 тысяч м 3 /сутки.

2) Верхнеэчинское нефтяное месторождение имеет 8 продуктивных пластов, которые находятся в складке размером 12*2 километров и амплитудой 200 метров. Продуктивны отложения нижнего неогена. Дебит нефти 24 тонн в сутки.

3) Западно-Озерное газовое месторождение имеет 14 продуктивных пластов. Дебит газа 250 тысяч м3/сутки.

4) Ольховское нефтяное месторождения имеет две залежи. На месторождении пробурена одна скважина с дебитом нефти 4,2 тонн в сутки.

Перспективы нефтегазоносности Притихоокаенской НГП связаны с кайнозойскими отложениями. Общий потенциал ресурсов УВ невысокий и характеризуется преобладанием (до 70%) газовой составляющей.

Охотская нефтегазоносная провинция

Охотская НГП относится к Дальневосточной нефтегазоносной мегапровинции и включает акватории Охотского, частично Японского морей и примыкающие к ним земли Сахалинской, Магаданской и Камчатской областей. Площадь перспективных земель провинции составляет 730 тыс. км2, в том числе 640 тыс. км2 на акваториях.

Охотская НГП (рис. 2) располагается в зоне перехода от материка к океану и включает структуры разной генетической природы. Западным ограничением провинции являются Сихотэ-Алиньский и Охотско-Чукотский мезозойские вулканогенные пояса, восточным -- Камчатско-Курильская кайнозойская складчатая система. На юге, на акватории Японского моря, граница провинции условно проведена по поднятию Ямато. В центральной части провинции находится Охотский срединный массив.

Фундамент провинции гетерогенен. Осадочный чехол по вещественному составу это в основном терригенные и вулканогенно-осадочные образования позднемелового, палеогенового, неогенового и плиоцен-четвертичного возрастов.

Наиболее обширные области развития осадочной толщи находятся на суше и приурочены к западному побережью Камчатки и северной части Сахалина.

На Западной Камчатке осадочный разрез представлен терригенными породами палеоген-миоценового возраста. Эти структуры прослеживаются с суши в сопредельные районы акватории Охотского моря. На Сахалине (рис. 3), как и на Камчатке, осадочные отложения смяты в складки, образующие линейные протяженные антиклинальные и синклинальные зоны. Основную часть осадочной толщи слагают верхнемиоценовые отложения.

Для Охотской НГП чрезвычайно характерно периферийное размещение основных осадочных бассейнов, концентрирующих большую часть объема осадочного чехла. К их числу относятся Сахалинские прогибы, Западно- и Восточно-Дерюгинские, Ульянско-Лисянский, Северо-Охотский, Западно-Камчатский, Охотско-Колпаковский, Тинровский и др., Южно-Охотская глубоководная впадина.

В провинции открыто 72 месторождения нефти и газа, из них 60 на о-ве Сахалин, 8 на присахалинском шельфе и 4 на п-ве Камчатка. Добыча нефти (с 1928 г.) и газа (с 1956 г.) ведется только на о-ве Сахалин.

По современным представлениям о геологическом строении и условиях формирования и размещения месторождений нефти и газа в пределах Охотской НГП выделяются 8 нефтегазоносных областей, из которых половина - Северо-Восточно-Сахалинская, Южно-Сахалинская, Западно-Сахалинская и Западно-Камчатская - характеризуются доказанной нефтегазоносностью, а остальные Ульянско-Мареканская, Северо-Охотская, Центрально-Охотская и Южно-Охотская -- предполагаемой.

Для всех областей характерны общие нефтегазоносные, которые приурочены к меловым, палеогеновым и неогеновым отложениям. К последним относятся даехуринский (нижний миоцен), уйнинско-дагинский (средний миоцен) и окобыкайско-нутовский (средний миоцен-плиоцен) комплексы. Все они сложены, в основном, терригенными породами. Основными НГК являются Уйнинско-Дагинский и Окобыкайско-Нутовский.

Уйнинско-Дагинский НГК -- главный объект поисково-разведочных работ на Северном Сахалине, содержит 19 месторождений нефти и газа. Окобыкайско-Нутовский НГК находится на Северном и Южном Сахалине. На его территории находятся Изыльметьевское газовое и Одоптинское и Чайвинское нефтегазоконденсатные месторождения. В пределах Северо-Восточного побережья у шельфа размещено большинство месторождений нефти и газа.

К настоящему времени па северо-востоке Сахалина открыто около 100 месторождений, более 30 в прибрежных зонах шельфа. Глубина залежей меняется от 50 до 3300 м. Основные месторождения на суше (Окружное, Восточно-Дагинское, Восточно-Эхабинское, Охинское, Эхабинское, Эрри, Тунгорское, Колендинское, Паромайское, Шхунное, Некрасовское, Западно-Сабинское, Восточное Эхаби и др.) в значительной степени выработаны. Месторождения па шельфе отличаются большими запасами и более благоприятными условиями разработки (Лунское, Пильтун-Астохское, Аркутун-Дагинское, Одопту-море и др.). В Южно-Сахалинской НГО открыты три небольших месторождения газа: Восточно-Луговское, Южно-Луговское и Золоторыбинское.

Оператором проекта «Сахалин-1» является компания «Эксон Нефтегаз Лимитед». В суровых субарктических условиях она ведет освоение трех морских месторождений: Чайво, Одопту и Аркутун-Даги на северо-восточном шельфе о. Сахалин, расположенных на северо-восточном шельфе о. Сахалин. Объем извлекаемых запасов оценивается в 2,3 млрд баррелей нефти (307 млн тонн) и 17,1 трлн куб. футов природного газа (485 млрд куб. м). Проект «Сахалин-1» останется одним из крупнейших проектов с прямыми иностранными инвестициями в России. Первая скважина, давшая нефть, была пробурена «Сахалинморнефтегазом» на Аркутун-Даги в 1989 году. В январе 2011 нефтяная скважина месторождения Одопту-море, пробуренная под острым углом к поверхности земли, проекта Сахалин-1 с длиной 12 345 метров стала самой длинной скважиной в мир (самая глубокая Кольская сверхглубокая скважина). 28 августа 2012 на Чайвинском месторождении вновь был побит мировой рекорд по протяженности скважины, на данный момент протяженность самой длинной скважины составляет 12 376 метров.

Проект « Сахалин-2» предусматривает разработку двух шельфовых месторождений: Пильтун-Астохского (главным образом нефтяного месторождения с попутным газом) и Лунского (преимущественно газового месторождения с попутным газовым конденсатом и нефтяной оторочкой). «Сахалина-2» уже законтрактован покупателями, в основном в Японии.

В «Сахалин-3» входит четыре блока месторождений: Киринский , Венинский, Айяшский и Восточно-Одоптинский на шельфе Охотского моря . Прогнозные извлекаемые ресурсы превышают 700 млн т нефти и 1,3 трлн м? природного газа.

«Сахалимн-4» -- нефтегазовый проект, созданный для разработки лицензионных участков шельфа острова Сахалин. Лицензионный участок включает структуры (площадки): Медведь, Кролик, Северо-Эспенбергская, Таежная, Южно-Таежная, Тойская.

В 2004 г. на участке проекта «Сахалин-5» была пробурена первая поисково-разведочная скважина, вскрывшая залежь Пела Лейч. В 2005 г. проведено бурение поисково-разведочной скважины Удачная, также вскрывшей продуктивную залежь. Полученные данные подтвердили правильность направлений поиска и высокую перспективность Кайганско-Васюканского участка. В 2006 г. было завершено бурение поисковых скважин на структурах Южно-Васюканская и Савицкая.

