Информационная поддержка школьников и студентов
Поиск по сайту

Вторичная обработка рли. Алгоритм вторичной обработки радиолокационной информации. Отрывок, характеризующий Обработка радиолокационной информации

Предисловие к изданию на русском языке
Предисловие редактора
Предисловие
Список используемых обозначений
Глава 1. Введение
1.1. Цифровая обработка информации в РЛС
1.1.1. Классификация РЛС
1.1.2. Общие сведения о функциональных элементах РЛС
1.1.3. Принципы построения РЛС с сопровождением в режиме обзора
1.2. Обработка данных в РЛС с ФАР
1.2.1. ФАР с электронным сканированием
1.2.2. Использование ФАР в РЛС
1.2.3. Контроллер
1.2.4. Сопровождение целей с использованием ФАР
1.3. Обработка данных в сетях РЛС
1.3.1. Примеры радиолокационных сетей
1.3.2. Способы обработки данных
1.3.3. Двухпозиционные РЛС и сети двухпозиционных РЛС
1.4. Фильтры сопровождения
1.4.1. Общие положения теории систем
1.4.2. Теория статистической фильтрации
1.4.3. Применение теории фильтрации
1.5. Применение систем ЦОРИ в РЛС
1.5.1. Примеры применения ЦОРИ
1.6. Заключение
Глава 2. Математический аппарат теории оценивания и фильтрации
2.1. Введение в теорию оценивания
2.1.1. История вопроса
2.1.2. Основные определения
2.1.3. Классификация задач оценивания
2.1.4. Критерий наименьших квадратов
2.1.5. Критерий минимума средней квадратической ошибки
2.1.6. Критерий максимального правдоподобия
2.1.7. Критерий максимальной апостериорной вероятности (байесовский критерий)
2.2. Подробное рассмотрение оценивания по критерию минимума средней квадратической ошибки в параметрических задачах
2.2.1. Общее решение задачи оценивания по критерию минимума средней квадратической ошибки
2.2.2. Линейный оцениватель по критерию минимума средней квадратической ошибки
2.3. Оценивание по критерию минимума средней квадратической ошибки в динамических задачах
2.3.1. Модели систем
2.3.2. Фильтрация, экстраполяция и сглаживание
2.3.3. Линейная экстраполяция и фильтрация при оценивании по критерию минимума средней квадратической ошибки
2.4. Калмановская фильтрация
2.4.1. Дискретный калмановский фильтр и экстраполятор
2.4.2. Численный пример
2.4.3. Стационарный режим работы калмановского фильтра
2.5. Адаптивная фильтрация
2.5.1. Введение
2.5.2. Чувствительность и расходимость калмановского фильтра
2.5.3. Байесовские методы адаптивной фильтрации
2.5.4. Субоптимальные небайесовские адаптивные фильтры
2.6. Нелинейная фильтрация
2.6.1. Введение
2.6.2. Расширенный калмановский фильтр
2.6.3. Другие субоптимальные методы фильтрации
2.7. Заключение
Глава 3. Система сопровождения целей в режиме обзора
3.1. Введение
3.2. Принципы построения систем СЦРО
3.2.1. Структура файлов данных
3.2.2. Формирование и обновление карты отражений от местных предметов
3.3. Математические модели датчика и траектории цели
3.3.1. Система координат
3.3.2. Радиолокационные измерения
3.3.3. Модель цели
3.4. Фильтры сопровождения
3.4.1. Применение калмановского алгоритма
3.4.2. а-B-алгоритм
3.4.3. Двумерная задача
3.4.4. Адаптивный метод сопровождения маневрирующей цели
3.5. Привязка отметок к траекториям
3.5.1. Алгоритмы сопоставления и привязки отметок к траекториям
3.5.2. Форма и размеры корреляционных стробов
3.6. Методы завязки траектории
3.6.1. Характеристики алгоритмов завязки траектории
3.6.2. Метод скользящего окна
3.6.3. Пример применения алгоритма
3.6.4. Форма и размеры стробов завязки траектории
3.7. Заключение
Глава 4. Алгоритмы сопровождения
4.1. Введение
4.2. Основные особенности базового фильтра сопровождения
4.2.1. Подход Сингера
4.2.2. Полумарковский подход
4.2.3. Нелинейная фильтрация данных радиолокационных измерений
4.3. Адаптивная фильтрация при сопровождении маневрирующей цели
4.3.1. Алгоритм обнаружения маневра
4.3.2. Способы реализации адаптивности
4.4. Фильтрация в условиях отражений от местных предметов
4.4.1. Оптимальный байесовский подход
4.4.2. Субоптимальные алгоритмы
4.4.3. Совместная оптимизация обработки сигналов и радиолокационных данных
4.5. Фильтрация при наличии нескольких целей
4.5.1. Случай двух пересекающихся траекторий
4.5.2. Оптимальный и субоптимальный фильтры сопровождения
4.5.3. Сопровождение групповой цели (боевого порядка)
4.6. Сопровождение с использованием результатов измерений радиальной скорости
4.6.1. Сопровождение одиночной цели при отсутствии помех
4.6.2. Сопровождение одиночной цели на фоне отражений от местных предметов
4.6.3. Случай двух пересекающихся траекторий
4.6.4. Линейная обработка измерений радиальной скорости
4.7. Активное сопровождение с использованием фазированной антенной решетки
4.7.1. Адаптивное управление темпом обновления траектории
4.7.2. Сопровождение нескольких целей с использованием перекрывающихся последовательностей импульсов
4.8. Бистатические системы сопровождения
4.8.1. Структура фильтра сопровождения
4.8.2. Сравнительный анализ моностатической и бистатической РЛС
4.9. Заключение
Список литературы
Список работ, переведенных на русский язык
Дополнение. Новые методы обработки информации в пространстве состояний на основе теории оценивания (Юрьев А. Н., Бочкарев Л. М.)
Д.1. Общие вопросы фильтраций и оценивания
Д.2. Обнаружение и различение траекторий целей
Д.З. Сопровождение маневрирующей цели
Д.4. Сопровождение нескольких целей
Д.5. Сопровождение целей с использованием нескольких датчиков
Список литературы к дополнению

Единичные отметки, являющиеся результатом первичной обработ­ки радиолокационной информации, дают лишь приближенные сведения о действительном положении целей. По одиночной отметке нельзя при­нять решение об обнаружении траектории и тем более оценить такие параметры, как скорость, курс, ускорение цели и т.д.

Вторичная обработка информации о воздушной обстановке состо­ит в обнаружении траекторий целей по данным нескольких обзоров станции. Основными ее задачами, кроме того, являются: оценка па­раметров движения целей; вычисление координат текущего и упреж­денного положений целей; привязка вновь полученных отметок к об­наруженным траекториям (трассам).

При вторичной обработке информации используются алгоритмы, полученные методами математической статистики. Обнаружение и оценка параметров движения целей осуществляются на основе различ­ных гипотез о законах движения целей.

