Информационная поддержка школьников и студентов
Поиск по сайту

Формальные языки виды. Формализованный язык. Особенности языков программирования

Время от времени на Хабре публикуются посты и переводные статьи, посвященные тем или иным аспектам теории формальных языков. Среди таких публикаций (не хочется указывать конкретные работы, чтобы не обижать их авторов), особенно среди тех, которые посвящены описанию различных программных инструментов обработки языков, часто встречаются неточности и путаница. Автор склонен считать, что одной из основных причин, приведших к такому прискорбному положению вещей, является недостаточный уровень понимания идей, лежащих в основании теории формальных языков.

Этот текст задуман как популярное введение в теорию формальных языков и грамматик. Эта теория считается (и, надо сказать, справедливо) довольно сложной и запутанной. На лекциях студенты обычно скучают и экзамены тем более не вызывают энтузиазма. Поэтому и в науке не так много исследователей в этой тематике. Достаточно сказать, что за все время, с зарождения теории формальных грамматик в середине 50-х годов прошлого века и до наших дней, по этому научному направлению было выпущено всего две докторских диссертации. Одна из них была написана в конце 60-х годов Алексеем Владимировичем Гладким, вторая уже на пороге нового тысячелетия - Мати Пентусом.

Далее в наиболее доступной форме описаны два основных понятия теории формальных языков: формальный язык и формальная грамматика. Если тест будет интересен аудитории, то автор дает торжественное обещание разродиться еще парой подобных опусов.

Формальные языки

Коротко говоря, формальный язык - это математическая модель реального языка. Под реальным языком здесь понимается некий способ коммуникации (общения) субъектов друг с другом. Для общения субъекты используют конечный набор знаков (символов), которые проговариваются (выписываются) в строгом временном порядке, т.е. образуют линейные последовательности. Такие последовательности обычно называют словами или предложениями. Таким образом, здесь рассматривается только т.н. коммуникативная функция языка, которая изучается с использованием математических методов. Другие функции языка здесь не изучаются и, потому, не рассматриваются.

Чтобы лучше разобраться в том, как именно изучаются формальные языки, необходимо сначала понять, в чем заключаются особенности математических методов изучения. Согласно Колмогорову и др. (Александров А.Д., Колмогоров А.Н., Лаврентьев М.А. Математика. Ее содержание, методы и значение. Том 1. М.: Издательство Академии Наук СССР, 1956.), математический метод, к чему бы он ни применялся, всегда следует двум основным принципам:

  1. Обобщение (абстрагирование). Объекты изучения в математике - это специальные сущности, которые существуют только в математике и предназначены для изучения математиками. Математические объекты образуются путем обобщения реальных объектов. Изучая какой-нибудь объект, математик замечает только некоторые его свойства, а от остальных отвлекается. Так, абстрактный математический объект «число» может в реальности обозначать количество гусей в пруду или количество молекул в капле воды; главное, чтобы о гусях и о молекулах воды можно было
    говорить как о совокупностях. Из такой «идеализации» реальных объектов следует одно важное свойство: математика часто оперирует бесконечными совокупностями, тогда как в реальности таких совокупностей не существует.
  2. Строгость рассуждений. В науке принято для выяснения истинности того или иного рассуждения сверять их результаты с тем, что существует в действительности, т.е. проводить эксперименты. В математике этот критерий проверки рассуждения на истинность не работает. Поэтому выводы не проверяются экспериментальным путем, но принято доказывать их справедливость строгими, подчиняющимися определенным правилам, рассуждениями. Эти рассуждения называются доказательствами и доказательства служат единственным способом обоснования верности того или иного утверждения.
Таким образом, чтобы изучать языки с помощью математических методов, необходимо сначала выделить из языка его свойства, которые представляются важными для изучения, а затем эти свойства строго определить. Полученная таким образом абстракция будет называться формальным языком - математической моделью реального языка. Содержание конкретной математической модели зависит от того, какие свойства важны для изучения, т.е. что планируется в данный момент выделить и изучать.

В качестве известного примера такой математической абстракции можно привести модель, известную под неблагозвучным для русского уха названием «мешок слов». В этой модели исследуются тексты естественного языка (т.е. одного из тех языков, которые люди используют в процессе повседневного общения между собой). Основной объект модели мешка слов - это слово, снабженное единственным атрибутом, частотой встречаемости этого слова в исходном тексте. В модели не учитывается, как слова располагаются рядом друг с другом, только сколько раз каждое слово встречается в тексте. Мешок слов используется в машинном обучении на основе текстов в качестве одного из основных объектов изучения.

Но в теории формальных языков представляется важным изучить законы расположения слов рядом друг с другом, т.е. синтаксические свойства текстов. Для этого модель мешка слов выглядит бедной. Поэтому формальный язык задается как множество последовательностей, составленных из элементов конечного алфавита. Определим это более строго.

Алфавит представляет собой конечное непустое множество элементов. Эти элементы будем называть символам. Для обозначения алфавита обычно будем использовать латинское V, а для обозначения символов алфавита - начальные строчные буквы латинского алфавита. Например, выражение V = {a,b} обозначает алфавит из двух символов a и b.

Цепочка представляет собой конечную последовательность символов. Например, abc - цепочка из трех символов. Часто при обозначении цепочек в символах используют индексы. Сами цепочки обозначают строчными символами конца греческого алфавита. Например, omega = a1...an - цепочка из n символов. Цепочка может быть пустой, т.е. не содержать ни одного символа. Такие цепочки будем обозначать греческой буквой эпсилон.