Проект «Сахалимн-6» занимает самый крупный блок на сахалинском шельфе. Оценочные запасы составляют около 1 млрд тонн нефти.

Участки недр проекта «Сахалимн-7», перспективные на углеводороды, расположены на южном и юго-восточном шельфе Сахалина, в заливах Анивский и Терпения. По предварительным оценкам месторождения могут содержать до 563 млн тонн нефти.

Проект «Сахалимн-8» находится у юго-западных берегов Сахалина от мыса Крильон до мыса Тык в Александровск-Сахалинском районе. Прогнозные извлекаемые ресурсы составляют 642 и 289 миллионов тонн нефти.

Проект «Сахалимн-9» создан для разработки обширного участка шельфа, расположенного у юго-западных берегов Сахалина. Прогнозные извлекаемые ресурсы составляют соответственно 642 млн т и 289 млн т в нефтяном эквиваленте. Преобладающие глубины моря от 30 до 100 м, при отдельных глубоководных участках (до 500 м).

Эхабинское нефтяное месторождение (рис.4) открыто в 1936 г., разрабатывается с 1937 г. Эхабинская брахиантиклинальная складка имеет длину 6 км, ширину 2 км и амплитуду ловушки 250 м, асимметрична. На месторождении открыто восемь нефтяных залежей и одна газовая. Коллекторами для нефти и газа служат пески и песчаники, эффективная пористость которых в среднем по пластам составляет 17--18%. Проницаемость коллекторов изменяется от 4 до 155 мдарси. Эффективная мощность четырех пластов 12--24 м, остальных -- не превышает 9 %.Все залежи пластовые сводовые и, за исключением трех пластов, срезанные разрывом на восточном крыле.

Чайво-Море нефтегазоконденсатное месторождение расположено на северо-восточном шельфе о. Сахалина. Приурочено к безымянной седловине между Чайвинской и Пильтунской синклинальными зонами. Открыто в 1979г. Залежи контролируются брахиантиклинальной складкой простого строения размером 4x8 км по кровле нижненутовского подгоризонта и амплитудой до 150 м. Нефтегазоносные нижнемиоценовые отложения нижненутовского подгоризонта представлены песчаниками, алевролитами и аргиллитами. Установлена продуктивность 10 пластов-коллекторов. Глубина залегания верхнего пласта 1175 м, нижнего 2787 м. Пористость 19--25%, проницаемость 0,163-0,458 мкм2 t 68--87°С. Плотность нефти 0,832--0,913 г/см3. Плотность газа по воздуху 0,624-0,673.

Рис.2 Охотская нефтегазоносная провинция. Крупнейшие тектонические элементы обрамления: I - Охотско-Чукот-ский вулканогенный пояс, II -- Сихотэ-Алиньский вулканогенный пояс, III -- Центральнокамчатский мегантиклинорий.

Нефтегазоносные области: А -- Северо-Восточно-Сахалинская, Б -- Южно-Сахалинская, В -- Западно-Сахалинская, Г -- Западно-Камчатская, Д -- Ульянско-Мареканская, Е -- Северо-Охотская, Ж -- Центральноохотская, 3 -- Южно-Охотская.

Месторождения: 1 -- Пильтун-Астохское, 2 -- Чайво, 3 Лунское, 4 -- Изыльметьевское, 5 -- Восточно-Луговское, 6 -- Среднекунжикское, 7 -- Кшукское, 8 -- Нижнеквакчикское.

Рис.3. Обзорная карта размещения кайнозойских нефтегазоносных осадочных бассейнов Сахалина (элементы тектонического районирования по Радюшу В.М., 1998): 1 -- осадочные бассейны: 1 -- Байкальский (Байкальская впадина), 2 -- Валский (Валская впадина), 3 -- Погибинский (Погибинский прогиб), 4 -- Нышско-Тымский (Нышская и Тымская впадина), 5 -- Пильтунский (Пильтунская впадина), 6 -- Чайвинский (Чайвинская впадина), 7 -- Набильский (Набильская впадина), 8 -- Лунский (Лунская впадина), 9 -- Пограничный (Пограничная впадина), 10 -- Макаровский (Макаровский прогиб), 11 -- Дагинский (Дагинское поднятие), 12 -- Западно-Сахалинский (Александровский прогиб, Бошняковское поднятие, Ламанонский прогиб, Красногорское поднятие, Чеховский прогиб, Холмское поднятие, Крильонское поднятие), 13 -- Анивский (Анивский прогиб), 14 -- залив Терпения (прогиб залива Терпения), 15 -- Шмидтовский (Шмидтовское поднятие); 2 -- территория приложения компьютерной технологии прогнозирования в пределах Лунской впадины.

Рис. 4. Эхабинское нефтяное месторождение: 1 - изогипсы по кровле XIII пласта; 2 - контур нефтеносности; 3 - разрывы; 4 - нефть, 5 - газ, 6 - глинистые, 7 - песчаные породы.

Лаптевская перспективная нефтегазоносная провинция

Лаптевская нефтегазоносная провинция занимает большую часть акватории моря Лаптевых и приурочена к одноименной краевой плите. На западе провинция ограничена бесперспективными землями Таймырско-Североземельской складчатой системы, па востоке -- зонами неглубокого залегания мезозоид и более древних массивов, на юге -- складчатыми сооружениями ответвления мезозоид Северо-Востока России. На юго-западе она системой разрывных нарушений отделяется от Анабаро-Хатангской области, а на севере условно ограничивается изобатой 500 м.

Представления о строении этого региона основываются на гравимагнитных данных, материалах единичных сейсмических профилей и геологических наблюдений на суше.

Считается, что Лаптевская плита расположена на древнем массиве, являющемся одним из блоков Сибирской платформы, и в ее фундаменте преобладают архейские и нижпепротерозойские образования. В то же время высказывается мнение о гетерогенности основания Лаптевского бассейна.

В осадочном чехле провинции прогнозируется три структурно-формационных и соответствующих им перспективных нефтегазоносных комплекса. В состав нижнего комплекса входят отложения от верхнего протерозоя до среднего палеозоя включительно, представленные морскими и лагунными терригенными и терригенно-карбонатными отложениями, возможно с пластами галогенных пород. Мощность комплекса порядка 3 км. Средний комплекс включает терригенные отложения от позднепалеозойского до раннемелового возраста. Мощность его не более 3 км. Верхний (синокеанический) комплекс, мощность которого может достигать 4 км, имеет, по-видимому, возрастной интервал от позднего мела до кайнозоя включительно и характеризуется терригенным составом.

Новая информация о геологическом строении этого региона отсутствует, что затрудняет оценку перспектив нефтегазоносности.

Основными структурами, имеющими большой объем осадочного чехла и наиболее высокие перспективы, являются Южно-Лаптевская впадина и Усть-Ленский грабен: во впадине мощность осадочного чехла достигает 6 -8 км, в грабене мощность осадочного разреза до 4 км. На каждую из этих структур приходится примерно по 40% извлекаемых суммарных ресурсов области. Рифтогенная природа Усть-Ленского грабена и приуроченность к нему дельты Лены обуславливают его достаточно высокие перспективы.

Наибольшие перспективы в пределах провинции связываются с верхне-палеозойско-нижнемеловым перспективным комплексом, в котором ожидается до 47% ресурсов области. Он перспективен в пределах Усть-Ленского грабена и в Южно-Лаптевской впадине.

Акватории Восточно-Сибирского и Чукотского морей

Акватории Восточно-Сибирского и Чукотского морей частично расположены в Восточно-Арктической ПНГП, в Южно-Чукотской ПНГП и в Усть-Индигирской перспективной НГО.