Траектории движения аэродинамических целей (самолетов, кры­латых ракет и т.д.) обычно представляются в виде совокупности участников с прямолинейным равномерным движением и участков ма­невра. На всех участках используются полиномиальная модель движе­ния цели.

Считается, что на ограниченном промежутке времени каждая ко­ордината цели изменяется по линейному закону.

Точный закон движения цели в процессе вторичной обработке остается неизвестным. Причиной этого является наличие помех, ко­торыми являются ошибки измерения координат целей РЛС, ложные от­метки и пропуски отметок, случайные флюктуации траекторий относи­тельно генерального курса и др.

В РЛС и АСУ войск ПВО СВ основные задачи вторичной обработки информации решаются приближенными способами с использованием уп­рощенных алгоритмов. Главное требование к таким алгоритмам - это обеспечение необходимой точности сопровождения при минимальном работном времени и минимальной сложности реализации алгоритмов на ЭВМ.

Таким образом, результатом ВОРЛИ является прокладка трассы движения цели. Процесс прокладки трассы обычно выполняется в два этапа: обнаружение траекторий целей и сопровождение траекторий .

Прокладка трассы цели при ВОРЛИ предполагает реализацию следующего алгоритма:

1. Автоматическое обнаружение цели.

2. Завязка трассы (два съема координат цели в соседних периодах обзора РЛС).

3. Вычисление вектора скорости в прямоугольной системе координат:

(3.4)

4. Вычисление положения строба экстраполяции, то есть по результатам определения текущих координат цели вычисление координат области пространства, в которой следует ожидать цель.

5. Отождествление трассы цели.

6. Сброс трассы цели (при отрицательном отождествлении) или сопровождение цели (при положительном отождествлении).



Пункты 1-5 реализуют этап взятия цели на сопровождение, а при условии положительного отождествления трассы цели начинается этап сопровождения.

Выделенные этапы можно пояснить следующим образом.

Предположим, что в зоне обзора станции обнаружена отметка, которая не может быть отнесена ни к одной сопровождаемой траектории (рис 3.8). Она принимается за первую отметку траектории новой цели. В виду того, что за период обзора Т обз цель не может переместиться на большое расстояние, вторую отметку следует ожидать в преде­лах кольца с внутренним R min и внешним R max радиусами, рассчитыва­емыми по каждой из координат по формулам:

, (3.5)

где V min , V mах - минимально и максимально возможные скорости движения сопровождае­мых целей по каждой из координат.


Рис.3.8. Пояснение к процессу завязки трассы цели при ВОРЛИ

При выборе значения скорости V min учитывается, что с ее уве­личением возрастает вероятность необнаружения малоскоростных це­лей (например, вертолетов, аэростатов). В то же время с уменьше­нием V min , в особенности в случаях, когда V min равна нулю, резко увеличивается количество ложных траекторий за счет захвата отра­жений местных предметов. Значение скорости V mах в основном опре­деляется требованиями, предъявляемыми к системе управления зенит­ными комплексами. В окончательных значениях R min и R maх принима­ются во внимание и возможные ошибки обнаружения координат цели радиолокационной станцией. В связи с необходимостью учета большого числа факторов в АСУ предусматривают несколько пар радиусов R min и R max , конкретные значения которых выбираются бое­вым расчетом в зависимости от складывающихся условий (типы сопро­вождаемых целей, позиция РЛС, уровень помех работе станций, точ­ность измерения координат целей и др.).



Кольцо, образованное радиусами R min и R max , имеет площадь S и называется стробом первичного захвата. В очередном обзоре стан­ции в него могут попасть несколько отметок цели, например А 1 ,А 2 ,А 3 . Причем каждая из отметок должна рассматриваться как вторая отметка возможной траектории.

По координатам двух отметок уже можно вычислить составляющие скорости каждой из возможных целей.

Составляющие скорости нужны для расчета ожидаемых (экстраполированных) координат цели в третьем обзоре (на рис. 3.9. экстраполированные положения цели обозначены буквой В ).

Вокруг экстраполированных отметок можно построить новые стробы , которые обычно имеют круговую или прямоугольную форму. Размер стробов определяется в основ­ном исходя из возможных ошибок при экстраполяции и измерении координат отметок и возможным отклонени­ем цели за время Т о от прямолинейного пуска.

Если в какой-либо строб в третьем обзоре попала отметка, то она считается принадлежащей обнаруживаемой траектории. С учетом координат этой отметки уточняются траектории и строятся новые стробы. После выполнения установленного критерия по числу отметок, попавших в последовательно образованных стробов, принимается решение об обнаружении траектории и она передается на сопровождение. Типовыми критериями являются «две из двух», «три из четырех при обязательной второй». Алгоритмы автозахвата по критерию «две из двух» рекомендуется использовать только при работе по низколетящим и баллистическим целям, то есть в условиях острого дефицита времени. В отдельных случаях более выгодным является при­менение алгоритма, основанного на логике «три из четырех при обязательной второй», поскольку он обеспечивает меньшую вероятность захвата ложной траектории. Даль­нейшее увеличение числа анализируемых обзоров нежелательно ввиду возрастания цикла управления АСУ.

Таким образом, в процессе обнаружения траектории выполняются следующие операции: стробирование и селекция отметок в стробе, проверка критерия обнаружения, оценка значений параметров траектории и экстраполяция этих параметров.

Слежение за траекторией цели состоит в последовательной от измерения к измерению привязке к ней вновь полученных отметок и уточнении ее параметров. При автоматическом слежении за траекторией, которое называется автосопровождением, выполняются следующие операции:

Уточнение параметров траектории в процессе привязки новых отметок;

Экстраполяция параметров на момент следующего измерения;

Стробирования зоны возможного положения любых отметок;

Селекция отметок в стробе (при наличии в стробе нескольких отметок).

При попадании в этот строб сопровождения нескольких отметок траектория продолжается по каждой из них. При отсутствии отметки в стробе сопровождения траектория продолжается по соответствующей экстраполированной точке, но очередной строб увеличивается, чтобы учесть возросшие ошибки экстраполяции. Если пропуски отметок в стробах повторяются К раз подряд, траектория прерывается (сбрасывается).

Таким образом, на этапах обнаружения траектории и слежения за ней выполняются фактически одни и те же операции:

Стробирование зоны обнаружения;

Селекция и идентификация отметок в стробе;

Фильтрация и экстраполяция параметров траектории.

В общем случае при принятии решения о сбросе траектории с сопровождения необходимо учитывать не только наличие отметок для ее продолжения, но и ряд других факторов, к которым можно отнести: важность цели; возможности цели изменять свою траекторию в полете; текущие координаты цели; направление ее полета и продолжительность пребывания в зоне обзора РЛС и т.д. Однако учет этих факторов чрезвычайно сложен и не всегда доступен из-за ограниченной производительности вычислительных средств. Поэтому основным критерием при принятии решения о сбросе траектории с сопровождения является появление некоторой пороговой серии Р пропусков отметок в стробах сопровождения. Такой критерий сброса не учитывает индивидуальные особенности каждой траектории, а также не использует информацию о накопленном уровне точности к моменту появления серии пропусков. Единственное существенное его достоинство – простота реализации на ЦВМ соответствующего алгоритма.

