Информационная поддержка школьников и студентов
Поиск по сайту

Что является распространенным предвестником землетрясения. Приметы и предвестники мощного землетрясения. Землетрясение с научной точки зрения

1

Проведен анализ методов изучения предвестников землетрясений: геологические, геофизические, гидрогеохимические, биологические, механические, сейсмологические, биофизические. Проанализированы алгоритмы среднесрочного прогноза сейсмических событий: алгоритм М8, алгоритм «Сценарий Мендосино», алгоритм Калифорния-Невада, метод расчета карт ожидаемых землетрясений. Сделан вывод, что главным препятствием для осуществления надежного прогноза является недостаточное изучение механизмов проявления предвестников землетрясений и закономерностей их связи с параметрами ожидаемого землетрясения. Установлено, что традиционным способом решения прогнозных задач является поиск и анализ корреляционных связей между аномальными проявлениями в физических полях и пространственным распределением. Приведена классификация предвестников землетрясений. Предложено разделение сейсмического цикла при прогнозировании на 4 основные стадии (по С.А.Федотову). Приведена классификация землетрясений на тектонические, вулканические и обвальные.

алгоритм

сейсмические события

землетрясения

предвестники землетрясений

1. Грибанов Ю.Е. Предвестники землетрясений – реальность и вымысел [Электронный ресурс].–URL:http://planeta.moy.su/blog/predvestniki_zemletrjasenij_realnost_i_vymysel/2011-11-23-10295.

2. Имаев B.C., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. ISBN:5-89118-1665 Издательство: ГЕОС, 2000.

3. Паукова Е.В. Современное состояние проблемы прогноза землетрясений. МГУ им. Ломоносова.2003.

4. Приходовский М.А. Классификация предвестников землетрясений «Известия науки», 17.03.2004 [Электронный ресурс]. – URL:http://www.inauka.ru/blogs/article40386.html

5. Серебрякова Л.И. Методы, средства и краткие результаты работ на прогностических геодинамических полигонах, выполнявшихся в 1960-1990-е годы. Центральный НИИ геодезии, аэрофотосъемки и картографии, Москва.

6. Соболев Г.А. Основы прогноза землетрясений. Москва. Наука 1993, с 3-7.

7. Трофименко С.В., Гриб Н.Н. Снижение риска и смягчение последствий чрезвычайных ситуаций сейсмического характера в южной Якутии: Якутск: Издательство Якутского госун-та, 2003. - 27 с.

8. Федотов С.А. О сейсмическом цикле, возможности количественного сейсмического районирования и долгосрочном сейсмическом прогнозе. М.Наука, 1968 с. 121-150.

Земля непрерывно испытывает деформации вследствие развития внутренних напряжений. В литосфере возникают как упругие и пластические деформации, так и разрывы. При разрывах напряжения резко меняются и в результате возникают распространяющиеся в теле земли упругие волны. Такое возмущение в целом является землетрясением .

По своим последствиям для человека землетрясения представляют собой самое мощное и чрезвычайно опасное катастрофическое природное явление. Катастрофическая природа землетрясений известна человечеству на протяжении всей его истории. Первые упоминания о разрушительных событиях относятся еще к 2100 годам до н. э.

Южная Якутия относится к Байкало-Становому поясу, характеризующемуся высокой сейсмичностью - здесь возможны землетрясения 10-11 баллов . Зоны с возможными сейсмическими катастрофами, представляющие угрозу для жизни приживающих здесь людей, занимают почти половину территории Якутии и около одной трети всех сейсмоопасных областей России . На сейсмоопасной территории Южной Якутия проживает более 120000 человек.

В Южной Якутии происходит интенсивное развитие промышленных инфраструктур, активно развивается - промышленное и гражданское строительство. Все это требует детального изучения проблемы сейсмической опасности в указанном районе, решение который было бы весьма затруднительно без выяснения геолого-геофизических связей, способствующих возникновению высокого уровня сейсмичности. К наиболее сильным землетрясениям на территории Южной Якутии можно отнести Тас-Юряхское 1967 г. и Южно-Якутское 1989 г. с магнитудами М7 и Мб,6 соответственно, а также землетрясения 2005-2007 гг. .