Восточно-Арктическая перспективная нефтегазоносная провинция

Восточно-Арктической ПНГП приурочена к Восточно-Арктической краевой плите.На западе, юго-западе и юго-востоке она зонами неглубокого залегания мезозоид отделяется от Лаптевской, Усть-Индигирской и Южно-Чукотской ПНГО, а на северо-востоке продолжается за пределы российского сектора Чукотского моря. На основании результатов сейсмических исследований США предполагается наличие структурных связей этого региона с промышленно-нефтегазоносными районами арктического склона Аляски и допускается возможность объединения этих земель в единую провинцию.

Осадочный чехол провинции залегает на древнем гетерогенном фундаменте и имеет широкий возрастной диапазон -- от позднего протерозоя до кайнозоя включительно. Мощность его изменяется от 1 -- 3 км на поднятиях до 5 -- 8 км в прогибах. В его составе предполагается три перспективных нефтегазоносных комплекса. Нижний (верхнепротерозойско-среднепалеозойский) представлен преимущественно морскими терригенно-карбонатными отложениями. Средний комплекс (верхнепалеозойско-нижнемеловой) сложен морскими терригенными и терригенно-карбонатными отложениями. Верхний комплекс (верхнемеловой-палеогеновый) терригенный.

В пределах провинции выделяются две обширные области поднятий (так называемая глыба Де-Лонга и Северо-Сибирская область поднятий) и система окаймляющих и разделяющих их прогибов (Новосибирский, Северный, Северо-Чукотский прогибы и Восточная впадина).

В пределах глыбы Де-Лонга все ресурсы прогнозируются в верхнепротерозойско-среднепалеозойском комплексе, а в прогибах перспективны все три комплекса, при этом основная часть ресурсов ожидается в верхнепалеозойско-нижнемеловом комплексе (65 -- 76% ресурсов всех этих структур).

Значительную часть Северо-Чукотской ПНГО занимает Восточно-Сибирская область поднятий, которая в связи со слабой изученностыо оценена качественно. Предполагаотся, что осадочный чехол ее залегает па байкальском фундаменте, а перспективными в его разрезе могут быть верхнепалеозойсно-нижнемеловые отложения. Основная часть ресурсов прогнозируется в Северо-Чукотском прогибе и Восточной впадине, мощность осадочного чехла в которых достигает 6 -- 8 км. Перспективы нефтегазоносности связываются со всеми тремя комплексами, при этом основным (более 50% ресурсов) предполагается верхнепалеозойско-нижнемеловой.

Южно-Чукотская перспективная нефтегазоносная провинция

Южно-Чукотская ПНГП занимает южную часть Чукотского моря и частично заходит в пределы Восточно-Сибирского моря, а на северо-востоке продолжается за пределы российского сектора Чукотского моря. Провинция приурочена к межгорным прогибам Верхоянско-Чукотской мезозойской складчатой системы.

В разрезе мегапрогиба нефтегазоносность связывается с нижне-меловым и верхнемеловыми - палеогеновым комплексами. Основной объем последнего составляют палеогеновые отложения.

Южно-Чукотская ПНГП обладает сравнительно невысокими перспективами. Прогнозные ее ресурсы примерно поровну распределяются между верхним и нижним перспективными комплексами, причем более 55% извлекаемых суммарных ресурсов, по-видимому, составит газ. Почти все ресурсы приурочены к глубинам моря 10 -- 50 м.

Усть-Индигирская ПНГО расположена в южной части Восточно-Сибирского моря. Усть-Индигирская область, также как и Южно-Чукотская провинция, приурочена к межгорным прогибам Верхоянско-Чукотской мезозойской складчатой системы. Южный мегапрогиб, являющийся основной структурой Усть-Индигирсксй ПНГО, отделен на севере от Восточно-Арктической провинции зоной погребенных передовых хребтов мезозоид. Предполагаемая мощность осадочного чехла в нем порядка 4 км.

Нефтегазоносность в области связана с нижнемеловым комплексом мощностью около 1,5 км и верхнемеловым-палеогеновым комплексом мощностью 2 -- 2,5 км. В южном мегапрогибе основную роль в разрезе верхнего комплекса играют, по-видимому, верхнемеловые отложения.

Перспективы области оцениваются сравнительно невысоко.

Размещено на Allbest.ru

Подобные документы

    Количество добытой нефти и газа на Тишковском месторождении, его литология и стратиграфия. Нефтеносность петриковской и елецко-задонской залежи. Подсчет и пересчет запасов нефти и растворенного газа межсолевых и подсолевых залежей месторождения.

    курсовая работа , добавлен 17.11.2016

    Определение провинции. Их виды по месту расположения и тектоническим признакам. Характеристика нефтегазовых провинций РФ и стран СНГ. Объём залежей нефти и газа, количество добычи, крупнейшие месторождения, время их эксплуатации, геологическое строение.

    реферат , добавлен 12.02.2015

    Характеристика Сосновского нефтяного месторождения в Беларуси. Количество запасов, сбор и транспорт нефти и газа. Краткая характеристика стратиграфии и литологии осадочного разреза месторождения. Тектоническая характеристика продуктивных горизонтов.

    реферат , добавлен 29.12.2010

    Геологическое строение и нефтегазоносность района. Литолого-стратиграфическая и геофизическая характеристика продуктивной части разреза. Подсчет запасов нефти и растворенного газа залежи евлановско-ливенского горизонта Ковалевского месторождения.

    курсовая работа , добавлен 15.01.2014

    Геологическое строение месторождения: стратиграфия, тектоника, общая гидрогеологическая обстановка, нефтегазоносность, физико-химическая характеристика нефти и газа. Анализ структуры фонда скважин, состояния выработки запасов пласта, величины нефтеотдачи.

    дипломная работа , добавлен 19.09.2011

    Геологическое строение месторождения Акинген. Запасы нефти и растворенного газа. Анализ результатов гидродинамических исследований скважин и их продуктивности. Характеристика толщин, коллекторских свойств продуктивных горизонтов и их неоднородности.

    дипломная работа , добавлен 08.02.2015

    Первомайское нефтяное месторождение. Геологическое строение района работ. Литологическая характеристика коллекторов продуктивного пласта. Гранулометрический и петрографический составы. Свойства пластового флюида. Запасы нефти и растворенного газа.

    дипломная работа , добавлен 14.09.2014

    Геолого-физическая изученность месторождения. Литолого-стратиграфическое описание разреза. Тектоническое строение месторождения. Геологическое обоснование доразведки залежей и постановки дополнительных разведочных работ. Степень изученности залежей.

    отчет по практике , добавлен 26.04.2012

    Геологическое строение месторождения. Литолого-стратиграфическая характеристика разреза, тектоника и газоносноть. Физико-химическая характеристика газа. Анализ системы сбора и подготовки газа Бованенковского месторождения. Основные проектные показатели.

    курсовая работа , добавлен 23.11.2013

    Геологическое строение месторождения. Коллекторские свойства продуктивных объектов. Свойства и состав нефти, газа и воды. Схема разработки месторождения. Характеристика показателей способов эксплуатации скважин. Экономический эффект от внедрения якоря.

Нефть - маслянистая жидкость, обычно черного или красно-коричневого цвета со специфическим запахом и горючими свойствами. Сегодня из данного вещества получают топливо, поэтому можно смело говорить о том, что это наиболее ценное полезное ископаемое на планете Земля (наряду с природным газом). Месторождения нефти есть во многих частях планеты. Большая часть информации в данной статье будет посвящена как раз местам залежей «черного золота».