§ 3.6. Сбор и обобщение данных о воздушной обстановке (третичная обработка радиолокационной информации)

Данные о воздушной обстановке, поступающие от одного источ­ника, как правило, не знают полной картины о положении и характе­ре действий целей и своих самолетов. Возможности радиолокационной станции по ведению разведки определяются не только ТТХ станции, но и зависят от занимаемой позиции, радиоэлектронного противо­действия противника, технического состояния аппаратуры, уровня подготовленности боевого расчета и других факторов.

Поэтому полное представление о воздушной обстановке можно получить лишь в результате обобщения данных, поступающих от нес­кольких автоматизированных систем РЛС.

Состав и форма представленных данных, поступающих на пункт обработки радиолокационной информации (ПОРИ) в разных системах управления могут су­щественно отличаться.

В этом сообщении наряду с текущими координатами Х,У,Н , со­держится и время локации t л , а также ряд признаков характеризующих цель, точность измерения координат, режимы ра­боты РЛС и системы передачи данных и др.

На ПОРИ производится непосредственно сама третичная обработка радиолокационной информации. Она включает в себя несколько этапов:

Пересчет координат целей и приведение к единой системе координат;

Привязка координат к единому времени;

Отождествление отметок цели;

Усреднение координат.

Обработка поступающих сигналов начинается с распаковки сообщения и записывается в отведенную ему зону памяти оперативного запоминающегося устройства.

Пересчет координат целей в единую систему необходим потому, что каждая РЛС работает в своей системе координат. Началу координат соответствует цент экрана индикатора (точка стояния РЛС).

Пересчет координат позволяет совместить данные нескольких источников и на этой основе решать остальные задачи сообщения обобщенной информации.

Для привязки всех РЛС к единой системе координат приказом старшего начальника назначается условная точка (УТ), относительно которой производится перерасчет точек стояния всех РЛС и ПОРИ (ПУ) (см. рис.3.9). В результате в ЦВС ПОРИ вычисляет координаты целей от­носительно условной точки.

При решении этой задачи ЦВС реализует следующий алгоритм:

Определение координат целей, обнаруженных РЛС 1;

Определение координат целей, обнаруженных РЛС 2;

Определение параллакса ;

Решение системы уравнений векторов.



Рис. 3.9. Пояснение к пересчету координат целей в единую систему

Результатом реализации такого алгоритма являются координаты обнаруженных целей РЛС1 и РЛС2, рассчитанные относительно УТ.

При сборе, обобщении информации о воздушной обстановке в связи с асинхронной работой радиолокационных станций возникает задача приведе­ния данных к единому времени .

При решении этой задачи один источник информации является основным, второй - дополнительным. Каждый источник выдает текущие координаты це­ли (Х,У,Н,V х,V у ). При передаче информации производится задержка данных в каналах связи (t з =0,1-0,01%). Момент поступления информации на ПОРИ t и1 и t и2 фиксируется путем считывания и запоминания показаний электронного счетчика, при этом имеет место запаздывания t зап = t и2 – t и1 . (рис.3.10).

Определение временных интервалов производится относительно импульсов синхронизации ПОРИ.

Чтобы привести данные в единую систему времени производится компен­сация t заn при расчете времени прихода информации от каждой РЛС.


Рис. 3.11. Пояснение к решению задачи отождествления отметок цели

Размер строба отождествления зависит от точности вспомогательного источника информации, наличия пропуска отметок цели, характера движения це­ли (может быть больше, а может быть меньше радиусом).

Далее производится проверка условия попадания целей других источников в эти стробы отожествления. При условии попадания отметки со второй (не основной) станции в строб отожествления, данные этих целей в ЦВМ АСУ усредняются и выдаются на экран в виде одной отметки о цели. Усреднение производится методом расчета среднего арифметического значения по каждой из координат.

Таким образом, результатом всех этапов третичной обработки является созданная в ЦВС динамическая модель воздушной обстановки в границах группировки РТВ, обеспечивающая наиболее полное использование бое­вых возможностей огневых средств ПВО при отражении ударов воздуш­ного противника.


Диаграммой направленности антенны (ДНА) называется график зависимости мощности, излучаемой антенной, от направления излучения. Обычно измеряется на уровне 0,7 (по амплитуде) или 0,5 (по мощности) от максимума излучения. Характеризуется осью диаграммы (равносигнальным направлением) – направление максимума излучения.

Контрольный сигнал «пилот» представляет собой радиоимпульс малой мощности и служит для автоматической настройки коэффициентов усиления приемника.

Параллаксом называется расстояние между двумя объектами – РЛС1 и РЛС2

Системы управления боевыми действиями авиации, кроме рассмотренных выше задач по обработке информации, поступающей от одной РЛС, решают еще одну задачу, которая связана с объединением информации о целях, полученных от нескольких РЛС или первичных постов обработки РЛИ, и созданием общей картины воздушной обстановки.

Обработку РЛИ, поступающей от нескольких источников, условились называть третичной обработкой информации (ТОИ).

В виду того, что зоны обзора РЛС или зоны ответственности постов обычно перекрываются, сведения об одной и той же цели могут поступать одновременно от нескольких станций. В идеальном случае такие отметки должны накладываться одна на другую. Однако на практике этого ненаблюдается из-за систематических и случайных ошибок в измерении координат, различного времени локации, а также из-за ошибок пересчета координат между точками стояния источника и приемника информации.

Главной задачей третичной обработки является решение вопроса,

сколько целей находится в действительности в зоне ответственности. Для решения этой задачи необходимо выполнить следующие операции:

Произвести сбор донесений от источников;

Привести отметки к единой системе координат и единому времени отсчета;

Установить принадлежность отметок к целям, т.е. решить задачу отождествления отметок;

Выполнить укрупнение информации.

Для решения этих задач используются все характеристики целей. Устройства третичной обработки реализуются на специализированных ЭВМ с полной автоматизацией всех выполняемых операций. Однако иногда для упрощения автоматических устройств некоторые операции ТОИ могут производиться по командам и с участием оператора. В частности, таким образом выполняются операции отождествления и укрупнения.

Третичная обработка является завершающим этапом получения информации о воздушной обстановке.

Донесением о целях принято называть информацию, содержащую сведения о местоположении целей, об их характеристиках, выдаваемую от источников по каналам связи для ее дальнейшей обработки и использования.

Задача сбора донесений заключается в том, чтобы принять возможно больше информации при минимальных потерях.