Наконец, формальный язык L над алфавитом V - это произвольное множеств цепочек, составленных из символов алфавита V. Произвольность здесь означает тот факт, что язык может быть пустым, т.е. не иметь ни одной цепочки, так и бесконечным, т.е. составленным из бесконечного числа цепочек. Последний факт часто вызывает недоумение: разве имеются реальные языки, которые содержат бесконечное число цепочек? Вообще говоря, в природе все конечно. Но мы здесь используем бесконечность как возможность образования цепочек неограниченной длины. Например, язык, который состоит из возможных имен переменных языка программирования C++, является бесконечным. Ведь имена переменных в C++ не ограничены по длине, поэтому потенциально таких имен может быть бесконечно много. В реальности, конечно, длинные имена переменных не имеют для нас особого смысла т.к. к концу чтения такого имени уже забываешь его начало. Но в качестве потенциальной возможности задавать неограниченные по длине переменные, это свойство выглядит полезным.

Итак, формальные языки - это просто множества цепочек, составленных из символов некоторого конечного алфавита. Но возникает вопрос: как можно задать формальный язык? Если язык конечен, то можно просто выписать все его цепочки одну за другой (конечно, можно задуматься, имеет ли смысл выписывать цепочки языка, имеющего хотя бы десять тысяч элементов и, вообще, есть ли смысл в таком выписывании?). Что делать, если язык бесконечен, как его задавать? В этот момент на сцену выходят грамматики.

Формальные грамматики

Способ задания языка называет грамматикой этого языка. Таким образом, грамматикой мы называем любой способ задания языка. Например, грамматика L = {a^nb^n} (здесь n - натуральное число) задает язык L, состоящий из цепочек вида ab, aabb, aaabbb и т.д. Язык L представляет собой бесконечное множество цепочек, но тем не менее, его грамматика (описание) состоит всего из 10 символов, т.е. конечна.

Назначение грамматики - задание языка. Это задание обязательно должно быть конечным, иначе человек не будет в состоянии эту грамматику понять. Но каким образом, конечное задание описывает бесконечные совокупности? Это возможно только в том случае, если строение всех цепочек языка основано на единых принципов, которых конечное число. В примере выше в качестве такого принципа выступает следующий: «каждая цепочка языка начинается с символов a, за которыми идет столько же символов b». Если язык представляет собой бесконечную совокупность случайным образом набранных цепочек, строение которых не подчиняется единым принципам, то очевидно для такого языка нельзя придумать грамматику. И здесь еще вопрос, можно или нет считать такую совокупность языком. В целях математической строгости и единообразия подхода обычно такие совокупности языком считают.

Итак, грамматика языка описывает законы внутреннего строения его цепочек. Такие законы обычно называют синтаксическими закономерностями. таким образом, можно перефразировать определение грамматики, как конечного способа описания синтаксических закономерностей языка. Для практики интересны не просто грамматики, но грамматики, которые могут быть заданы в рамках единого подхода (формализма или парадигмы). Иначе говоря, на основе единого языка (метаязыка) описания грамматик всех формальных языков. Тогда можно придумать алгоритм для компьютера, который будет брать на вход описание грамматики, сделанное на этом метаязыке, и что-то делать с цепочками языка.

Такие парадигмы описания грамматик называют синтаксическими теориями. Формальная грамматика - это математическая модель грамматики, описанная в рамках какой-то синтаксической теории. Таких теорий придумано довольно много. Самый известный метаязык для задания грамматик - это, конечно, порождающие грамматики Хомского. Но имеются и другие формализмы. Один из таких них - окрестностные грамматики, будет описан чуть ниже.

С алгоритмической точки зрения грамматики можно подразделить по способу задания языка. Имеются три основных таких способа (вида грамматик):

  • Распознающие грамматики. Такие грамматики представляют собой устройства (алгоритмы), которым на вход подается цепочка языка, а на выходе устройство печатает «Да», если цепочка принадлежит языку, и «Нет» - в противном случае.
  • Порождающие грамматики. Этот вид устройств используется для порождения цепочек языков по требованию. Образно говоря, при нажатии кнопки будет сгенерирована некоторая цепочка языка.
  • Перечисляющие грамматики. Такие грамматики печатают одну за другой все цепочки языка. Очевидно, что если язык состоит из бесконечного числа цепочек, то процесс перечисления никогда не остановится. Хотя, конечно его можно остановить принудительно в нужный момент времени, например, когда будет напечатана нужная цепочка.
Интересным представляет вопрос о преобразовании видов грамматики друг в друга. Можно ли, имея порождающую грамматику, построить, скажем, перечисляющую? Ответ - да, можно. Для этого достаточно генерировать цепочки, упорядочив их, скажем по длине и порядку символов. Но превратить перечисляющую грамматику в распознающую в общем случае нельзя. Можно использовать следующий метод. Получив на вход цепочку, запустить процесс перечисления цепочек и ждать, напечатает ли перечисляющая грамматика эту цепочку или нет. Если такая цепочка напечатана, то заканчиваем процесс перечисления и печатаем «Да». Если цепочка принадлежит языку, то она обязательно будет напечатана и, таким образом, распознана. Но, если цепочка не принадлежит языку, то процесс распознавания будет продолжаться бесконечно. Программа распознающей грамматики зациклится. В этом смысле мощность распознающих грамматик меньше мощности порождающих и перечисляющих. Это следует иметь ввиду, когда сравнивают порождающие грамматики Хомского и распознающие машины Тьюринга.