Общая информация

Нефть и природный газ обычно залегают в одном и том же месте, поэтому нередко эти ископаемые добывают из одной скважины. «Черное золото» обычно добывают на глубине в 1-3 километра, однако нередко его находят как почти на поверхности, так и на глубине более 6 км.

Природный газ представляет собой газовую смесь, которая образуется в результате длительного разложения органических веществ. Как было отмечено выше, крупнейшие месторождения нефти могут располагаться по всему Земному шару. Самые большие находятся в Саудовской Аравии, Иране, России, США. Другое дело, что далеко не все страны могут позволить себе самостоятельную добычу ввиду высоких цен на разработку скважин, покупку оборудования и т. п. По этой простой причине многие месторождения продаются за сущие копейки.

Давайте поговорим о том, где находятся самые значимые залежи «черного золота».

Немного о классификации нефтяных месторождений

Отметим, что далеко не все ископаемые, находящиеся под землей, можно считать месторождениями. К примеру, если залежей слишком мало, то с экономической точки зрения не имеет смысла привозить оборудование и бурить скважину. Нефтяное месторождение - это совокупность нефтяных залежей, располагающихся на определенной территории. Занимаемая площадь колеблется от десятков до сотен километров. По количеству залегаемой нефти месторождения можно разделить на пять групп:

  • мелкие - количество полезных ископаемых не превышает десяти миллионов тонн;
  • средние - от 10 до 100 млн тонн нефти (к таким месторождениям можно отнести Кукмоль, Верх-Тарское и другие);
  • крупное - от 100 млн до 1 млрд тонн (Каламкас, Правдинское и др.);
  • гигантские, они же крупнейшие - 1-5 миллиардов тонн нефти (Ромашкино, Соматлор и так далее);
  • уникальные, или супергигантские, - более пяти миллиардов тонн (к самым крупным месторождениям можно отнести залежи на Аль-Гаваре, Большом Кургане, в Эр-Румайле).

Как вы видите, далеко не все залежи полезных ископаемых можно отнести к той или иной группе. К примеру, некоторые месторождения располагают не более чем ста тоннами «черного золота». Их не имеет смысла открывать, так как это весьма убыточно.

Месторождение нефти в России

В настоящее время на территории Российской Федерации открыто более двадцати точек, где активно добывается «черное золото». С каждым годом количество месторождений увеличивается, но ввиду сегодняшних низких цен на нефть открытие новых точек является крайне невыгодным. Это касается лишь малых и средних месторождений.

Основная часть скважин располагается в арктических морях, а если говорить точнее, то непосредственно в их недрах. Естественно, что разработка из-за сложных климатических условий несколько затруднена. Еще одна проблема - доставка нефти и газа на перерабатывающий завод. По этой простой причине на территории РФ есть всего несколько таких пунктов, которые осуществляют первичную и вторичную обработку. Один из них - это шлейф Сахалина. Еще один завод находится на материковой части. Обусловлено это тем, что данная территория имеет не одно крупное месторождение нефти в России. В частности, можно говорить о Сибири и о Дальнем Востоке.

Основные месторождения нефти на территории РФ

В первую очередь опишем Уренгойское месторождение. Оно является одним из самых больших и занимает второе место в мировом рейтинге. Количество природного газа здесь составляет примерно 10 триллионов кубических метров, а нефти меньше примерно на 15%. Находится это месторождение в Тюменской области, в Ямало-Немецком автономном округе. Название было дано в честь небольшого поселения Уренгой, которое располагается неподалеку. После открытия месторождения в 1966 г. тут вырос небольшой городок. Первые скважины начали свою работу в 1978 г. Они функционируют по сегодняшний день.

Находкинское газовое месторождение тоже достойно упоминания. Несмотря на то что количество природного газа здесь оценивается в 275 миллиардов кубических метров, в нем находится большое количество «черного золота». Первые добычи начались только через 28 лет после открытия, в 2004 году.

Туймазинское месторождение нефти

У города Туймазы, что в республике Башкирия, находится данное месторождение. Оно было открыто очень давно, еще в 1937 году. Нефтесодержащие пласты залегают относительно неглубоко, примерно на 1-2 км под землей. На сегодняшний день Туймазинское месторождение входит в ТОП-5 крупнейших мест по залежам нефти. Разработка началась еще в 1944 году, и успешно ведется до сих пор. Залежи нефти располагаются на большой площади примерно 40 х 20 километров. Использование передовых методов добычи ценного продукта позволило извлечь основные залежи полезных ископаемых примерно за 20 лет. Кроме того, из девонских пластов было добыто примерно на 45-50% нефти больше, чем при использовании классических способов. В дальнейшем оказалось, что количество «черного золота» в этом месте больше, нежели ожидалось, поэтому оно добывается и по сегодняшний день.

Ковыктинское и Ванкорское месторождения

Ковыктинское месторождение располагается в Иркутской области. Так как скважины в основном находятся на высокогорном плато, это место окружает только лишь тайга. Несмотря на то что изначально тут была открыта добыча природного газа и жидкого газового конденсата, немного позже появились нефтяные скважины, которые оказались довольно богатыми. Безусловно, основные месторождения нефти в РФ - это целая система скважин, которые в совокупности делают государство лидером по добыче «черного золота» во всем мире.

На севере Красноярского края находится Ванкорское месторождение. Его нельзя назвать только лишь нефтяным, ведь тут ежегодно добывается большое количество природного газа. По предварительным оценкам, количество нефти в этом месторождении составляет порядка 260 миллионов тонн, а оьъем природного газа - порядка 90 миллиардов кубических метров. На этом месте находится 250 скважин, а поставка продукта осуществляется Восточным нефтепроводом.

Месторождения «черного золота» в различных странах мира

Стоит обратить ваше внимание на то, что не только в России находятся крупнейшие месторождения нефти. Этого ценного продукта достаточно и во многих других странах. К примеру, на западе Канады, в провинции Альберта, находятся крупнейшие залежи. Там добывается примерно 95% «черного золота» всей страны, кроме того, имеются большие объемы природного газа.

Австрия тоже известна своими богатыми месторождениями. Большая их часть располагается в Венском бассейне. Карта месторождений нефти говорит о том, что добыча производится и в Вендорфе, который располагается на границе с Чехословакией. Также известно месторождение Адерклаа.

Кое-что еще о нефти

Не было сказано о крупнейшем мировом поставщике «черного золота» - Саудовской Аравии. Достаточно того, что тут располагаются залежи на 75-85 миллиардов баррелей (месторождение Гавар). В Кувейте суммарные залежи составляют 66-73 миллиарда баррелей. В Иране постоянно ведется разработка месторождения нефти. На сегодняшний день установлено, что там просто огромные запасы «черного золота». К примеру, пять месторождений оцениваются в сто миллиардов баррелей, а это уже говорит о многом. Однако стоит отметить, что большая часть скважин принадлежит США.

Заключение

Ежемесячно в мире появляется как минимум одно новое месторождение нефти. Безусловно, это полезное ископаемое имеет огромное значение для человека. Из него делают топливо, используют в качестве горючего для транспортных средств и так далее. Нельзя не заметить, что сегодня в мире идет ожесточенная борьба между Соединенными Штатами и Россией за каждую новую нефтяную скважину. Конечно, многие государства пытаются найти альтернативу нефти. Если раньше широко использовался каменный уголь, то сегодня «черное золото» его постепенно вытесняет. Но мировые запасы нефти рано или поздно закончатся, вот тогда придется придумывать что-то новое. Вот почему уже сегодня множество известных ученых пытаются решить проблему альтернативы «черного золота».