Пожалуй ни одна из научных проблем геофизики не вызывала столь бурных дискуссий и полярных мнений, как проблема прогноза землетрясений. (Некоторые ученые утверждают, что прогноз землетрясений возможен уже в настоящее время, другие же уверенны в том, что для решения этой проблемы потребуется еще немалое количество времени)

Ученые различных стран прилагают огромные усилия в изучении природы землетрясений и их прогноза. К сожалению, в настоящее время спрогнозировать место и время землетрясения, за исключением нескольких случаев, до сих пор еще не удается. Попытки предсказать место, время и силу будущего землетрясения, осуществленные в разных странах, в основном были безуспешны. Есть и удачные случаи. Например, Хайченгское землетрясение в 1975 г. в Китае. Тогда удалось эвакуировать население за 2 часа до сейсмического толчка.

В настоящее время инвестируются огромные финансовые вложения по прогнозу землетрясений. Однако, большое количество землетрясений так и осталось не спрогнозированными. Это повлекло за собой потерю человеческих жизней более полумиллиона человек за последние 15 лет.

Характеристики Земли, значения которых регулярно изменяются перед землетрясениями, называют предвестниками, а сами отклонения от нормальных значений -аномалиями .

Для того, чтобы объяснить и понять природу предвестников предпринимались многочисленные попытки построения моделей подготовки землетрясений. В настоящее время не создано не одной модели, которая смогла бы в полной мере объяснить все явления, которые возникают на последней стадии подготовки сейсмического события.

Сейсмолог С.А.Федотов предлагает разделить сейсмический цикл при прогнозировании землетрясений на 4 основные стадии :

  1. Само землетрясение. Длительность стадии несколько минут;
  2. Постепенно уменьшающиеся по частоте проявления и энергии афтершоки. Для сильных землетрясений стадия длится несколько лет, занимает 10% от сейсмического цикла;
  3. Постепенное восстановление напряженности. Длительность до 80% всего сейсмического цикла;
  4. Активация сейсмичности. Длительность составляет около 10% сейсмического цикла. Большинство предвестников возникает именно на 4 стадии.

Одним из главных препятствий для осуществления надежного прогноза является недостаточное изучение механизмов появления предвестников и закономерностей их связи с параметрами ожидаемого землетрясения .

Исследуя изменения различных свойств Земли, сейсмологи надеются установить корреляцию между землетрясениями и этими изменениями.

На сегодняшний день отсутствует полная классификация предвестников землетрясений. Приходовский М.А. предлагает ввести классификацию предвестников по признаку причинности явления :

  1. Процессы, являющиеся непосредственной причиной землетрясения («причинные» предвестники). К этому типу предвестников можно отнести расположение космических тел, которое можно с большой точностью рассчитать, а также изменения магнитных полей вследствие солнечной активности, что можно зарегистрировать с помощью приборов.
  2. Процессы, являющиеся следствием зарождающегося землетрясения («порождённые» предвестники). Сейсмические волны начинающегося землетрясения являются предвестниками. Также, видимо, инфразвук, появляющийся вследствие начавшихся в коре механических процессов, можно отнести к этому классу явлений.
  3. Процессы, являющиеся следствиями тех же причин, которые приводят к землетрясениям, но непосредственно не связанные с землетрясением («косвенные», или сопутствующие предвестники). Два различных следствия одного и того же процесса, такие как землетрясение и предвестник, могут иметь весьма слабую корреляцию, так как они напрямую причинно не взаимосвязаны. Например, свечение в атмосфере является следствием накопления электрических зарядов, но и землетрясение тоже является следствием этого процесса. Однако эти следствия не всегда проявляются синхронно.