Окрестностные грамматики

В середине 60-х годов советский математик Юлий Анатольевич Шрейдер предложил простой способ описания синтаксиса языков на основе т.н. окрестностных грамматик. Для каждого символа языка задается конечное число его «окрестностей» - цепочек, содержащих данный символ (центр окрестности) где-то внутри. Набор таких окрестностей для каждого символа алфавита языка называется окрестностной грамматикой. Цепочка считается принадлежащей языку, задаваемому окрестностной грамматикой, если каждый символ этой цепочки входит в нее вместе с некоторой своей окрестностью.

В качестве примера рассмотрим язык A = {a+a, a+a+a, a+a+a+a,...} . Этот язык представляет собой простейшую модель языка арифметических выражений, где роль чисел играет символ «a», а роль операций - символ "+". Составим для этого языка окрестностную грамматику. Зададим окрестности для символа «a». Символ «a» может встречаться в цепочках языка A в трех синтаксических контекстах: вначале, между двумя символами "+" и в конце. Для обозначения начала и конца цепочки введем псевдосимвол "#". Тогда окрестности символа «a» будут следующими: #a+, +a+, +a# . Обычно для выделения центра окрестности этот символ в цепочке подчеркивается (ведь в цепочке могут быть и другие такие символы, которые не являются центром!), здесь этого делать не будем за неимением простой технической возможности. Символ "+" встречается только между двух символов «a», поэтому для него задается одна окрестность, цепочка a+a .

Рассмотрим цепочку a+a+a и проверим, принадлежит ли она языку. Первый символ «a» цепочки входит в нее вместе с окрестностью #a+ . Второй символ "+" входит в цепочку вместе с окрестностью a+a . Подобное вхождение можно проверить и для остальных символов цепочки, т.е. данная цепочка принадлежит языку, как и следовало ожидать. Но, например, цепочка a+aa языку A не принадлежит, поскольку последний и предпоследний символы «a» не имеют окрестностей, с которыми они входят в эту цепочку.

Не всякий язык может быть описан окрестностной грамматикой. Рассмотрим, например, язык B, цепочки которого начинаются либо с символа «0», либо с символа «1». В последнем случае далее в цепочке могут идти символы «a» и «b». Если же цепочка начинается с нуля, то далее могут идти только символы «a». Нетрудно доказать, что для этого языка нельзя придумать никакой окрестностной грамматики. Легитимность вхождения символа «b» в цепочку обусловлена ее первым символом. Для любой окрестностной грамматики, в которой задается связь между символами «b» и «1» можно будет подобрать достаточно длинную цепочку, чтобы всякая окрестность символа «b» не доставала до начала цепочки. Тогда в начало можно будет подставить символ «0» и цепочка будет принадлежать языку A, что не отвечает нашим интуитивным представлениям о синтаксическом строении цепочек этого языка.

С другой стороны, легко можно построить конечный автомат, который распознает этот язык. Значит, класс языков, которые описываются окрестностными грамматиками, уже класса автоматных языков. Языки, задаваемые окрестностными грамматиками, будем называть шрейдеровскими. Таким образом, в иерархии языков можно выделить класс шрейдеровских языков, который является подклассом автоматных языков.

Можно сказать, что шрейдеровские языки задают одно простое синтаксическое отношение - «быть рядом» или отношение непосредственного предшествования. Отношение дальнего предшествования (которое, очевидно, присутствует в языке B) окрестностной грамматикой задано быть не может. Но, если визуализировать синтаксические отношения в цепочках языка, то для диаграмм отношений, в которые превращаются такие цепочки, можно придумать окрестностную грамматику.

ФОРМАЛИЗОВАННЫЕ (ФОРМАЛЬНЫЕ) ЯЗЫКИ

ПОНЯТЬ

Формализованный (формальный) язык - искусственный язык, характеризующийся точными правилами построения выражений и их понимания.

Формальный язык строится в соответствии с четкими правилами, обеспечивая непротиворечивое, точное и компактное отображение свойств и отношений изучаемой предметной области (моделируемых объектов).

В отличие от естественных языков формальным языкам присущи четко сформулированные правила семантической интерпретации и синтаксического преобразования используемых знаков, а также то, что смысл и значение знаков не изменяется в зависимости от каких-либо прагматических обстоятельств (например, от контекста).

Формальные языки часто конструируются на базе языка математики.

На протяжении всей истории развития математики в ней широко использовались символические обозначения для различных объектов и понятий. Однако, наряду с символическими обозначениями ученые-математики свободно пользовались и естественным языком. Но на каком-то этапе развития науки (XVII век) возникла необходимость строгого логического анализа математических суждений, а также уточнения важного для математики понятия “доказательство”. Оказалось, что решить эти задачи невозможно без строгой формализации математических теорий. Появилась потребность в изложении этих теорий на формальном языке. Веком бурного развития различных формальных языков можно считать XX век.

С точки зрения информатики, среди формальных языков наиболее значительную роль играют формальный язык логики (язык алгебры логики) и языки программирования . Они также имеют важное практическое значение.

Все формальные языки - это кем-то созданные конструкции. Большинство из них строятся по следующей схеме.