Проявления и промышленные залежи нефти и газа известны в породах фундаментов и базальных горизонтов осадочных бассейнов США, Венесуэлы, Ливии, Марокко, Египта, Австрии, Югославии, Венгрии, стран СНГ, Китая и в недрах других государств.

Фундаменты тектонотипов платформенных областей, краевых и подвижных систем характеризуются разными по составу и возрасту комплексами пород. Углеводородные скпления выявлены в гнейсах, сланцах, кварцитах и прочих метаморфитах, вулканогенных образованиях и, конечно, в гранитоидах и корах их выветривания. Подсчитано, что к последним приурочено около 40% от числа залежей, открытых в породах фундаментов , а если учесть их объем, то с гранитоидами связано более 3/4 запасов углеводородов в фундаментах нефтегазогеологических объектов .

Когда рассматриваются вопросы нефтегазоносности пород фундамента, сопутствующих им кор выветривания и базальных горизонтов чехла, обычно основное внимание сосредотачивается на роли зон разломов в формировании коллекторов и залежей УВ . Приводятся примеры разных по строению месторождений нефти и газа, нефте- и битумопроявлений, выходов горючих газов так или иначе приуроченных к системам глубинных нарушений, закономерно делящих земную кору на разновеликие блоки. В современной геологической структуре планеты часть таких блоков лишена осадочного покрова и на дневной поверхности выступает в виде щитов и массивов, сложенных комплексами кристаллических пород, другая часть блоков перекрыта осадками разного состава, толщина которых изменяется в зависимости от условий их развития и гипсометрического положения, и на дневной поверхности проявляется в виде тектонических элементов различного масштаба и морфологии .

Активные гидротермальные и дегазационные процессы протекают в зонах разломов не только континентов, но и в рифтовых системах срединно-океанических хребтов, чаще всего лишенных осадочного слоя.

Таким образом, зоны глубинных разломов, особенно обновленные современными движениями, - “кровеносная система”, по которой происходит флюидо- и теплообмен в земной коре, способствующий генерации УВ и их последующему онтогенезу. С разломами во многом связаны процессы формирования зон нефтегазонакопления, резервуаров и залежей нефти и газа, а также пространственное размещение последних.

И.М. Шахновский, рассматривая условия нефтегазоносности пород фундамента, отмечает, что в блоках фундамента, перекрытых отложениями чехла, нефтегазоносность чаще всего приурочена к коре выветривания, мощность которой достигает 50-80 м, но обычно не превышает 10-15 м . Для образующихся здесь вторичных коллекторов характерны сложные причудливые очертания и резкая изменчивость свойств в пространстве. Для резервуаров, формирующихся в зонах разломов, характерна линейная форма. Соответственно коллекторы в корах выветривания подразделяются на площадные, линейные и смешанного типа. Автор приводит характеристики месторождений с залежами нефти и газа в различных по составу, мощности и глубине залегания корах выветривания молодых и древних фундаментов. Это месторождения, открытые в Центральном Техасе США (Орф и др.), Венесуэле (Ла-Пас, Мара), Алжире (Хасси-Мессауд), Казахстане (Оймаши) и другие.

К.Е. Веселов и И.Н. Михайлов приводят статистические данные о месторождениях нефти и газа, открытых в породах фундамента в Австралии, на островах Тихого океана, в Азии, Африке, Европе, Америке . Обычно наблюдается плановое соответствие нефтегазоносных площадей в фундаменте и в осадочном чехле; редко скопления УВ обнаруживаются только в фундаменте. Акцентируется внимание на теоретических аспектах поисков залежей нефти и газа на больших глубинах в породах фундамента (в фундаменте существуют развитые, постоянно обновляемые, горизонтальные и вертикальные системы трещин, которые в пределах платформ отражают их сложную многопорядковую разломно-трещинно-блоковую структуру). Образование последней объясняется с позиций тектоники глобального рифтогенеза. В этой концепции гармонично сочетаются фиксистские и мобилистские представления о тектогенезе, позволяющие обоснованно рассмотреть развитие земной коры и образование ее трещинно-блоковой делимости. Особое внимание уделяется трещинообразованию. В зависимости от масштабов его проявления системы трещин могут соединять не только разные горизонты осадочного чехла, но и проникать глубоко в породы фундамента, способствовать миграции флюидов и формированию залежей УВ в геологической среде, традиционно считавшейся неперспективной. Трещинно-блоковое строение коры приводит к тому, что в зависимости от местоположения одни и те же породы могут быть как монолитно-непроницаемыми, так и хорошими вторичными коллекторами, пористость которых определяется трещиноватостью и действием разных физико-химических процессов. Известные в породах фундамента месторождения нефти и газа - не случайность (хотя в подавляющем большинстве своем открыты они случайно!), а проявление определенной закономерности, позволяющей предполагать на больших глубинах огромные скопления УВ. Основными объектами поисков должны стать трещинно-разломно-блоковые структуры континентальной коры, которые должны иметь большие вертикальные и ограниченные горизонтальные размеры. Трещинообразование в твердых породах и на больших глубинах - широко распространенный геологический процесс, способствующий нефтегазонакоплению .

В.Л. Шустер приводит сведения (состав пород, запасы и дебит скважин, толщина нефтенасыщенной части разреза, коллекторские свойства) о некоторых нефтяных и газовых месторождениях, открытых в кристаллических породах на территории Ливии, Египта, Индии, Бразилии, Венесуэлы, США и Казахстана. Месторождения, как правило, многопластовые, залежи частично или полностью литологически и (или) тектонически экранированы, располагаются в нормально осадочных породах и в трещиноватых гнейсах, гранитах, гранодиоритах, гранофирах, порфиритах фундаментов разного возраста. Комплексы пород фундаментов Западно-Сибирской плиты, Сибирской платформы, на территории арктических и северо-восточных морей, Дальнего Востока могут быть новыми перспективными объектами поисков залежей нефти и газа.

Формирование скоплений УВ в пределах фундамента обязано взаимодействию двух встречных потоков: глубинных паров, газов и тепла, стремящихся снизу из недр земли и охлажденного органического минерального вещества, опускающегося сверху в недра. Миграции флюидов и возникновению термобарических условий для образования УВ способствуют зоны проницаемости, приуроченные к глубинным разломам. Разломы также контролируют образование разных структур и связанных с ними ловушек, преобразование плотных гранитоидов в трещиноватые, распространение коллекторов и покрышек. Эти требования отвечают условиям нефтегазонакопления как в кристаллических породах фундамента, так и в отложениях чехла. Генезис УВ для промышленного использования нефти и газа существенного значения не имеет .

Нефтяные месторождения, связанные с коллекторами в гранитоидах, известны в России, Казахстане, Ливии, Китае, Индии, США, Канаде. Подавляющее большинство их приурочено к зонам выветривания небольшой мощности.

На этом “фоне” показательны строение и условия нефтеносности месторождения Белый Тигр, расположенного в Меконгской (Кыулонгской) впадине на шельфе Южного Вьетнама . На месторождении изначально продуктивным считался кайнозойский осадочный чехол, в котором нефтеносными являются песчаники нижнего олигоцена и нижнего миоцена, пока в 1988 г. в “свежих” мезозойских гранитоидах фундамента не была открыта уникальная нефтяная залежь. Здесь сосредоточено до 70% начальных геологических запасов категорий С 1 +С 2 . Исключителен объем нефтенасыщенных гранитоидов - высота залежи свыше 1300 м и высоки значения фильтрационных свойств пород, что позволяет получать из них более 90% общей добычи нефти. И это при том, что скважинами, пробуренными на глубины свыше 5000 м, ВНК (в общепринятом толковании) так и не установлен!