Методы, на основе которых происходит изучение предвестников землетрясений, многими ученными, подразделяются следующим образом :

  1. Геологические
  2. Геофизические
  3. Гидрогеохимические
  4. Биологические
  5. Механические
  6. Сейсмологические
  7. Биофизические.
  • К Геологическим методам относится изучение разломов и трещиноватости пород, что является одним из факторов, который определяет возможное место будущего землетрясения.
  • В результате Геофизических методов оценивается плотность, электропроводность, магнитная восприимчивость, скорости продольных и поперечных волн и т.д.
  • Гидрогеохимические методы основаны на измерение содержания химических элементов в грунтовых и скваженных водах. Определяется содержание радона, гелия, фтора, кремнистой кислоты и других элементов, как наиболее характерных предвестников предстоящих землетрясений.
  • Множество наблюдений относится к необычному поведению домашних животных: кошек, собак, лошадей, ослов и т.д. Животные выражают неординарное поведение за несколько часов до основного толчка - в ржании, крике, стремление убежать из закрытого помещения, что довольно часто спасало жизни людей и является естественным предвестником готовящейся катастрофы, относится к биологическим предвестникам.
  • Механические предвестники связаны с деформацией горных пород, движением блоков и мегаблоков в сейсмоактивных регионах.
  • К сейсмологическим предвестникам можно отнести отношение скоростей продольных и поперечных волн, отношение амплитуд различных типов волн, изменение времен пробега, определение коэффициентов поглощения и рассеивания, вычисления частоты проявления микроземлетрясений, выделение зон временной активности и затишья.
  • Согласно гипотезе выдвинутой профессором Инюшиным В.М - биофизические предвестники отражают аномальное проявление геоплазмы Земли. Геоплазма влияет на всю биосферу, что играет немаловажную роль в развитие биологических видов. В качестве примера можно привести один из измеряемых компонентов геоплазмы - атмосферное электричество.

Прогноз землетрясений включает в себя три основные задачи: установление места, времени и силы толчка.

Прогнозирование землетрясений включает в себя как выявление их предвестников, так и сейсмическое районирование, то есть выделение областей, в которых можно ожидать землетрясение определенной магнитуды или балльности. Предсказание землетрясений состоит из долгосрочного прогноза, который осуществляется на ближайшие 10-15 лет, среднесрочного прогноза, осуществляемого на срок 1-5 лет, краткосрочного, который осуществляется на ближайшие несколько недель или дней.

Причины возникновения землетрясений можно разделить на тектонические, вулканические, обвальные и вызванные деятельностью человека.

Традиционным способом решения прогнозных задач является поиск и анализ корреляционных связей между аномальными проявлениями в физических полях и пространственным распределением, механизмами и динамикой очагов землетрясений с привлечением геоморфологических, геологических, тектонических и космических критериев сейсмичности.

Приведем краткую характеристику разработанных ранее алгоритмов среднесрочного прогноза.

1. Алгоритм М8

Данный алгоритм относится к задаче прогноза землетрясений с магнитудой М>8.0. Алгоритм разработан в Международном институте теории прогноза землетрясений и математической геофизики (МНТП РАН г. Москва). Данный алгоритм позволяет производить диагностику периодов повышенной вероятности (ППВ) сильных землетрясений по набору некоторых функций общего потока основных толчков. Об объективности данного метода нельзя сказать однозначно, так как в некоторых областях Земли этот алгоритм дает точный прогноз, а в некоторых не предсказывает даже сильные землетрясения (например, Великое Азиатское землетрясение, М=9.3, декабрь 2004 г.). Указанное сейсмическое событие еще раз подтверждает тот факт, что данные методы прогноза не обеспечивают надежной достоверности прогноза землетрясений.

2. Алгоритм «Сценарий Мендосино» (MSc)

Известно, что алгоритм М8 служит для объявления ППВ в области достаточно большого размера. С помощью алгоритма «Сценарий Мендосино» данную область можно сузить. Идея использования данного алгоритма заключается на основании процедуры поиска такой области прогноза с аномальным затишьем на фоне обычной для нее высокой активности окружения. В большинстве случаев такое затишье предшествует возникновению сильного землетрясения.