Прежде всего выбирается алфавит , или совокупность исходных символов, из которых будут строиться все выражения языка. Затем описывается синтаксис языка, то есть правила построения осмысленных выражений.

Поскольку понятие “символ” имеет многозначную смысловую нагрузку для знаков алфавита чаще применяется термин “буква”. Но следует помнить, что буквами в алфавите формального языка могут быть и буквы алфавитов естественных языков, и скобки, и специальные знаки и т.п.

Из букв, по определенным правилам можно составлять слова и выражения .

Простейшее правило заключается в том, что любую конечную последовательность букв можно считать словом. Фактически слово есть простейшая информационная модель (и оно, разумеется, является конструктивным объектом).

ПРИМЕР 1

Одним из важных с точки зрения информатики является алфавит, состоящий из двух букв “0”, “1”. Всякой конечная последовательность нулей и единиц - есть слово в этом алфавите.

В логико-математических языках среди выражений различают термы и формулы .

Термы - это аналог имен объектов, их основное назначение - обозначать некоторый объект.

К термам прежде всего относятся предметные переменные и константы - выражения, служащие для обозначения конкретных объектов.

Из предметных переменных и констант по определенным правилам строятся более сложные термы. Обычно для этого используются допустимые в языке функции.

ПРИМЕР 2

В логике такими функциями являются инверсия (), конъюнкция (), дизъюнкция (), импликация () и др.

Примеры термов в алгебре логики:

А; АВ А; (АС).

В языках программирования в образовании термов участвуют арифметические операции, операции отношения (,

Примеры термов в языке программирования Pascal:

А; prog_1; ((A1+25)3*B) and (B0)); 2+sqrt(z*sin(b)).

Формулы

ПРИМЕР 3

Примеры логических формул:

(АС)  АС = 1; x((x)(x))

Формулами в языке программирования можно назвать операторы программы.

Примеры “формул” языка программирования Pascal:

A:= 2+sqrt(Z*sin(B)); if F3 then write(R) else R:=sqr(F);

Осмысленные выражения получаются в формальном языке, только если соблюдены определенные в языке правила образования, преобразования и “понимания” термов и формул. К таким правилам относятся:

    правила построения термов и формул;

    правила интерпретации термов и формул (семантический аспект языка);

    правила вывода

Для каждого формального языка совокупность этих правил должна быть строго определена и модификация любого из них приводит чаще всего к появлению новой разновидности (диалекта) этого языка.

ПРИМЕР 4

Оператор языка Pascal

if F3 then write(R) else R:=sqr(F);

интерпретируется в соответствии со следующим правилами:

    переменная F может быть только целого или вещественного типа, а переменная R - только вещественного типа. Если это не так, то считается, что оператор синтаксически неверен, и выполняться он не будет (будет выдано сообщение о синтаксической ошибке);

    переменные (простейшие термы) F и R, должны быть ранее определены, то есть ячейки с этими именами должны содержать какие-то значения соответствующего типа (для некоторых версий Pascal это правило не входит в синтаксис языка. В этом случае выбирается та последовательность нулей и единиц, которая содержится в ячейках с заданными адресами и интерпретируется как десятичное число);

    если значение выражения (сложного терма “F3”), стоящего вслед за ключевым (зарезервированным) словом if, есть “истина” (true), то выполняется оператор, расположенный за ключевым словом then (на экран выводится значение переменной F); если же его значение “ложь” (false), то выполняется оператор, расположенный за ключевым словом else (вычисляется квадрат значения переменной F и результат помещается в ячейку с именем R).

Наличие в синтаксисе формального языка правил вывода термов и формул позволяет выполнять изоморфные преобразования моделей, построенных на базе данного языка. Таким образом формальные языки не только отражают (репрезентируют) ту или иную совокупность уже имеющихся знаний, но являются средством формализации этих знаний , позволяющим путем формальных преобразований получать новые знания . Причем, поскольку преобразования могут проходить только по строгим формальным правилам, построение моделей, изоморфных данной, но дающих новое знание, вполне может быть автоматизировано . Эта возможность широко используется в компьютерных базах знаний, в экспертных системах, в системах поддержки принятия решений.

Формальные языки широко применяются в науке и технике. В процессе научного исследования и практической деятельности формальные языки обычно используются в тесной взаимосвязи с естественным языком, поскольку последний обладает гораздо большими выразительными возможностями. В то же время формальный язык является средством более точного представления знаний, чем естественный язык, а следовательно, средством более точного и объективного обмена информацией между людьми.

ЗНАТЬ

Формализованный (формальный) язык - искусственный язык, характеризующийся точными правилами построения выражений и их интерпретации (понимания).

При построения формального языка выбирается алфавит , и описывается синтаксис языка.

Алфавит - совокупность исходных символов, из которых будут строиться все выражения языка.

Выражениями формального языка являются термы и формулы.

Основное назначение терма - обозначать некоторый объект.

Простейшими термами являются предметные переменные и константы - выражения, служащие для обозначения конкретных объектов.

Сложные термы строятся по определенным правилам путем применения к простым термам допустимых в языке функций.

Формулы образуются из термов, к которым применены допустимые в языке операторы.

Синтаксис языка - совокупность правил построения осмысленных выражений - включает в себя:

    правила построения термов и формул;

    правила интерпретации термов и формул;

    правила вывода одних формул и термов из других формул и термов.

Важное практическое значение имеют такие формальные языки, как язык логики и языки программирования .