Структура месторождения Белый Тигр представляет собой горстообразное поднятие, разновеликие блоки которого образовались в период активизации палеогеновых движений вдоль конседиментационных сбросов северо-восточного простирания. Амплитуда их по поверхности фундамента 1500-1600 м и более, в чехле она понижается и в отложениях верхнего олигоцена уже не превышает 400-500 м; смещения по другим сбросам редко достигают 150-200 м. По кровле фундамента поднятие четко делится на три основных части блока, представленных Южным, Центральным (наиболее приподнятым) и Северным сводами, которым, в свою очередь, свойственна более дробная делимость. Размерность поднятия: длина - несколько десятков километров, ширина и высота - более 1.5 км, отметка замка - 4650 м (рис. 51) .

Рис. 51. Расположение основных месторождений шельфа Южного Вьетнама и

структурно-тектоническая схема поверхности фундамента месторождения Белый Тигр

1 - границы тектонических структур; 2 - месторождения; 3 - основные разломы; 4 – изогипсы поверхно­сти фундамента, км; 5 - скважины. Месторождения: БТ - Белый Тигр, ДХ - Дайхунг, ДР - Дракон, ТД - Тамдао.

Мощность кайнозойского чехла изменяется от 3000 м на поднятых блоках и до 8000 м в пределах опущенных блоков. Фундамент сложен гранитами, гранодиоритами, кварцевыми диоритами; коэффициенты монопородности блоков - 0.73; 0.57 и 0.8. Характерны дайки и лавовые покровы (диабазы, базальты и т.п.) над фундаментом.

Емкостные и фильтрационные свойства обусловлены вторичной пустотностью трещинного, каверно-трещинного и блокового типов; на приточность флюида наиболее сильно влияет трещиноватость пород.

Нефтяная залежь “разбита” по блокам фундамента на разных гипсометрических уровнях и экранируется верхне- и нижнеолигоценовыми глинисто-аргиллитовыми породами мощностью от 5-20 до 40-60 м, на участках, где покрышка маломощна, притоки нефти обычно невелики или отсутствуют. Здесь, возможно, происходит переток УВ из пород фундамента в отложения нижнего олигоцена. Максимальная глубина доказанного нефтенасыщения - 4350 м, предполагаемого - 4650 м .

Нефтеносность пород фундамента установлена и на других структурах Меконгской впадины - блоки Дракон, Тамдао, Баден, Биви, крупные запасы прогнозируются на месторождении Дайхунг в Южно-Коншонской впадине.

О.А. Шнип , рассмотрев условия нефтегазоносности фундаментов, предлагает геологические критерии оценки перспектив пород фундамента на нефть и газ:

1. Гранитоиды – наиболее вероятная группа пород фундамента, способная аккумулировать и сохранять промышленные скопления углеводородов.

2. Пути миграции флюидов связаны с трещиновато-разломными зонами и с другими системами пустотного пространства, которые могут возникать в фундаменте.

3. Коллекторы в фундаменте образуются под влиянием разрывной тектоники и гипергенных воздействий, которые способствуют образованию пустотного пространства в любых породах.

4. Покрышками залежей нефти и газа в фундаменте служат горизонты непроницаемых пород осадочного чехла. Изолирующими комплексами могут быть и непроницаемые породы фундамента.

5. Приуроченность промышленных скоплений нефти и газа к фундаментам осадочных бассейнов.

6. Размещение скоплений углеводородов в выступах фундамента, возвышающихся над его кровлей на десяти, сотни и более метров.

7. Углеводородные включения в минералах гранитоидов.

8. Глубины залегания пород фундамента от 3.5 до 4.3 км.

9. Наличие зон нефтегазообразования на доступном для миграции УВ расстояния.

В.Л. Шустер, Ю.Г. Такаев , охарактеризовав строение месторождений нефти и газа в кристаллических образованиях Америки, Африки, Европы, Австралии, Азии, Китая, Индонезии и Вьетнама, также останавливаются на проблеме критериев оценки нефтегазоносности. Ссылаясь на известных авторов, давно занимающихся вопросами нефтегазоносности пород фундаментов и древних толщ. (Е.Р. Алиева и др., 1987; Е.В. Кучерук, 1991; Б.П. Кабышев, 1991; Р. Шерифф, 1980, 1987; и др.), они указывают следующие показатели нефтегазоносности фундаментов:

Залегание скоплений углеводородов в фундаментах ниже региональных поверхностей несогласия;

Резкая расчлененность рельефа фундамента;

Глубина залегания или нахождения скоплений УВ в фундаменте не может превышать глубины подошвы осадочного слоя в депрессиях бассейнов;

Структурный фактор (наиболее перспективны валы и выступы фундамента), в т.ч. наличие зон разломов;

Гидрогеологические условия сохранности скоплений нефти и газа;

Наличие пустотности в кристаллических породах.

Анализ предложенных критериев и показателей оценки нефтегазоносности пород фундаментов разных тектонотипов показывает, что большая часть их принципиально не отличается от признаков и условий нефтегазоносности и набора тектонических, литологических, гидрогеологических и геохимических показателей и критериев нефтегазонакопления и сохранности залежей углеводородов, обычно применяемых для оценки перспектив осадочных басейнов на нефть и газ. И в фундаменте, и в чехле в конечном счете главное – коллектор и покрышка! В формировании ловушек углеводородов важнейшую роль играют разломно-блоковые структуры, которые обусловили эрозионно-тектонический рельеф и региональные поверхности несогласия. И, кроме того, разломно-блоковые (межблоковые!) системы безусловно контролируют размещение в земной коре львиной доли месторождений нефти и газа.

Тектонический фактор в совокупности процессов, определяющих геологическую среду и ее нефтегазоносность, является ведущим. Именно тектогенез обусловливает развитие различных по масштабу, строению и возрасту осадочных нефтегазоносных бассейнов и их зональное распределение в земной коре . Его роль проявляется на всех уровнях прогноза и поиска месторождений нефти и газа. При этом тектонический режим, формируя (слоисто-) блоковую структуру бассейна, контролирует образование и размещение УВ в разрезе и по площади территории. Интенсивность и направленность структуроформирующих движений прямо или опосредованно воздействуют на обстановку и масштабы осадконакопления, степень изменения пород, тип и характер преобразования ОВ, области питания и разгрузки пластовых вод, изменение во времени геотермического градиента, региональные направления перетока флюидов и на другие процессы, сопровождающие или определяющие нефтегазоносность.

Установлен факт блокового контроля над формированием и размещением многих полезных ископаемых. Вполне очевидно, что глубинные нарушения, составляющие основу межблоковых (граничных) систем, представляют собой зоны подвижного сочленения разделяемых ими блоков и обусловливают определенную их автономность и специфику нефтегазоносности.

Как правило, блоковые и межблоковые системы более контрастно проявляются в структуре фундамента и нижней части осадочного чехла, чем в его верхней. На дневной поверхности они часто отражены складчатыми (пликативными) структурными формами (валы, прогибы и т.п.), нередко контролируемыми конседиментационными разломами.

В этом смысле показательно, например, строение восточной части Русской платформы, где на территории Башкортостана выделены регионально протяженные конседиментационные грабенообразные прогибы, контролирующие линейно выраженные зоны нефтегазонакопления (Е.В.Лозин, 1994) (рис. 52) .