3. Алгоритм Калифорния-Невада

Данный прогноз рассчитан на прогноз землетрясений средней силы. Метода Калифорния-Невада основывается на поиске аномальных вариаций потока землетрясений.

4. Метод расчета карт ожидаемых землетрясений (КОЗ)

При построении карты КОЗ исследуемый район разбивается на элементарные ячейки, в которых рассчитываются значения каждого из прогностических параметров. Вероятность ожидания сильно землетрясения вычисляется по формуле Байеса.

Помимо алгоритмов среднесрочного прогноза необходимо рассмотреть и алгоритмы краткосрочного прогноза. К алгоритмам среднесрочного прогноза относятся:

  • метод Б.Войта;
  • способ Д.Варнеса;
  • метод саморазвивающихся процессов;
  • картирование сейсмической активности по плотности потока событий;
  • метод обратного прослеживания предвестников.

Таким образом, в настоящее время научный прогноз места, времени и силы землетрясения является 1 из главных задач сейсмологии. Для осуществления достоверного локального прогноза необходимо детальное изучение механизмов появления предвестников и закономерностей их связи с ожидаемым землетрясением.

Рецензенты:

Гриб Н.Н., д.т.н., профессор, заместитель директора по научно-исследовательской работе, ТИ (ф) ФГАОУ ВПО «СВФУ», г. Нерюнгри;

Трофименко С.В., д.г.-м.н., профессор, профессор кафедры Математики и информатики, ТИ (ф) ФГАОУ ВПО «СВФУ», г. Нерюнгри.

Библиографическая ссылка

Туманова К.С. К ВОПРОСУ ПОИСКОВ ПРЕДВЕСТНИКОВ ЗЕМЛЕТРЯСЕНИЙ // Современные проблемы науки и образования. – 2015. – № 1-1.;
URL: http://science-education.ru/ru/article/view?id=17146 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Оползни. Признаки возникновения. Действия при угрозе оползней.

ОПОЛЗЕНЬ – скользящее смещение (сползание) масс грунтов и горных пород вниз по склонам гор и оврагов, крутых берегов морей, озер и рек под влиянием силы тяжести. Причинами оползня чаще всего являются подмыв склона, его переувлажнение обильными осадками, землетрясения или деятельность человека (взрывные работы и др.).

Признаками надвигающегося оползня являются заклинивание дверей и окон зданий, просачивание воды на оползнеопасных склонах.

При получении сигналов об угрозе возникновения оползня отключите электроприборы, газовые приборы и водопроводную сеть, приготовьтесь к немедленной эвакуации по заранее разработанным планам.

При эвакуации берите с собой документы, ценности, а в зависимости от обстановки и указаний администрации теплые вещи и продукты. Срочно эвакуируйтесь в безопасное место и, при необходимости, помогите спасателям в откопке, извлечении из обвала пострадавших и оказании им помощи.

После смещения оползня в уцелевших строениях и сооружениях проверяется состояние стен, перекрытий, выявляются повреждения линий электро-, газо-, и водоснабжения.

Землетрясения – это подземные толчки и колебания земной поверхности, вызываемые в основном геофизическими причинами.

Им принадлежит первое место по причиняемому материальному ущербу и одно из первых мест – по числу жертв.

Наиболее частой причиной землетрясений является появление чрезмерных внутренних напряжений и разрушений пород.

Подавляющая часть землетрясений связана с процессами горообразования.

Высочайшие горы или глубокие океанические желоба в геологическом масштабе являются молодыми образованиями, находящимися в процессе формирования. Земная кора в таких областях подвижна. Землетрясения такого плана называются тектоническими. Наряду с тектоническими процессами землетрясения могут возникать и по другим причинам. Одной из таких причин является деятельность вулканов. Лава и раскаленные газы, бурлящие в недрах вулканов, давят на верхние слои Земли, как пары кипящей воды на крышку чайника. Извержение лавы из кратера сопровождается выделением энергии и порождает вулканические землетрясения.

Сотрясения земли могут быть также вызваны обвалами и большими оползнями, Это местные обвальные землетрясения.