Формальные языки широко используются в науке и технике. Они являются средством более точного и объективного обмена информацией между людьми, чем естественный язык.

Формальные языки не только отражают (репрезентируют) ту или иную совокупность уже имеющихся знаний, но являются средством формализации этих знаний, позволяющим путем формальных преобразований получать новые знания. Эта возможность широко используется в компьютерных базах знаний, в экспертных системах, в системах поддержки принятия решений.

УМЕТЬ

ЗАДАНИЕ 1

Перечислите, из каких букв состоит алфавит известного вам языка программирования и какие существуют правила для образования простых термов в этом языке.

Если в этом языке программирования зарезервированные слова? Если да, то приведите примеры зарезервированных и не зарезервированных слов.

Что в языках программирования можно рассматривать как термы и формулы?

ОТВЕТ. В алфавит языка программирования входят все символы, которые можно использовать при написании программ.

Термами языка программирования являются идентификаторы, а также выражения, построенные из идентификаторов, констант, знаков арифметических и логических операций, математических и других (определенных в языке) функций, скобок.

Формулами языка программирования являются допустимые в нем операторы: ввода, вывода, присваивания, условный, цикла и т.п.

ЗАДАНИЕ 2

Если вы изучали основы формальной логики, то:

    приведите примеры, когда формальное преобразование логических формул позволяет получить новое знание об исследуемых объектах;

    проинтерпретируйте формулу: x ((x)  (x)) или  (А  А) = 1

ОТВЕТ. 2) - это закон непротиворечия, суть которого: никакое высказывание не может быть истинным и ложным одновременно.

ЗАДАНИЕ 3

Что является алфавитом десятичной системы счисления?

Каково основное правило образования (записи) чисел в этой позиционной системе счисления?

ОТВЕТ. Алфавит: десятичные цифры, десятичная точка (или запятая) и знаки плюс и минус. Правило: вес цифры в числе зависит от ее позиции в записи числа.

ЗАДАНИЕ 4

Каким образом может быть проинтерпретировано слово двоичного алфавита “0100 1001 0100 0110” в известной вам системе программирования (пробелы вставлены для удобства восприятия)?

ОТВЕТ. В языке Pascal эти два байта могут быть интерпретированы как строка символов “IF”, как два числа типа byte - 73 и 70, как одно число типа integer - 20758 (18758 ???).

ЗАДАНИЕ 5

Графический интерфейс системы Windows содержит такие элементы как пиктограммы или иконки. Можно ли считать, что они входят в алфавит языка пользовательского интерфейса этой системы? Ответ обоснуйте.

РАСШИРЬ СВОЙ КРУГОЗОР

В формальных языках как ни в каких других велика роль знака, понимаемого в широком смысле этого слова. Некоторые аспекты использования знаков рассматривались нами ранее, но есть смысл поговорить об этом более подробно.

Причина возникновения знаков достаточно очевидна: большинство объектов познания и деятельности не доступны непосредственному восприятию в процессе познания и предъявлению в процессе коммуникации.

Знак (гр.  - знак, лат.транскрипция - semeion) - это материальный объект, выступающий в качестве представителя некоторого другого объекта, свойства или отношения и используемый для приобретения, хранения, переработки и передачи сообщений (информации, знаний).

ПРИМЕЧАНИЕ 1. Вместо слова “знак” в схожем смысле употребляются другие понятия: “имя”, “термин”, “обозначение”.

По определению одного из создателей теории знаков (семиотики) Ч.П.Пирса, знак - это такой элемент x, который заменяет субъекту некоторый элемент y (денотат) по некоторому признаку.

Соответственно, денотат - это то, что данный знак обозначает в конкретной ситуации.

Денотат некоторой языковой абстрактной единицы (от лат. denoto - обозначаю) - множество объектов, которые могут именоваться данным знаком.

ПРИМЕЧАНИЕ 2. Вместо слова “денотат” в логике употребляют другие (тождественные, синонимические) названия: чаще всего “значение”, “обозначаемое”.

В свою очередь каждый знак определяет какие-то свойства обозначаемого им объекта. Ту информацию, которую знак несет об обозначаемом, принято называть концептом знака (от лат. conceptus - понятие).

ПРИМЕЧАНИЕ 3. Термин “концепт” имеет синонимы: “смысл”, “смысл знака”.

НАПРИМЕР, в слове “животное” мы обнаруживаем древнее значение слова “живот” - жизнь. Животные отличаются не наличием живота, а тем, что они живые, им присущ живот-жизнь. Таким образом, концепт знака “животное” - понятие живого существа, детонат - любое конкретное живое существо, которое имеется в виду в данной знаковой ситуации.

Согласно Пирсу все знаки делятся на индексные , иконические и символические по характеру отношения между означающим и означаемым.

Индексное отношение между означающим и означаемым в знаке основано на их фактическом, существующем в действительности сходстве. К этому классу можно отнести, напрмер, звукоподражательные слова или структурные формулы химических соединений. Знаки-индексы связаны с обозначаемым причинным отношением (например, наличие мокрых крыш - знак того, что прошел дождь).

Иконическое отношение между означающим и означаемым - это, по Ч.Пирсу, “простая общность по некоторому свойству”. Знаки-копии (iconic signs) - воспроизведения, репродукции, которые сходны с обозначаемым (например, фотографии, отпечатки пальцев).