Рис. 52. Карта изопахит кыновско-пашийской толщи осадков

1 - изопахиты, м; 2 - западная граница складчатого Урала; 3,4- границы выклинивания: пашийских (3) и кыновских (4) отложений; 5,6- зоны дизъюнктивов (ГП): установленных, предполагаемых; 7 - администра­тивная граница

Прослеживается геохронологическую последовательность и связь механизма образования грабенообразных прогибов с древней рифтовой структурой рифея-венда и указываются структурные предпосылки формирования возможных зон нефтегазонакопления, обусловленные блоковыми движениями. Эти предпосылки вполне могут быть применимы и к другим платформам, где предполагается нефтегазоносность древних толщ (рис. 53) .

Рис. 53, Структурно-тектоническая схема эйфельско-раннефранского подэтажа

Проблема нефтегазоносности древних толщ Восточно-Европейской (Русской) платформы связывается со структурно-тектоническими условиями, стратиграфией венд-кембрийского комплекса пород, более изученного, чем рифейские отложения, признаками нефтегазоносности (притоки докембрийских нефтей, полученные в скважинах Даниловской площади в центральной части Московской синеклизы, на территории Удмуртии, Башкортостана, Кировской и Пермской областей - площади Очер, Сива, Соколовская и др.), нефтематеринскими породами (нефтематеринский потенциал и время его реализации; черные аргиллиты - “вендский доманик” и темноцветные глины, обогащенные битумоидами, Московской синеклизы), коллекторами и покрышками (соответственно песчаные и глинистые пачки венд-кембрийского комплекса в Московской и Мезенской синеклизах; наиболее регионально выдержанная покрышка - глинистые отложения редкинской (усть-пинежской) свиты), ловушками (структурная и литологическая дифференциация древних толщ предполагает формирование ловушек разных типов). Тектонотипом ловушек, связанных с блоковым строением Камско-Бельского, Среднерусского, Московского и других авлакогенов, могут быть ловушки Юрубчено-Тохомской зоны нефтегазонакопления в рифейских и вендских отложениях Сибирской платформы . Анализ предпосылок нефтегазоносности древних толщ Восточно-Европейской (Русской) платформы указывает на наличие всех критериев вероятной продуктивности, присущих нефтегазоносным бассейнам; важно лишь найти зоны их благоприятного сочетания .

Тимано-Печорская НГП характеризуется в плане чередованием дислоцированных мобильных зон и относительно просто построенных стабильных областей. Структуры осадочного чехла повторяют вверх по разрезу в сглаженной форме основные черты строения фундамента, расчлененного глубинными разломами на блоки. Различные конфигурация, размеры и ориентировка поднятых и сопряженных с ними опущенных блоков обусловили глыбово-блоковое строение в стабильных областях и линейно-блоковое в мобильных зонах. Стабильные геоблоки в большей степени нефтеносные, мобильные - газоносные (рис.54)].

Рис.54. Тимано-Печорская нефтегазоносная провинция .

1-4 - границы структур: 1 - крупнейших, 2 - крупных, 3 - средних, 4 - крупные структуры.

А - Тиманская гряда: I - Восточно-Тиманский мегавал, II - Цилемско-Четласский мегавал, III - Канино-Северо-Тиманский мегавал. Б - Печорская синеклиза: IV - Омра-Лузская седловина, V - Ижемская впадина, VI - Нерицкая монокли­наль, VII - Малоземельско-Колгуевская моноклиналь, VIII - Печоро-Кожвинский мегавал, IX - Денисовский прогиб, X - Колвинский мегавал, XII - Лодминская седловина, XIII - Варандей-Адзьвинская структурная зона. В - Предуральский краевой прогиб: XIV - Полюдовское поднятие, XV - Верхнепечорская впадина, XVI - Средне-Печорское поднятие, XVII - Большесынинская впадина, XVIII - поднятие Чернышева, XIX - Косью-Роговская впадина, XX - поднятие Чернова, XXI - Коротаихинская впадина, XXII - Пайхойское поднятие. Г - Уральский кряж.

Несомненно тектоническая активность блоков влияет на их нефтегазоносность. И это, конечно, обусловлено двумя главными видами показателей, группы признаков которых характеризуют как структуру собственно блоков, так и перекрывающих их отложений чехла, в которых находятся нефтегазоносные объекты - НГК разной масштабности.

К тектонически активным - мобильным блокам приурочено более половины (56%) выявленных месторождений и залежей (65%) . С ними связана значительная часть крупных и крупнейших по геологическим запасам месторождений. Большая часть потенциальных ресурсов УВ: нефти до 70%, газа около 90% - сосредоточена в пределах мобильных геоблоков, где концентрация в среднем в 3-3.5 раза выше, чем в стабильных.

Мобильные мегаблоки характеризуются набором общих черт нефтегазоносности, хотя при детальном сравнении их между собой отмечаются определенные отклонения. Показательным в качестве примера является Предуральский мегаблок, отличающийся аномальным строением земной коры. В осадочном чехле, перекрывающим мегаблок, концентрируется более половины прогнозных ресурсов газа НГП. Эта величина может быть обусловлена сравнительной молодостью высокоинтенсивных ловушек и приуроченных к ним залежей, что в свою очередь объясняется своеобразным геодинамическим режимом мегаблока в заключительные стадии развития Тимано-Печорского бассейна .

В Тимано-Печорском бассейны границы ОНГО в стратиграфическом диапазоне нижнего силура - нижней перми и (или) резкой смены их продуктивности в целом также совпадают с границами крупных долгоживущих блоков земной коры. При этом наибольшая продуктивность характеризует блоки, испытавшие в геологической истории длительное устойчивое погружение - вне зависимости от их последующей инверсии - Предуральский прогиб, Печоро-Колвинский авлакоген, Варандей-Адзъвинская зона (в последней продуктивность ОНГО несколько меньше в следствие менее последовательного, менее устойчивого погружения, иногда сменявшегося подъемом). Размещение ЗНГН в бассейне также в основном подчиняется двум направлениям, ограничивающим основные блоки: субтиманскому и субуральскому; при этом ЗНГН, как правило, отвечают либо самым крупным линейным блокам, после длительного погружения претерпевшим частичную инверсию (Колвинский мегавал, Лайский вал и другие), либо границам крупных линейных блоков (Шапкино-Юряхский вал, вал Сорокина и другие).

В результате анализа распределения прогнозных ресурсов нефти и газа установлены корреляционные зависимости между строением блоков консолидированной земной коры и структурой перекрывающих их образований осадочного чехла. При прогнозе нефтегазоносности на региональном, зональном и, частично, на локальном уровнях должно учитываться не только строение собственно осадочного тела, слагающего НГБ и его отдельные части, но и всей толщи земной коры и происходящих в ней процессов, в той или иной степени влияющих на характер нефтегазоносности осадочной оболочки и стадий онтогенеза УВ, происходящих в ней .

В Прикаспийской впадине на всех этапах ее развития прослеживаются дискретные дифференцированные движения блоков фундамента, отраженные в осадочном чехле. Унаследованность древнего структурного плана доказана бурением на таких поднятиях как Тенгиз и Карачаганак, приуроченных к приподнятым блокам фундамента. К пограничным зонам блоков впадины могут быть приурочены разнотипные тектонически экранированные ловушки, а также надразломные и приразломные локальные поднятия .

Обобщение материалов, накопленных украинскими геологами в результате поисков нефти и газа в Днепрово-Донецкой впадине, Причерноморье, Крыму, Волыно-Подолии и других районах Украины, позволило им охарактеризовать роль разломной тектоники в формировании нефтегазоносных провинций (НГП) и областей (НГО), размещении зон нефтегазонакопления и месторождений УВ . Влияние блоковой составляющей структуры бассейна отражено в его нефтегазогеологическом районировании (рис. 56).