Шкала Рихтера характеризует величину энергии, которая выделяется при землетрясении. Самые сильные землетрясения на Земле имеют магнитуду 9.0.

Предвестниками землетрясений являются:

Деформация земной коры, определяемая из космоса или съемкой поверхности земли

Изменение уровня грунтовых вод в скважинах; содержание радона в воде и др.

Предвестником землетрясения может служить необычное поведение животных накануне землетрясения

Муравьи покидают свои жилища. Глубоководные рыбы всплывают на поверхность. Кошки покидают селения и переносят котят в открытые места. Птицы в клетках за 10-15 мин до начала землетрясения начинают летать, перед толчком слышатся необычные крики птиц

Предвестники землетрясений

Следя за изменением различных свойств Земли, сейсмологи надеются установить корреляцию между этими изменениями и возникновением землетрясений. Те характеристики Земли, значения которых регулярно изменяются перед землетрясениями, называют предвестниками, а сами отклонения от нормальных значений – аномалиями.

Ниже будут описаны основные (считают, что их более 200) предвестники землетрясений, изучаемые в настоящее время.

Сейсмичность. Положение и число землетрясений различной магнитуды может служить важным индикатором приближающегося сильного землетрясения. Например, сильное землетрясение часто предваряется роем слабых толчков. Выявление и подсчет землетрясений требует большого числа сейсмографов и соответствующих устройств для обработки данных.

Движения земной коры. Геофизические сети с помощью триангуляционной сети на поверхности Земли и наблюдения со спутников из космоса могут выявить крупномасштабные деформации (изменение формы) поверхности Земли. На поверхности Земли проводится исключительно точная съемка с помощью лазерных источников света. Повторные съемки требуют больших затрат времени и средств, поэтому иногда между ними проходит несколько лет и изменения на земной поверхности не будут вовремя замечены и точно датированы. Тем не менее подобные изменения являются важным индикатором деформаций в земной коре.

Опускание и поднятие участков земной коры. Вертикальные движения поверхности Земли можно измерить с помощью точных нивелировок на суше или мареографов в море. Поскольку мареографы устанавливаются на грунте, а записывают положение уровня моря, они выявляют длительные изменения среднего уровня воды, которые можно интерпретировать как поднятия и опускания самой суши.

Наклоны земной поверхности. Для измерения угла наклона земной поверхности был сконструирован прибор, называемый наклономером. Наклономеры обычно устанавливаются около разломов на глубине 1-2 м ниже поверхности земли и их измерения указывают на выразительные изменения наклонов незадолго до возникновения слабых землетрясений.

Деформации. Для измерения деформаций горных пород бурят скважины и устанавливают в них деформографы, фиксирующие величину относительного смещения двух точек. После этого деформация определяется путем деления относительного смещения точек на расстояние между ними. Эти приборы настолько чувствительны, что измеряют деформации в земной поверхности вследствие земных приливов, вызванных гравитационным притяжением Луны и Солнца. Земные приливы, представляющие собой движение масс земной коры, похожее на морские приливы, вызывают изменения высоты суши с амплитудой до 20 см. Крипометры подобны деформографам и используются для измерения крипа, или медленного относительного движения крыльев разлома.

Скорости сейсмических волн. Скорость сейсмических волн зависит от напряженного состояния горных пород, через которые волны распространяются. Изменение скорости продольных волн – сначала ее понижение (до 10%), а затем, перед землетрясением,- возврат к нормальному значению, объясняется изменением свойств горных пород при накоплении напряжений.

Геомагнитизм. Земное магнитное поле может испытывать локальные изменения из-за деформации горных пород и движения земной коры. С целью измерения малых вариаций магнитного поля были разработаны специальные магнитометры. Такие изменения наблюдались перед землетрясениями в большинстве районов, где были установлены магнитометры.

Земное электричество. Изменения электросопротивления горных пород могут быть связаны с землетрясением. Измерения проводятся с помощью электродов, помещенных в почву на расстоянии нескольких километров друг от друга. При этом измеряется электрическое сопротивление толщи земли между ними. Опыты, проведенные сейсмологами Геологической службы США обнаружили некоторую корреляцию этого параметра со слабыми землетрясениями.