Каждое поступающее на вход донесение должно быть обработано, на что требуется некоторое время. Пусть в момент поступления донесения производится обработка предыдущего донесения. В этом случае поступившее донесение может либо покинуть систему не обработанным, либо ждать своей очереди на обслуживание, пока система не освободится, либо ожидать обработки строго ограниченное время. В соответствии с этим все системы массового обслуживания разделяются на системы с отказами, системы с ожиданием и системы с ограниченным ожиданием (смешанного типа). На практике получили распространение системы смешанного типа с временем ожидания, выбранным из условия наилучшей обработки.

Координаты целей измеряются в системе координат обнаружившейих РЛС, поэтому при передаче данных на пункт ТОИ необходимо пересчитать их к точке стояния приемника информации . В качестве единой системы координат могут использоваться геодезическая, полярная или прямоугольная системы координат. Наиболее точной является геодезическая, однако расчеты в ней сложны. Поэтому она используется лишь тогда, когда источники и приемники информации находятся набольших расстояниях друг от друга и велик фактор кривизны Земли. В остальных случаях пользуются полярной или прямоугольной системами координат с поправкой по высоте. Расчеты в этих системах достаточнопросты и приемлемы для решения целого ряда практических задач.

В АСУ передача координат целей обычно осуществляется в прямоугольной системе координат. На пункте обработки также используется прямоугольная система. Следовательно, задача сводится кпреобразованию прямоугольных координат целей относительно точкистояния источника в прямоугольные координаты относительно точкистояния пункта обработки.

К единому времени отсчета приводятся отметки, полученные напункте ТОИ от разных источников. Единое время необходимо для того, чтобы определить положение обрабатываемых отметок по состоянию накакой-то один момент времени. Эта операция значительно облегчает задачу отождествления отметок.

Координаты отметок приводятся к единому времени путем определения для каждой отметки времени экстраполяции относительнозаданного момента сравнения. Учитывая сравнительно высокий темп обновления информации, целесообразно при экстраполяции приниматьгипотезу равномерного и прямолинейного изменения координат.

Все источники РЛИ обрабатывают информацию автономно инезависимо друг от друга. За счет перекрытия зон ответственности в составе донесений могут быть дублирующие донесения, полученные отнескольких источников по одной и той же цели.

В процессе отождествления отметок целей вырабатывается решение, устанавливающее:

Сколько целей имеется в действительности, если донесения о нихпоступают от нескольких источников;

Как распределяются поступившие донесения по целям.

Обычно отождествление выполняется в два этапа. Сначала производится грубое отождествление или сравнение отметок, а затем проводится распределение отметок, позволяющее принять более точное решение на отождествление.

В основе этапа сравнения лежит предположение, что донесения ободной и той же цели должны содержать одинаковые характеристики. В силу этого решение о тождественности отметок принимают на основании и сравнения характеристик. Однако в действительности из-за различных ошибок полного совпадения характеристик не бывает. В результате возникает неопределенность, выражаемая двумя конкурирующими гипотезами:

1. Гипотеза предполагает, что отметки от одной и той же цели,

хотя произошло несовпадение.

2. Гипотеза предполагает, что отметки от разных целей, поэтомупроизошло несовпадение.

Решение на выбор той или иной гипотезы принимается на основанииоценки величины несовпадения и использования критерия минимумаошибки принятия решения.

На этапе распределения для группирования отметок по отдельнымцелям используются признаки их принадлежности к источникаминформации и нумерации целей в системе этих источников. Правилалогического группирования отметок в соответствии с принадлежностьюдонесений о целях к источникам информации формулируютсяследующим образом.

1. Если в области допустимых отклонений получены отметки отодного и того же источника, то число целей равно числу отметок, так какодна станция в один и тот же момент времени не может выдавать от

одной цели несколько отметок.

2. Если в области допустимых отклонений от каждого источникаполучено по одной отметке, то считается, что эти отметки относятся кодной и той же цели.

3. Если от каждой станции получено по равному числу отметок, тоочевидно, что число целей равно числу отметок, полученных от однойстанции, ибо маловероятно, чтобы в пределах небольшой области станцияобнаруживала только свои цели и не обнаруживала цель, которуюнаблюдает соседняя станция.

4. Если от нескольких источников поступило неодинаковоеколичество отметок, принимается, что источник, от которого полученонаибольшее количество отметок, дает наиболее вероятную обстановку.При этом общее количество целей определяется числом отметок,принятых от указанного источника.

Таким образом, обработка донесений в группе состоит вгруппировании отметок от нескольких источников к одной цели. Этазадача решается сравнительно просто при использовании первого ивторого правила и значительно труднее при применении третьего ичетвертого.

По гипотезе третьего правила имеем две цели, к каждой из которыхотносится по одному донесению от каждого источника. Необходимоопределить, какие пары отметок относятся к каждой цели. Наиболееправдоподобный вариант выбирается в результате сравнения суммквадратов расстояний между отметками. Принимается та комбинация, длякоторой эта сумма минимальна.

Приведенные правила сравнения и распределения отметок неединственные, и в зависимости от требуемой точности могут бытьусложнены или упрощены.

После отождествления сведения о цели выражаются группой отметок,полученных от нескольких источников. Для формирования одной отметкис более точными характеристиками координаты и параметры траекторииусредняются.

Простейший способ усреднения заключается в том, что вычисляетсясреднее арифметическое координат. Этот способ достаточно прост, но онне учитывает точностных характеристик источников информации. Болееправильным является усреднение отметок целей с учетом коэффициентавеса отметок, а коэффициент выбирается в зависимости от точностиисточника. И наконец, в качестве усредненных можно взять ординатыотметки, полученные от одного источника, если имеются данные, чтоэтот источник выдает наиболее точную информацию.

Укрупнение (группирование) отметок целей проводится в тех пунктахобработки, где не требуется информация по каждой цели или жеплотность поступления отметок от целей оказывается выше рассчитаннойпропускной способности. Обычно группирование производится навысших инстанциях системы управления.

Группирование осуществляется теми же способами, что иотождествление, и ведется по признаку близости координатных описанийгруппируемых объектов. Для этого формируется строб по темкоординатам, которые назначаются как характерные для группы целей.Координаты центра строба распространяются на всю группу. Обычноделается так, что центр строба совпадает с отметкой головной цели вгруппе. Размеры строба определяются, исходя их навигационных итактических требований. Обычно используется полуавтоматическийметод укрупнения, который включает в себя следующие основные этапы:

1. Выделение компактных групп целей на основе близости координатx , y , H . Оператор визуально определяет компактную группу целей покоординатам, выделяет головную цель, назначает один из стробовукрупнения и вводит в ЭВМ номер строба и головной цели. На основеэтой информации ЭВМ завершает процесс выделения компактнойгруппы.

2. Селекция внутри выделенных групп по скорости. Цель остается всоставе укрупненной цели, если:

где – составляющие скорости головной цели;– порог селекциипо скорости.

3. Определение характеристик укрупненной цели. Укрупненной целиприсваивается количественный состав, и формируется обобщенныйпризнак действия.

4. Корректировка решения оператора. Ввиду того что обстановка ввоздухе меняется, имеется возможность скорректировать данныеукрупненной цели путем ее укрупнения, разукрупнения, отукрупненияили приукрупнения.