В символическом знаке означающее и означаемое соотнесены “безотносительно к какой бы то ни было фактической связи” (например, определенное сочетание звуков, букв, фигур, цветов, движений и т.п. поставлено в соответствие некоторому объекту.

Для построения формальных языков важен именно этот тип знаков (см. параграф первой главы об основном тезисе формализации).

ПРИМЕЧАНИЕ 4. Символические знаки иногда называют символами . По мысли выдающегося русского философа П.А.Флоренского символ есть “бытие, которое больше самого себя. Символ - это нечто, являющее собою то, что не есть он сам, большее его, и однако существенно чрез него объявляющееся”. Например, мифическое существо грифон, сочетающее в себе льва и орла, является одним из символов Иисуса Христа.

Часто бывает, что знак, впервые возникший как иконический, впоследствии становится знаком-символом.

НАПРИМЕР, буква  в финикийской азбуке называлась “алеф” - бык (она напоминает голову быка). Тогда она была иконическим знаком. В греческом же языке эта буква не связана с быком и становится знаком-символом.

По мере развития математической символики также происходит замена иконических знаков символами. Например, римская цифра V напоминала раскрытую руку (пять пальцев), а современная цифра 5 является символом.

Знаки обозначают соответственно планету Венеру и Марс в астрономии, а в биологии - женский и мужской пол. По происхождению эти знаки иконические. Первый из них - стилизованное изображение старинного зеркала, второй - щита с копьем.

Денотатами далеко не всегда являются реально существующие предметы и совокупности таких предметов. Множество примеров денотатов, не являющихся объектами реальности, содержится в известной сказке Л. Кэрола “Алиса в стране чудес”. В ней же образно сформулирован принцип возникновения таких денотатов:

“Жить-то он жил (Мартовский заяц- прим авт.), а быть-то он не был”. В этой связи и русская присказка “жил да был” вовсе не кажется тавтологией.

Структура знака описывается так называемым “треугольником Фреге” (по имени выдающегося немецкого логика, много сделавшего для развития теории формальных языков). В другой терминологии он называется “семантическим треугольником” или треугольником Огдена и Ричардса. Он устанавливает связь между знаком, денотатом знака и концептом знака.

Рис. 4.3.1. Треугольник Фреге

С помощью этого треугольника можно прояснить ряд известных языковых эффектов (знаковых ситуаций).

1) Синонимия - ситуация, заключающаяся в полном или частичном совпадении значений различных знаков:

Рис. 4.3.2. Схема синонимии

2) знаки могут иметь один и тот же денотат, но обладать разным смыслом (денотативное тождество). Например, знаки “sin 30°” и “1/2” имеют один и тот же денотат, то есть именуют одно и то же действительное число, но смысл этих знаков различен:

Рис. 4.3.3. Схема денотативного тождества

3) Полисемия (многозначность)- наличие у знака более одного значения:

Рис. 4.3.4. Схема полисемии

ИНТЕРЕСНЫЙ ФАКТ

Историческая справка

Первые шаги к созданию формального языка логики были сделаны еще в период античности. Аристотель (384-322 д н.э.) ввел в употребление буквенные переменные для субъектов и предикатов простых категорических высказываний, а глава школы стоиков Хрисипп (ок. 281-208 до н.э.) и его ученики - переменные для высказываний в целом. В XVI веке Р.Декарт (1596-1659) создал основу современного формального языка математики - буквенную алгебру, а Г.В.Лейбниц (1646-1716) перенес Декартову символику в логику. Основным языком логики в то время был естественный язык. Осознавая существенные синтаксические и семантические недостатки естественного языка (громоздкость, многозначность и неточность выражений, нечеткость синтаксических правил и т.п.), Лейбниц сформулировал тезис о том, что без создания специального искусственного языка - “универсального исчисления” - дальнейшее развитие логики невозможно. Но лишь в конце XIX века идея Лейбница получила развитие в исследованиях Дж.Буля (1815-1864), С.Джевонса (1835-1882), Э.Шредера (1841-1902) и других - появилась алгебра логики.

Дальнейшее развитие языка логики связано с именами Дж.Пеано (1858-1932) и Г.Фреге (1848-1925). Пеано ввел ряд принятых в современной математике символов, в частности “”, “”, “”, для обозначения соответственно отношений принадлежности, объединения и пересечения множеств. Фреге построил аксиоматическое исчисление высказываний и предикатов, в котором содержались все основные элементы современных логических исчислений.

Опираясь на результаты, полученные Фреге, и используя модифицированную символику Пеано, Б.Рассел (1872-1970) и А.Н.Уайтхед (1861-1947) в совместном труде “Принципы математики” (1913) сформулировали основные положения формального языка логики.

В настоящее время язык логики находит важное применение в информатике, при разработке языков программирования, программного обеспечения компьютера, различных технических систем.

Возникновение языков программирования приходится на начало 50-х годов XX века. Первоначально программы создавались на языке машинных команд и представляли собой последовательности двоичных кодов, которые заносились с пульта в компьютер для выполнения.

Первым шагом в развитии языков программирования явилось введение мнемонических (mnemonic - память) обозначений для команд и данных и создание машинной программы, переводящей эти мнемонические обозначения в машинные коды. Такай программа, а вместе с ней и система обозначений получила название ассемблера .

Для каждого типа машин существовал свой ассемблер, и перенесение программ с машины на машину было очень трудоемкой процедурой. Поэтому возникла идея создания машинно-независимого языка. Такие языки начали появляться с середины 50-х годов, а программа, переводящая предложения этого языка на машинный язык, стала называться транслятором .