Содержание радона в подземных водах. Радон – это радиоктивный газ, присутствующий в грунтовых водах и в воде скважин. Он постоянно выделяется из Земли в атмосферу. Изменения содержания радона перед землетрясением впервые были замечены в Советском Союзе, где десятилетнее возрастание количества радона, растворенного в воде глубоких скважин, сменилось резким его падением перед Ташкентским землетрясением 1966 года (магнитуда 5.3).

Уровень воды в колодцах и скважинах. Уровень грунтовых вод перед землетрясениями часто повышается или понижается, как это было в Хайчэне (Китай), по-видимому из-за изменений напряженного состояния горных пород. Землетрясения могут и прямо влиять на уровень воды; вода в скважинных может колебаться при прохождении сейсмических волн, даже если скважина находится далеко от эпицентра. Уровень воды в скважинах, находящихся вблизи эпицентра, часто испытывает стабильные изменения: в одних скважинах он становится выше, в других – ниже.

Изменение температурного режима приповерхностных земных слоев. Инфракрасная съемка с космической орбиты позволяет “рассмотреть” своеобразное тепловое покрывало нашей планеты – невидимый глазу тонкий слой в сантиметры толщиной, создаваемый вблизи земной поверхности ее тепловым излучением. Сейчас накоплено много факторов, которые говорят об изменении температурного режима приповерхностных земных слоев в периоды сейсмической активизации.

Изменение химического состава вод и газов. Все геодинамически активные зоны Земли отличаются существенной тектонической раздробленностью земной коры, высоким тепловым потоком, вертикальной разгрузкой вод и газов самого пестрого и нестабильного во времени химического и изотопного состава. Это создает условия для поступления в подземные

Поведение животных. В течение столетий многократно сообщалось о необычайном поведении животных перед землетрясением, хотя до последнего времени сообщения об этом всегда появлялись после землетрясения, а не до него. Нельзя сказать, действительно ли описанное поведение было связано с землетрясением, или же это было просто обычное явление, которое каждый день случается где-нибудь в окрестностях; к тому же в сообщениях упоминаются как те события, которые вроде бы случились за несколько минут до землетрясения, так и те, что произошли за несколько дней.

Миграция предвестников землетрясений

Значительную сложность при определении места очага будущего землетрясения по наблюдениям за предвестниками представляет собой большой ареал распространения последних: расстояния, на которых наблюдаются предвестники, в десятки раз превышают размеры разрыва в очаге. При этом краткосрочные предвестники наблюдаются на больших расстояниях, чем долгосрочные, что подтверждает более слабую их связь с очагом.

Теория дилатансии

Теория, способная объяснить некоторые из предвестников, основана на лабораторных опытах с образцами горных пород при очень высоких давлениях. Известная под названием “теория дилатансии”, она впервые была выдвинута в 1960-х годах У.Брейсом из Массачусетского технологического института и развита в 1972 году А.М. Нуром из Станфордского университета. В этой теории дилатансия обозначает увеличение объема горной породы при деформации. Когда происходят движения земной коры, в породах растут напряжения и образуются микроскопические трещины. Эти трещины меняют физические свойства пород, например, уменьшаются скорости сейсмических волн, увеличивается объем породы, меняется электросопротивление (возрастает в сухих породах и уменьшается во влажных). Далее, по мере того, как в трещины проникает вода, они уже не могут схлопываться; следовательно, породы увеличиваются в объеме, и поверхность Земли может подняться. В результате вода распространяется по всей расширяющейся зане, повышая поровое давление в трещинах и снижая прочность пород. Эти изменения могут привести к землетрясению. Землетрясение высвобождает накопленные напряжения, вода выдавливается из пор, и многие из прежних свойств пород восстанавливаются.

Профессор Томского политехнического института А. А. Воробьев считает, что вспышки вызваны механо - электрическими процессами в горных породах при их сжатии и растяжении.