Интерес к нефтегазоносности кристаллического фундамента, а, соответственно и к блоковому его строению значительно возрос в связи с обнаружением «… сначала на площади Ахтырского нефтепромыслового района в Сумской области (скв. Хухринская – 1), а затем на участке Юльевской зоны в Харбковской оюласти в нескольких скважинах были обнаружены промышленные скопления нефти и газа, сосредоточенные непосредственно в верхних частях кристаллического фундамента на глубине более 250 м от его поверхности» . Примечателен вывод об участках Днепрово-Донецкой впадины, наиболее благоприятных для концентрации нефти и газа, тяготеющих к зонам долго живущих региональных разломов в основном северо-западного (305 0 -315 0) и северо-восточного (35 0 -45 0) направлений и к узлам их пересечений .

Рис. 55. Схема нефтегеологического районирования северного борта ДДА по осадочному чехлу и верхней трещиноватой зоне пород фундамента (по И.И. Чебаненко, В.Г.Демьянчуку,В.В. Кроту и др. (по данным с упрощениями автора)).

1 - граница Днепровско-Донецкой газонефтеносной области по осадочному чехлу (по изогипсе - 1 км по поверхности фундамента); 2 - северное краевое нарушение; 3 - тектонические нарушения (а - основные в по­родах фундамента, 6 - второстепенные); месторождения: 4 - нефтяные, 5 - нефтегазовые, 6 - газовые, 7 - пара­метрическая Сотниковская скв. 499.

Анализ данных ГСЗ по Западно-Сибирской плите и степени консолидации земной коры в ее пределах позволяет выделить блоки, разграниченные глубинными разломами, выявить их связь с верхней мантией, рассмотреть строение осадочного чехла и распределение месторождений нефти и газа в зависимости от типа блока. Большинство месторождений приурочено к блокам, которым соответствуют останцы древних складчатых комплексов, минимальное количество месторождений расположено в пределах блоков, соответствующих положению грабен-рифтов и зонам глубокой тектонической переработки . Наиболее отчетливо блоковое строение выражено в домезозойском основании плиты. Типичным примером блоковой структуры является Малоичский палеозойский выступ, расположенный в Нюрольской впадине . Он состоит из различных по величине блоков, разделенных разломами. Скважины, давшие притоки и фонтаны нефти, расположены в разных блоках, в основном наиболее приподнятых. Скважины, пробуренные непосредственно в зонах разломов, притоков обычно не дают. Рассматривая другие подобные примеры, можно сделать вывод - “... разломы не только способствуют проникновению УВ в породы-коллекторы, но и могут быть причиной расформирования залежей при последующих тектонических подвижках” . Обобщение материалов по Западной Сибири в целом показало, что для формирования скоплений УВ в осадочных отложениях земной коры имеют значение преимущественно длительно развивавшиеся “открытые” глубинные разломы. “Залеченные” разломы, заполненные минеральным веществом, не могли быть путями вертикального перемещения УВ.

Блоковая делимость литосферы – главный контролирующий фактор размещения полезных ископаемых в земной коре. Вполне вероятно и то, что блоковая делимость литосферы определяет генетические условия образования и формирования минеральных и энергетических полезных ископаемых .

17. Нетрадиционные виды и источники углеводородного сырья и

проблемы их освоения

Ресурсы УВ в недрах огромны, но лишь малая их часть, относимая к традиционным, изучается. За пределами исследований, поиска и освоения остается резерв ресурсов нетрадиционного УВ сырья, по объему на 2-3 порядка превышающий традиционный, но все еще мало изученный. Так, ресурсы метана в гидратном состоянии, рассеянного только в донных отложениях Мирового Океана и шельфов на два порядка (в нефтяном эквиваленте) превышают традиционные ресурсы УВ. Около 8-10 4 млрд. т н. э. метана содержатся в водорастворенных газах подземной гидросферы, причем только в зоне учета ресурсов УВ - до глубин 7 км. Огромны объемы практически разведанных ресурсов нефтяных песков - до 800 млрд. т н. э. в отдельных регионах мира - Канада, Венесуэла, США и другие .

В отличие от подвижной в недрах, традиционной части ресурсов нефти и газа, извлекаемых современными технологиями, нетрадиционные ресурсы плохо подвижны или неподвижны в пластовых условиях недр. Для их освоения нужны новые технологии и технические средства, увеличивающие себестоимость их поиска, добычи, транспорта, переработки и утилизации. Не все виды нетрадиционного сырья ныне технологически и экономически доступны к промышленному освоению, но в энергодефицитных регионах, а также в бассейнах с истощенными добычей запасами и развитой инфраструктурой отдельные виды нетрадиционного сырья могут стать основой современного эффективного топливно-энергетического обеспечения.

Основной прирост традиционных запасов нефти и газа в мире и, особенно, в России идет ныне на территориях с экстремальными условиями освоения - Арктика, шельфы, удаленные от потребителей географо-климатически неблагоприятные регионы и другое. Затраты на их освоение столь велики, что, в период перехода на новые сырьевые базы, освоение нетрадиционных резервов сырья, окажется не только неизбежным, но и конкурентноспособным .

Важность всестороннего и своевременного изучения нетрадиционных ресурсов УВ особенно очевидна, если учесть, что более половины всех учтенных, в качестве традиционных, запасов нефти в России, представлены их нетрадиционными видами и источниками. Следовательно, нельзя считать корректным тот уровень обеспеченности запасами нефтедобычи в России, который ныне рассматривается на основе суммы традиционных и нетрадиционных запасов, поскольку значительные их объемы не отвечают условиям рентабельного освоения.

Любая нефтегазоносная провинция в ходе освоения подходит к стадии истощения. Своевременная подготовка к разработке дополнительных резервов в виде нетрадиционных источников УВ позволит длительное время поддерживать уровень добычи с рентабельными экономическими показателями. В настоящее время степень выработанности большинства крупных разрабатываемых месторождений в России, в основном, превышает 60% и, примерно 43% общей добычи осуществляется из крупных месторождений со степенью выработанности 60-95%. Современная добыча нефти в России ведется в регионах с высокой степенью истощения запасов. Переход на освоение новых сырьевых баз в арктических и восточных акваториях, требует резерва времени и сверхнормативных капитальных затрат, к которым экономика России ныне не готова. Одновременно во всех НГБ, даже с глубоко истощенными запасами, имеются значительные резервы нетрадиционных ресурсов УВ, рациональное и своевременное освоение которых позволит поддержать уровень добычи. Достигнутый в мире прогресс в технологиях добычи нефтегазового сырья допускает освоение нетрадиционных видов и источников УВ, со стоимостью эквивалентной стоимости сырья на мировом рынке .

Исследования ВНИГРИ показали значительные резервы ресурсов нефти и газа в нетрадиционных ис­точниках и резервуарах. Их изучение и освоение позволит заполнить ту неизбежную паузу в обеспечении нефте-, а затем и газодобычи, которая неизбежно возникнет до ввода в освоение новых сырьевых баз в экстре­мальных по условиям освоения регионах. В перспективе нетрадиционные источники и виды УВ станут основой их сырьевой базы (см. «Сланцевый газ»). В настоящее время объемы добычи нетрадиционных УВ не превышают 10% от их общемировой добычи. Прогнозируется, что к 2060 г. они будут обеспечивать более поло­вины всей добычи УВ .

В настоящее время первоочередными для освоения представляются следующие виды и источники нетрадиционного углеводородного сырья:

1. Тяжелые нефти;

2.Горючие «черные» сланцы;

3.Низкопроницаемые продуктивные коллекторы и сложные нетрадиционные резервуары;