5. Сопровождение укрупненной цели. Эта операция осуществляетсяавтоматически ЭВМ. При этом производится корректировка координат,обеспечивается выбор головной цели при исчезновении информации остарой головной цели.

Таким образом, в процессе ТОИ производится сбор донесений отисточников, приведение отметок к единой системе координат и единомувремени отсчета, установление принадлежности отметок к целям(отождествление отметок) и выполнение укрупнения информации.

Заключение

1. Операции, производимые при первичной обработке, может производитьРЛС самостоятельно.

2. Если при первичной обработке из смеси сигнала с шумом на основе статистического различия структуры сигнала и шума выделяется полезная информация, то вторичная обработка, используя различия в закономерностях появления ложных отметок и отметок от целей, должна обеспечить выделение траекторий движущихся целей.

3. Траектория движения цели представляется в виде последовательности полиноминальных участков с различными коэффициентами и степенями полиномов, т.е. система обработки должна перестраиваться в соответствии схарактером движения каждой цели.

4. В процессе ТОИ производится сбор донесений от источников, приведение отметок к единой системе координат и единому времени отсчета, установление принадлежности отметок к целям (отождествлениеотметок) и выполнение укрупнения информации.

На самоподготовке необходимо подготовиться к контрольной работе последующим вопросам:

1. Назначение и содержание первичной обработки радиолокационной информации.

2. Назначение и содержание вторичной обработки радиолокационной информации.

3. Определение параметров движения целей в процессе вторичнойобработки радиолокационной информации.

4. Экстраполяция отметок в процессе вторичной обработки радиолокационной информации.

5. Продолжение траектории движения в процессе цели вторичной обработки радиолокационной информации.

6. Назначение и содержание третичной обработки радиолокационной информации.

7. Сбор донесений в процессе цели третичной обработки радиолокационной информации.

8. Приведение отметок целей к единой системе координат и единому времени отсчета в процессе цели третичной обработки радиолокационной информации.

9. Отождествление отметок целей в процессе цели третичной обработки радиолокационной информации.

10. Укрупнение информации в процессе ТОИ.

Это обработка РЛИ от нескольких РЛС источников информации. Необходима по следующим причинам:

1. Повышение надежности обнаружения

2. Снятие геометрических ограничений на процесс обнаружения. Групповая цель как одиночная и время обнаружения достаточно мало если РЛС расположено на земной поверхности. ВКО работает с целым массивом разнотипных целей, начиная от космических целей высота, далее головные части баллистических ракет, далее воздушные цели, крылатые ракеты огибают профиль местности и наконец это так называемые беспилотные летательные аппараты.

3. Повышение качества РЛИ

Пусть РЛС1 дает информацию x 1 1 (цель №1 от РЛС1). а РЛС2 даст информацию x 2 1 (цель №1 от РЛС2). , т.к. время локации для любой РЛС разное; они находятся в разных местах - существуют ошибки привязки к наземному положению; существуют ошибки алгоритмов обработки РЛИ.

Если несколько целей: x 1 1 , x 1 2 , x 2 1 , x 2 2 , x 3 1 , x 3 2 , x 4 1 , x 4 2 , то для получения эффективности от третичной обработки необходимо решить следующие задачи:

1. Задача приведения к единой системе координат;

2. Задача приведения к единой системе времени;

3. Задача отождествления (группирование);

Рассмотрим решение этих задач:

1. Приведение к единой системе координат .

Одна из РЛС - центральная. Необходимо знать l - расстояние между РЛС.

2. Приведение к единой системе времени .

t0- начальное время. - время локации РЛС1, - время локации РЛС2; . Используем гипотезу равномерного прямолинейного движения и определяем . Тогда из приведено к единой системе координат и времени. Получаем приведенные отметки, это донесения, которые включают в себя координаты, параметры ускорения, гос. принадлежности, номер цели и т.д. В связи с возникновением ошибок необходимо группирование (распознавание образов). Отметки равны не будут никогда, хоть и старалась. Ошибка останется.

3. Задача отождествления отметок решается в два этапа:

1. грубое отождествление

2. точное отождествление

Грубое отождествление.

В основе решения задачи лежит предположение, что донесения (формуляры) об одной и той же цели от разных РЛС должны иметь одинаковые компоненты:

Вводят условие: ( определяется как вектор допустимых отклонений по всем компонентам , k = 1,2,3 (коэффициент)).

k определяет вероятность принятия гипотезы:

гипотеза 1: несовпадение формуляров в силу их различия;

гипотеза 2: несовпадение в силу ошибок;

гипотеза 1:Ошибки пересчета на лекции

гипотеза 2: Разные цели на лекции

Если удовлетворяет то гипотеза 1, если не удовлетворяет то гипотеза 2. И так по каждой координате, скорости, в общем по всем компонентам. Образуется вектор дельта допустимое. Задача выбора дельты противоречивая. Если дельты назначить большие, то могут быть сгруппированы или отождествлены отметки от разных целей, а если малой, то будут пропускаться отметки, принадлежащие одним и тем же целям. Нормальный закон ошибок. Если использовать формулу для опеределния дельты, то получается что облако отметок мы прорядим, выберем какие-то отметки, но останется большая совокупность отметок, которые будут сами по себе. Задача грубого отождествления это бла бла =)

Размерность отметок сокращается, возникает необходимость точного отождествления.

Точное отождествление.

Динамика изменения координат воздушной обстановки приводит к использованию эвристических правил:

Правило 1. Если в области допустимых отклонений получены отметки от одной РЛС, то число целей равно числу отметок. Правило считается справедливым, т.к. одна и та же РЛС не может выдавать несколько отметок от одной и той же цели в один момент.

Правило 2. Если в области допустимых отклонений от любой РЛС получено по одной отметке, то считается, что они принадлежат одной и той же цели. Правило считается справедливым, т.к. маловероятно, чтобы РЛС могли бы видеть свои цели и не видеть чужие.

Правило 3. Если от любой РЛС получено по равному числу отметок, то очевидно, что число целей равно числу отметок полученной от одной РЛС. Правило считается справедливым, поскольку маловероятной, что РЛС видело бы только свои отметки, и не видела цель, которые наблюдает соседняя РЛС.

Правило 4. Если от нескольких РЛС получено не одинаковое число отметок, то принимается, что та РЛС, которая дает максимальное количество отметок, определяет наиболее вероятную картину воздушной обстановки.

Правило 1 :

Цели не могут быть сгруппированы.

ГЛАВА I

Пространственно-временная обработка

радиолокационной информации

1.1. Принципы получения радиолокационной информации

Получение радиолокационной информации базируется на следующих ос­новных принципах.

1. Информация получается путем возмущения среды распространения различ­ными объектами, в частности за счет излучения объектом радиоволн.

2. Для получения необходимой информации учитываются и используются ре­альные закономерности распространения радиоволн в пространстве.