Каждый год на земном шаре происходят несколько сотен тысяч землетрясений, некоторые из них становятся разрушительными. Но предсказать когда именно, где и какими сильными будут подземные толчки даже современные сейсмологи практически в состоянии. Известно, что животные могут предчувствовать землетрясение и вести себя весьма напряженно, нервно и стараться уйти из неблагополучного места как можно скорее. Иногда перед землетрясением слышится гул из-под земли. Ученые считают, что это вызвано тектоническим движением плит. А иногда на небе можно наблюдать загадочные вспышки света.

Всем известно, что больше всех от природной стихии страдала и страдает Япония. Именно японцы первыми и начали анализировать различные природные явления-предвестники землетрясений. И возможно они первые, кто записывал в своих исторических хрониках о необычных световых феноменах, возникавших как раз перед движением земли под ногами. 373 год до нашей эры. — одно из первых задокументированных в Стране восходящего Солнца свидетельств о подобном странном явлении.

Долгое время феномен световых вспышек, связанных с землетрясениями, геофизики и сейсмологи игнорировали, считая, что во всем виноваты разрывы высоковольтных линий и вспышки прорвавшегося в трубах газа. Лишь в последние десятилетия им серьезно заинтересовались учёные, благо записанных на видео свидетельств стало намного больше.

Профессор Томского политехнического института А. А. Воробьев считает, что вспышки вызваны механо — электрическими процессами в горных породах при их сжатии и растяжении. Если миллионы тонн природных минералов сжимать и разжимать, под земной поверхностью заработает мощнейшая электрическая машина, генерирующая высоковольтные поля и радиоволны. Когда горные породы разрушаются, то мы можем увидеть интенсивные электрические разряды, похожие на вспышки молний.

Все эти явления предшествуют землетрясению. И могут наблюдаться за сутки до него, за часы, но чаще всего за минуты до самого толчка. Стоит отметить, что электрический разряд возникает при разрушении любой горной породы и даже угольных пластов. Возможно, иногда вспышки света, заснятые на камеру, являются ни чем иным, как взрывами в угольных шахтах, при поджоге в последних природными электрическими процессами находящейся там воздушно-метановой смеси.

Учёными было так же обнаружено, что за несколько часов до начала землетрясения в в атмосфере на высоте около 100 км над будущим эпицентром возрастает интенсивность свечения зеленой линии атомарного кислорода. По их мнению, возбуждение верхних слоев атмосферы происходит под действием инфра-звуковых волн из очага готовящегося землетрясения. Если землетрясение будет крупным, то инфразвуковые волны при распространении вверх могут передать часть своей энергии атомам кислорода, заставив их светится характерной для этого элемента длиной волны. Обычно свечение слабое и почти не заметно. Но при резком повышении концентрации таких частиц вспышки света можно наблюдать невооруженным взглядом в ночное время. Свет может пульсировать, иметь разный оттенок и перемещаться по небосводу.

Землетрясения - природное явление, которое и сегодня привлекает внимание ученых не только за счет своей малой изученности, но и непредсказуемости, способной наносить вред человечеству.

Что такое землетрясение?

Землетрясением называется подземный толчок, который может ощущаться человеком в значительной мере в зависимости от мощности колебания земной поверхности. Землетрясения не представляют собой редкость и ежедневно возникают в разных точках планеты. Зачастую большая часть землетрясений возникает на дне океанов, что позволяет избежать катастрофических разрушений в пределах густонаселенных городов.

Принцип возникновения землетрясений

Что вызывает землетрясения? Землетрясения могут быть вызваны как естественными причинами, так и искусственными, которые возникают по вине человека.

Чаще всего землетрясения происходят из-за разломов тектонических плит и их быстрого смещения. Для человека разлом не ощутим до того момента, пока энергия, образовавшаяся от разрыва горных пород, не начнет вырываться к поверхности.

Как происходит землетрясения по неестественным причинам? Достаточно часто человек по своей неосторожности провоцирует появление искусственных толчков, которые по своей мощности совсем не уступают природным. Среди таких причин можно выделить следующие:

  • - взрывы;
  • - перезаполненность водохранилищ;
  • - наземный(подземный)ядерный взрыв;
  • - обрушения в шахтах.