Языков программирования и их диалектов (разновидностей) насчитывается несколько тысяч. Классифицировать их можно по-разному. Некоторые авторы разбивают все многообразие языков программирования на процедурные и декларативные. В процедурных языках преобразование данных задается с помощью описания последовательности действий над ними. В декларативных языках преобразование данных задается прежде всего посредством описания отношений между самими данными. Согласно другой классификации, языки программирования можно разделить на процедурные, функциональные, логические, объектно-ориентированные. Однако любая классификация несколько условна, поскольку, как правило, большинство языков программирования включает в себя возможности языков разных типов.

Особое место среди языков программирования занимают языки, обеспечивающие работу систем управления базами данных (СУБД). Часто в них выделяют две подсистемы: язык описания данных и язык манипулирования данными (другое название - язык запросов).

Программирование - это целая наука, позволяющая создавать компьютерные программы. Она включает в себя огромное количество различных операций и алгоритмов, которые образуют единый язык программирования. Итак, что же это такое и какими бывают языки программирования? В статье даны ответы, а также приведен обзорный список языков программирования.

Историю возникновения и изменения программных языков следует изучать наравне с историей развития компьютерных технологий, ведь эти понятия связаны между собой напрямую. Без языков программирования невозможно было бы создать никакую программу для работы компьютера, а значит, создание вычислительных машин стало бы бессмысленным занятием.

Первый машинный язык был придуман в 1941 году Конрадом Цузе, который является изобретателем аналитической машины. Чуть позже, в 1943 г., Говард Эйкен создал машину "Марк-1", способную считывать инструкцию на уровне машинного кода.

В 1950-х годах начался активный спрос на разработку программного обеспечения, а машинный язык не выдерживал большие объемы кода, поэтому был создан новый способ общения с компьютерами. "Ассемблер" является первым мнемоническим языком, заменившим машинные команды. С годами список языков программирования только увеличивается, ведь область применения компьютерных технологий становится обширнее.

Классификация языков программирования

На данный момент существует более 300 языков программирования. Каждый из них имеет свои особенности и подходит для одной определенной задачи. Все языки программирования можно условно разделить на несколько групп:

  • Аспектно-ориентированные (основная идея - разделение функциональности для увеличения эффективности программных модулей).
  • Структурные (в основе лежит идея создания иерархической структуры отдельных блоков программы).
  • Логические (в основе лежит теория аппарата математической логики и правил резолюции).
  • Объектно-ориентированные (в таком программировании используются уже не алгоритмы, а объекты, которые принадлежат определенному классу).
  • Мультипарадигмальные (сочетают в себе несколько парадигм, и программист сам решает, каким языком воспользоваться в том или ином случае).
  • Функциональные (в качестве основных элементов выступают функции, которые меняют значение в зависимости от результатов вычислений исходных данных).

Программирование для начинающих

Многие задаются вопросом, что же такое программирование? По сути, это способ общения с компьютером. Благодаря языкам программирования мы можем ставить перед различными устройствами определенные задачи, создавая специальные приложения или программы. При изучении данной науки на начальном этапе самое главное - это выбрать подходящие (интересные для вас) языки программирования. Список для начинающих приведен ниже:

  • Basic придуман в 1964 году, относится к семейству высокоуровневых языков и используется для написания прикладных программ.
  • Python ("Питон") довольно легко выучить благодаря простому читаемому синтаксису, преимущество же в том, что на нем можно создавать как обычные десктопные программы, так и веб-приложения.
  • Pascal ("Паскаль") - один из древнейших языков (1969 г.), созданных для обучения студентов. Его современная модификация имеет строгую типизацию и структурированность, однако "Паскаль" - вполне логичный язык, который понятен на интуитивном уровне.

Это не полный список языков программирования для начинающих. Существует огромное количество синтаксисов, которые доступны для понимания, и обязательно будут востребованы в ближайшие годы. Каждый вправе самостоятельно выбрать то направление, которое будет интересным для него.

Новички имеют возможность ускорить изучение программирования и его основ благодаря специальным инструментам. Основной помощник - это интегрированная среда разработки программ и приложений Visual Basic («Визуал Бейсик» одновременно является и языком программирования, который унаследовал стиль языка Basic 1970-х годов).

Уровни языков программирования

Все формализованные языки, предназначенные для создания, описания программ и алгоритмов для решения задач на компьютерах, делятся на две основных категории: языки программирования низкого уровня (список приведен ниже) и высокого уровня. Поговорим о каждом из них отдельно.

Низкоуровневые языки предназначены для создания машинных команд для процессоров. Главное их преимущество в том, что они используют мнемонические обозначения, т. е. вместо последовательности нулей и единиц (из двоичной системы счисления) компьютер запоминает осмысленное сокращенное слово из английского языка. Самые известные языки низкого уровня - это "Ассемблер" (существует несколько подвидов этого языка, каждый из которых имеет много общего, а отличается лишь набором дополнительных директив и макросов), CIL (доступен в платформе.Net) и Байт-код JAVA.