3. Выделение слабых сигналов, приходящих от объектов, и разрешение объек­тов обеспечивается за счет различий сигналов и помех, а также сигналов от разных объектов между собой.

4. Информация об объектах получается параллельно или последовательно во времени и выдается в виде информационных потоков.

К видам излучения относятся: вторичное излучение, переизлучение и собственное излучение радиоволн. В первых двух случаях радиолокатор излу­чает в направлении на объект мощный сигнал (зондирующий сигнал); в по­следнем случае облучения объекта не требуется. Радиолокация с использовани­ем вторичного излучения и переизлучения называется активной, а радиолока­ция с использованием собственного излучения - пассивной.

Радиолокация с пассивным ответом основана на том, что радиолокацион­ная станция (РЛС) излучает электромагнитные колебания, которые отражаются от объекта и попадают в приемник в виде отраженного сигнала. Важным требо­ванием к объектам в этом случае является отличие их отражающих свойств от отражающих свойств окружающей среды. Явление вторичного излучения по­зволяет обнаружить объекты, не являющиеся источниками собственных радио­излучений или переизлучений (рис. 1.1, а).

Радиолокация с активным ответом (рис. 1.1, б), именуемая иногда как вторичная радиолокация (в первом случае радиолокация первичная), характеризуется тем, что ответный сигнал является не отраженным, а переизлученным с помощью специальных средств (ответчики - ретрансляторы). При этом зна­чительно повышается дальность и контрастность радиолокационного наблюде­ния, улучшается помехоустойчивость. Данный метод широко применяется для определения государственной принадлежности воздушных судов (с помощью специальных кодов). В гражданской авиации метод активного ответа использу­ется весьма широко, так как с его помощью можно получить много дополни­тельной полетной информации (номер борта, высота полета и др.).

Системы активной радиолокации могут быть совмещенными и разнесен­ными. В совмещенном радиолокаторе передающее и приемное устройство рас­полагаются совместно, при этом возможно поочередное использование одной и той же антенны на передачу и прием.

В разнесенной системе передающее и приемное устройства располагают­ся на определенном удалении друг от друга.

Пассивная радиолокация основана на приеме собственного радиоизлуче­ния объектов (рис. 1.1, в). Электромагнитные колебания создаются элементами объекта: его нагретыми частями (тепловое излучение в диапазоне инфракрас­ных или миллиметровых волн), радиотехническими устройствами связи, нави­гации, локации, радиопротиводействия, а также колеблющимися частицами ио­низированных участков атмосферы в окрестности объекта. Прием может осу­ществляться одним или несколькими разнесенными приемными устройствами.

При определении координат воздушных объектов в любой радиолокаци­онной системе используются определенные закономерности распространения радиоволн. Ограничимся случаем распространения радиоволн в свободном пространстве, которое является однородным, изотропным и недиспергирующим. Для всех точек такого пространства скорость распространения радиоволн одинакова, не зависит от поляризации волны и частоты колебаний (c=3*10 8 м/сек). При этом зондирующий и отраженный сигналы распростра­няются по прямолинейной траектории и без искажения своей формы. Время запаздывания Г 3 отраженного сигнала относительно зондирующего (рис. 1.2) для разнесенной системы определяется соотношением

Концентрация излучаемой энергии в ка­ком-то одном направлении и направленный прием обеспечивают существенное увеличение дальности радиолокации. Появляется возможность измерять угло­вые координаты воздушных объектов - азимут и угол места, например, по мак­симуму отраженного сигнала, а также разрешать объекты по угловым коорди­натам (рис. 1.3).

Ширина диаграммы направленности антенны радиолокатора определяется со­отношением ее геометрических размеров к длине волны. Поэтому высокие на­правленные свойства обеспечиваются за счет увеличения размеров антенны и использования дециметрового, сантиметрового и миллиметрового диапазона волн.

Даже при остронаправленном облучении объекта от его поверхности от­ражается незначительная часть излучаемой энергии. Еще в большей степени рассеяние энергии проявляется на пути от объекта до приемной антенны в силу слабой направленности вторичного излучения. Приходящие сигналы, особенно на больших дальностях, оказываются слабыми и необходимо принимать меры для их выделения на фоне помех и шумов. К числу таких мер относятся: увели­чение средней мощности сигналов передатчиков, габаритов антенн, примене­ние малошумящих приемников. Должна предусматриваться такая обработка смеси слабых сигналов и помех, при которой обеспечивается наилучшее ис­пользование взаимных различий сигнала и помех.

Большинство современных радиолокаторов формируют поток информа­ции об объектах в участке пространства, содержащем большое число разре­шаемых объемов. При этом могут использоваться принципы последовательно­го, параллельного или параллельно-последовательного составления потока ин­формации.

Принцип последовательного обнаружения объектов радиолокатором с лучом игольчатого типа наглядно изображен на рис. 1.4. Закон перемещения луча может быть различным, например, по спирали.

Путем создания пучка игольчатых лучей (рис. 1.5) реализуется принцип параллельного получения нескольких потоков информации. Каждому из лучей необходим свой приемник.

Если по одной из угловых координат (углу места) поток информации по­лучается параллельно, а по другой (азимуту) - последовательно, имеет место параллельно-последовательное составление потока информации.

Последовательные, параллельные и параллельно-последовательные пото­ки информации могут быть образованы также с помощью двух и более разде­ленных радиолокаторов. Например, радиодальномеры с диаграммой, изобра­женной на рис. 1.6 сплошной линией, образуют последовательный поток ин­формации об азимуте объектов. Специальные радиолокаторы (высотомеры) с узкой диаграммой направленности в вертикальной плоскости (пунктир на рис. 1.6) производят последовательный обзор по углу места и определяют высо­ту объектов на тех азимутах, где они обнаружены дальномером.

Для объединение и обработки информации нескольких радиолокаторов могут создаваться радиолокационные узлы (рис. 1.7). Несколько радиолокаци­онных узлов, обменивающихся информацией, образуют радиолокационную систему (рис. 1.8).

Средства радиолокации широко используются для решения задач радио­навигации, связанных с определением местоположения воздушных судов и других движущихся объектов. На рис. 1.9 изображено местоположение объекта Ц в пространстве, которое может быть отображено в сферической системе ко­ординат (D, β, ε) либо в цилиндрической системе координат (D г,β, Н).

На рисунке обозначено: D - наклонная дальность (или просто дальность); Dp - горизонтальная дальность; ft - азимут (угол между направлением на север и проекцией направления на объект в горизонтальной плоскости, отсчитываемой по часовой стрелке); £ - угол места (угол между проекцией направления на объект в горизонтальной плоскости и направлением на объект); Н - высота объекта.