Место разрыва тектонической плиты - это очаг землетрясения. От глубины его расположения будет зависеть не только сила потенциального толчка, но и его продолжительность. Если очаг располагается в 100 километрах от поверхности, то его сила будет более чем ощутима. Вероятней всего, это землетрясение повлечет за собой разрушение домов и сооружений. Возникнув в море, такие землетрясения вызывают цунами. Однако, очаг может располагаться и намного глубже - 700 и 800 километрах. Такие явления не опасны и могут зафиксироваться только при помощи специальных приборов - сейсмографов.

Место, в котором землетрясение проявляет наибольшую мощность, называется эпицентром. Именно этот участок земли считается наиболее опасным для существования всего живого.

Изучение землетрясений

Детальное изучения характера землетрясений позволяет предупредить многие из них и сделать жизнь населения, проживающих в опасных местах, более спокойной. Для определению мощности и измерения силы землетрясения используют два основных понятия:

  • - магнитуда;
  • - интенсивность;

Магнитудой землетрясения называют меру, при помощи которой измеряют энергию, выделяющуюся в ходе освобождения из очага в виде сейсмических волн. Шкала магнитуды позволяет безошибочно определить истоки колебаний.

Интенсивность измеряется в баллах и позволяет определить соотношение магнитуды толчков и их сейсмической активности от 0 до 12 баллов по шкале Рихтера.

Особенности и признаки землетрясений

В независимости от того из-за чего происходит землетрясение и в какой местности оно локализируется, его длительность будет приблизительно одинаковой. Один толчок в среднем длится 20-30 секунд. Но в истории зафиксированы случаи, когда единичный толчок без повторов мог длиться до трех минут.

Признаками приближающегося землетрясения служит беспокойство животных, которые почуяв малейшие колебания поверхности земли, стараются уйти от злополучного места подальше. Другими признаками скорого землетрясения служат:

  • - появление характерных облаков в виде продолговатых лент;
  • - изменение уровня воды в колодцах;
  • - сбои в работе электротехники, мобильных телефонов.

Как вести себя при землетрясениях?

Как вести себя во время землетрясения, чтобы сохранить свою жизнь?

  • - Сохранять рассудительность и спокойствие;
  • - Находясь в помещении, ни в коем случае не прячьтесь под хрупкой мебелью, например, под кроватью. Лягте рядом с ними в позе эмбриона и прикройте голову руками (либо защитите голову чем-то дополнительно). При обрушении кровли, она упадет на мебель и может образоваться прослойка, в которой вы и окажетесь. Важо выбрать крепкую мебель, у которой самая широкая часть стоит на полу, т.е эта мебель не может упасть;
  • - Находясь на улице, отойдите от высоких зданий и сооружений, линий электропередач, которые могут разрушиться.
  • - Закройте рот и нос мокрой тряпкой для предотвращения попадания пыли и гари в случае возгорания какого-либо объекта.

Если вы заметили пострадавшего человека в здании, то дождитесь окончания толчков и только тогда пробирайтесь в помещение. В противном случае, оба человека может оказаться в ловушке.

Где не бывает землетрясений и почему?

Землетрясения возникают в местах разломов тектонических плит. Поэтому, страны и города, находящиеся на цельной тектонической плите без разломов, могут не беспокоиться о своей безопасности.

Австралия является единственным в мире континентом, который не находится на стыке литосферных плит. На нем отсутствуют действующие вулканы и высокие горы и, соответственно, отсутствуют землетрясения. Также землетрясений нет в Антарктике и Гренландии. Наличие огромной тяжести ледяного панциря препятствует распространению подземных толчков по поверхности земли.

Вероятность возникновения землетрясений на территории Российской Федерации достаточно высока в скалистой местности, где наиболее активно наблюдается смещение и движение горных пород. Так, высокая сейсмичность отмечается в Северном Кавказе, на Алтае, в Сибири и на Дальнем Востоке.