Для радиолокации характерно, что весь процесс определения координат производится из одной точки (на рисунке точка О). Исключение составляют разнесенные радиолокационные системы. Непосредственно определяемыми координатами являются D, Д е. При этом можно считать, что объект Ц распо­ложен в точке пересечения трех поверхностей: сферы радиусом D и двух плос­костей (вертикальной, проходящей через точку Ц и наклонной, расположенной под углом s к горизонту). Эти поверхности являются геометрическим местом точек пространства, в которых данный измеряемый параметр постоянен, и на­зываются поверхностями положения. В навигации используются следующие методы определения местоположения объектов: дальномерный, основанный на измерении дальностей от двух различных точек (линия положения - окружно­сти); угломерный (пеленгационный), когда пеленгаторы, расположенные в раз­личных точках, определяют направления (линии положения - прямые); дальномерно-угломерный; разностно-дальномерный, когда измеряется разность расстояний от двух точек (линии положения - гиперболы) и др.

1.2. Пространственно-временная обработка

Радиолокационная информация об объектах содержится в пространственно-временном сигнале (ПВС), отраженном или излученном объектами. Ра­диолокационная информация извлекается из ПВС путем его пространственно-временной обработки, отражающей две формы существования поля. Векторное электромагнитное поле (в отличие от скалярного) характеризуется пространст­венно-временной и поляризационной структурой, поэтому пространственно-временная обработка сигнала включает три компоненты: временную, простран­ственную и поляризационную.

Следует различать принципы, способы, схемотехнику и язык описания пространственно-временной обработки сигнала.

Принципы пространственно-временной обработки сигнала сводятся к совокупности следующих трех доказанных ранее положений.

Во-первых, пространственно-временная обработка сигнала делится на два этапа: этап подавления помехи и этап выделения сигнала.

Во-вторых, подавление помехи осуществляется путем пространственно-временного дифференцирования или спектральной режекции по всему пространству наблюдения.

В-третьих, выделение сигнала осуществляется путем когерентного про­странственно-временного интегрирования или спектральной фильтрации на оп­ределенном интервале пространства наблюдения и последующего некогерент­ного пространственно-временного интегрирования на оставшемся интервале пространства наблюдения.

Способы пространственно-временной обработки сигнала: корреляцион­ный и фильтровой (возможно их сочетание). Корреляционный способ обработки предполагает наличие опорного сигнала (прообраза принятого), перемножение опорного и принятого сигналов и интегрирование (по каждому элементу раз­решения пространства наблюдения). Фильтровой способ обработки предполагает наличие одного пространственно-временного фильтра, импульсная харак­теристика которого согласована с пространственно-временной структурой сиг­нала и который обладает многомерной инвариантностью (в общем случае - ко времени запаздывания, угловому положению цели и доплеровскому смещению частоты). Оба способа обработки приводят к формированию корреляционного интеграла, модульное значение которого однозначно связано с отношением правдоподобия. Многоканальность в сочетании с простотой каждого канала при корреляционной обработке и сложность одного (единственного) простран­ственно-временного фильтра с многомерной инвариантностью при фильтровой обработке - главные привлекательные и отпугивающие характеристики этих способов.

Схемотехника, используемая для реализации корреляционного и фильт­рового способов обработки сигнала, может быть аналоговой, цифровой и опти­ческой.

Существует 2 языка описания пространственно-временного сигнала и пространственно-временной обработки - пространственно-временной и спек­тральный. Пространственно-временной язык адекватно отражает две формы существования материального мира с привычными пространственно-временными координатами х, у, z, ?, состоящего из вещества и поля, в котором мы живем. Спектральный язык, в основе которого лежит преобразование Фурье пространственно-временного процесса, описывает процессы, явления и свойст­ва материального мира в мерности другого - спектрального пространства с ко­ординатами со*, (£> у, co z , со, являющимися пространственными и временной час­тотами. Спектральный язык - это искусственный язык, нашедший в силу ряда удобств широкое распространение, особенно в радиотехнике, оптике, акустике.

Например, сформулированные выше принципы пространственно-временной обработки сигнала изложены на двух языках. Так, принцип подавления помехи на пространственно-временном языке сформулирован как про­странственно-временное дифференцирование, а на спектральном - как спек­тральная режекция. Принцип выделения сигнала на пространственно-временном языке сформулирован как пространственно-временное интегриро­вание, а на спектральном - как спектральная фильтрация.

Пространственно-временная обработка принятого сигнала является осно­вой решения всех задач радиолокационного наблюдения: обнаружения, распо­знавания, измерения, а, следовательно, основой получения всей радиолокаци­онной информации (о наличии или отсутствии цели, о классе или типе цели, о координатах и параметрах движения цели). Действительно, сформировав отно­шение правдоподобия или любую иную величину, однозначно с ним связан­ную, и испытав их на порог, можно принять решения о наличии или отсутствии цели по всем элементам разрешения пространства наблюдения с показателями качества F и D гарантирующими минимальный средний риск, т.е. решить зада­чу обнаружения.

Аналогичным образом сформировав в результате пространственно-временной обработки сигнала отношение правдоподобия по каждому элементу пространства распознавания и обеспечив тем самым получение радиолокаци­онного портрета целей как распределения комплексных амплитуд принятого сигнала по всем элементам пространства распознавания, осуществив в даль­нейшем М-канальную обработку портретов в соответствии с заложенными в эти каналы априорными сведениями об М классах распознаваемых целей, срав­нив результаты обработки и выбрав большее, можно принять решение о классе распознаваемой цели с показателями качества D K , F K , гарантирующими мини­мальный средний риск решения в условиях многоальтернативного выбора, т.е. решить задачу распознавания. И, наконец, сформировав отношение правдопо­добия и подобрав тем или иным способом такое значение измеряемого пара­метра, при котором отношение правдоподобия максимально, можно измерить координату или параметр движения цели с минимальной ошибкой, т.е. решить задачу измерения.

Таким образом, осуществляя полную пространственно-временную обра­ботку принятого сигнала и решая на этой основе задачи обнаружения, измерения, распознавания, можно получить необходимую радиолокационную инфор­мацию о целях.

1.3. Пространственно-временная обработка радиолокационной информации

Обработка радиолокационной информации предполагает объединение не на уровне сигналов, а на уровне первичной информации, т.е. единичных реше­нии о наличии и классе целей и единичных (разовых) оценок координат и па­раметров движения целей.

Пространственно-временная обработка включает: первичную обработку сигнала, вторичную и третичную обработку информации.

Под первичной обработкой подразумевается обработка принятого сиг­нала в одном пункте приема за один радиолокационный контакт с целью. Та­ким образом, такая обработка ограничена по пространству и по времени. Про­странство ограничено размерами антенной системы (единицы метров), а время - временем наблюдения (единицы - десятки миллисекунд). При этом с опреде­ленным качеством (вероятностями правильных и ложных решений, ошибками измерения) могут решаться все задачи радиолокационного наблюдения (обна­ружение, измерение, распознавание). Такую обработку сигнала принято назы­вать первичной, а извлекаемую из принятого сигнала в результате ограничен­ной по пространству и времени обработки информацию - первичной радиоло­кационной информацией, подразумевая под ней единичные решения о наличии или отсутствии целей, о классе целей, единичные оценки-замеры координат или параметров движения целей.

Как правило, в каждом пункте наблюдения к цели обращаются не один раз, а многократно. Если первичную информацию о целях объединить во времени за несколько циклов обращения к цели, то качество радиолокационной информации улучшится. Процесс объединения во времени первичной радиоло­кационной информации принято называть вторичной обработкой радиолока­ционной информации. В результате объединения во времени единичных ре­шений о наличии или отсутствии цели в том или ином элементе разрешения пространства наблюдения улучшаются характеристики обнаружения, а в ре­зультате объединения во времени единичных решений о классе цели улучша­ются характеристики распознавания. Объединением во времени единичных оценок-замеров координат и параметров движения цели уменьшаются ошибки измерения. Вторичная обработка позволяет уменьшить влияние естественных и искусственных помех, расширить объем получаемой информации путем вы­числения скорости и курса объектов или его траектории. Способы объединения во времени первичной информации и его характеристики составляют содержа­ние проблемы вторичной обработки радиолокационной информации.

Если радиолокационная система состоит из нескольких пунктов наблюдения (приема), то первичную информацию о целях можно объединить не только по времени, но и по пространству. При этом качество радиолокационной информации улучшится. Процесс объединения по пространству первичной (или вторичной) информации о целях принято называть третичной обработкой ра­диолокационной информации. Третичная обработка тоже приводит к улуч­шению характеристик обнаружения, распознавания и измерения.

Следует отметить, что первичная обработка сигнала (из одного пункта за время наблюдения) в сочетании с вторичной и третичной обработкой информа­ции не эквивалентна полной пространственно-временной обработке сигнала. Дело в том, что вторичная и третичная обработка первичной РЛИ заранее пре­допределяет некогерентное пространственно-временное объединение результа­тов первичной обработки. Типичными примерами такого объединения являют­ся АСУ воздушным движением ГА, основу которых составляют группировки некогерентных по времени и по пространству РЛС.

Однако в общем случае при многопозиционном построении радиолокационной системы с взаимной привязкой (позиций) не только по времени, но и по частоте и по фазе результаты первичной обработки сигналов, разделенные по времени и пространству, могут иметь корреляционные связи, которые долж­ны быть использованы при полной пространственно-временной обработке сиг­нала.

На рис. 1.10 изображена классификация пространственно-временной об­работки информации.

1.4. Физический смысл пространственно-временной обработки сигналов на фоне помех в адаптивных антенных решетках

Реализация адаптивных методов в радиолокации стала возможной в связи с появлением и интенсивным развитием антенных решеток. Чтобы правильно понимать и оценивать возможности таких адаптивных РЛС, необходимо рас­смотреть особенности обработки сигналов в антенных решетках и формирова­ние ими диаграмм направленности.

На рис. 1.11, а изображена диаграмма направленности (ДН) решетки, со­держащей 8 элементов в полярных координатах. Она формируется в результате весового суммирования напряжений отдельных элементов решетки на частоте . Если теперь обеспечить задержку во времени выходных сигналов от отдель­ных элементов, как это показано на рис. 1.11, б, то в результате главный лепе­сток ДН повернется на угол , где с-скорость распростране­ния сигналов в среде, d - расстояние между элементами антенной решетки,

Относительный сдвиг фазы между соседними элементами решетки.

Рис. 1.11. Диаграммы направленности 8-элементной антенной решетки:

а - исходная, б - для приема сигналов при отклонении ДН от нормали к плоскости решетки

Изменяя величины задержки выходных сигналов во времени от от­дельных элементов, можно обеспечить электрическое управление главным лепестком ДН в заданном угловом секторе.

Отношение сигнал-шум на выходе антенной решетки уменьшается при попадании на ее элементы мешающих сигналов по главному и боко­вым лепесткам. Отношение сигнал-шум падает также из-за изменения пространственных положений источников помех во времени, неудачного расположения антенной системы, а также из-за движения луча. Сказанное иллюстрирует рис. 1.12, а, где показана та же антенная решетка, что и на


Помехи \


Помела \


Рис. 1.12. Диаграмма направленности 8-элементной антенной решетки при воздействии

одного источника помехи:

а - исходная, б - с нулем, сформированным в направлении на источник помехи

рис. 1.11, а, но с направления, указанного пунктиром поступает помеховый сиг­нал с частотой . Он принимается по одному из боковых лепестков ДН. И если его мощность достаточно велика, то мощность помех на выходе решетки может оказаться сравнимой или даже существенно больше мощности полезного сигнала. Это может привести к потере работоспособности РЛС с такой антен­ной системой, если не будут приняты специальные меры. Они могут заклю­чаться в том, например, чтобы выставить весовые коэффициенты решетки так, как указано на рис. 1.12, б. При этом ДН решетки на частоте изменится сле­дующим образом. Боковой лепесток, максимум которого ранее совпадал с на­правлением на источник помехи, сместится так, что направление нулевого приема совпадет с направлением на источник помехи. Главный лепесток ДН изменится при этом незначительно. Таким образом, будет существенно сниже­на чувствительность решетки по отношению к сигналу и помехе. Можно подобрать значения весовых коэффициентов решетки так, чтобы образовать зоны нулевого приема в направлениях на несколько источников помех. Но для этого необходимо заранее знать их угловые положения. В реальных условиях такой информации обычно нет, поэтому стремятся построить адаптивные системы, которые автоматически выставляют нули в направлениях воздействия источни­ков помех. Прежде чем перейти к описанию такого рода систем, которые полу­чили название адаптивных антенных решеток, кратко рассмотрим их различные схемы построения. По своей структуре все адаптивные антенные решетки представляют собой весовые сумматоры (рис. 1.13). В фильтре, предназначен­ном для обработки узкополосных процессов (рис. 1.13, а), каждый элемент ре­шетки соединен с переменным весовым умножителем и с фазовращателем (на 90°). К его выходу подключен второй умножитель. Сигналы с выходов умно­жителей суммируются. Такая решетка обеспечивает линейную обработку узко­полосных процессов. Если необходимо обрабатывать помехи и сигналы в ши­роком диапазоне частот, то все фазовращатели необходимо заменить линиями задержки с отводами.

Рис. 1.13. Виды адаптивных антенных решеток без цепей автоподстройки весовых коэффициентов для приема узкополосных сигналов (а) и для приема широкополосных сигналов или не разделяющейся обработки (б)

К каждому отводу подключается свой весовой умножитель. Если расстоя­ние между отводами достаточно мало, то такая схема приближается к идеаль­ному фильтру, который мог бы обеспечить управление фазой и величиной сиг­нала на каждой из частот заданного диапазона. Сигналы с выходов весовых ум­ножителей суммируются для получения выходного напряжения решетки. Этот вариант схемы решетки представлен на рис. 1.13, б. В такой системе удается сформировать нули ДН в направлениях на источники помех на каждой из час­тот заданного диапазона.