Языки программирования высокого уровня: список

Высокоуровневые языки созданы для удобства и большей эффективности приложений, они являются полной противоположностью низкоуровневых языков. Их отличительная черта - наличие смысловых конструкций, которые емко и кратко описывают структуры и алгоритмы работы программ. В языках низкого уровня их описание на машинном коде было бы слишком длинным и непонятным. Языки же высокого уровня обладают независимостью от платформы. Вместо них функцию транслятора совершают компиляторы: они переводят текст программы в элементарные машинные команды.

Следующий список языков программирования: C ("Си"), C# ("Си-шарп"), "Фортран", "Паскаль", Java ("Ява") - входит в число самых используемых высокоуровневых синтаксисов. Он обладает следующими свойствами: эти языки работают с комплексными структурами, поддерживают строковые типы данных и операции с файлами ввода-вывода информации, а также имеют преимущество - с ними гораздо проще работать благодаря читабельности и понятному синтаксису.

Самые используемые языки программирования

В принципе, написать программу можно на любом языке. Вопрос в том, будет ли она работать эффективно и без сбоев? Вот почему для решения различных задач следует выбирать наиболее подходящие языки программирования. Список по популярности можно охарактеризовать так:

  • языки ООП: Java, C++, Python, PHP, VisualBasic и JavaScript;
  • группа структурных языков: Basic, Fortran и Pascal;
  • мультипарадигмальные: C#, Delphi, Curry и Scala.

Область применения программ и приложений

Выбор языка, на котором написана та или иная программа, во многом зависит от области ее применения. Так, например, для работы с самим "железом" компьютера (написания драйверов и поддерживающих программ) лучшим вариантом станет C ("Си") или С++, которые входят в основные языки программирования (список смотрите выше). А для разработки мобильных приложений, в том числе игр, следует выбрать Java или С# ("Си-шарп").

Если вы еще не определились, в каком направлении работать, то рекомендуем начать изучение с языков C или C++. Они имеют весьма понятный синтаксис, четкое структурное разделение на классы и функции. К тому же, зная C или С++, можно с легкостью выучить любой другой язык программирования.

О железнодорожном языке "Платформу Красные Зори поезд проследует без остановки". Обратим внимание, что машинист употребил существительное "остановка", а не глагол "останавливаться". Остановка - очень важное для железнодорожников понятие. Поезд может "остановиться", но не "иметь остановки". Турчин [Тур-чин 2000], приводя подобный пример, указывает на формализацию языка, употребляемого в узких профессиональных целях.

Формализованный язык можно определить следующим образом [Турчин 2000]. Рассмотрим двухэтажную языковую модель действительности (рис. 4. 4). Ситуация si кодируется языковым объектом Li. Объект L1 есть имя для si. Некоторое время спустя ситуация S1 сменяется ситуацией S2. Осуществляя некоторую языковую деятельность, преобразуем L1 в другой объект - L2. Если наша модель правильна, то L2 есть имя S2. В результате, не зная реальной ситуации S2, мы можем получить представление о ней путем декодирования языкового объекта L2. Выполнение преобразования L1->L2 определяет, будет ли язык формализованным.

    Для формализованного языка преобразование L1->L2 определяется исключительно языковыми объектами Li, которые участвуют в нем и не зависят от языковых представлений si, соответствующих им по семантике языка.

    Для неформализованного языка результат преобразования языкового объекта Li зависит не только от вида самого представления Li, но и от представления si, которое он порождает в голове человека, от ассоциаций, в которые он входит.

Человек способен воспринимать самые неформализованные языки. А компьютер не понимает, точнее, не может исполнить программу на неформальном языке. Именно поэтому важное место в изучении программирования всегда занимают формальные алгоритмические языки программирования,

О формализации неформализованного Формализация неформализованного - процесс неформализуемый. Хотя с этим пытаются бороться логики и военные.

О формуле любви Формула любви не поддается формализации. В лучшем случае она может быть представлена только в виде весьма грубой модели

Языки моделирования

Язык моделирования - набор правил, определяющих построение моделей (упрощенного представления реальности), включающий их визуализацию и определение структуры и поведения. Язык моделирования включает:

    элементы модели - фундаментальные концепции моделирования и их семантику;

    нотацию - визуальное представление элементов моделирования;

    руководство по использованию - правила применения элементов в рамках построения моделей предметной области.

Языки программирования и интегрированные среды

    По словам создателя первой интегрированной среды FRAMEWORK, интегрированная среда -это такая прикладная программа, что пользователь, запустив ее в начале рабочего дня, находит в ней все необходимые для работы ресурсы и поэтому не выходит из интегрированной среды до самого конца рабочего дня. Конечно, это определение не очень корректно и несколько идеализирует ситуацию, но его общий смысл достаточно ясен. Основная особенность интегрированных сред -высокая степень интерактивности. Она достигается за счет интеграции в единое целое различных программных ресурсов, отсюда и происходит название. Так, интегрированная среда какого-либо компилятора языка программирования (программы, которая из текста данного языка программирования создает исполняемую программу) обычно содержит текстовый редактор и собственно компилятор с системой диагностики ошибок компиляции. Кроме того, в ней обычно имеется также отладчик -интерпретатор данного языка, выполняющий программу строчка за строчкой и имеющий ряд других специальных возможностей. Одно из активно развивающихся направлений, визуальное проектирование -полностью основано на использовании возможностей интегрированной среды. Пользователь в интерактивном режиме выбирает необходимые для его программы объекты языка программирования и устанавливает между ними связи. Популярность таких языков как Visual BASIC (Microsoft), а также Object PASCAL (среды Delphi и Kylix, Borland), не случайна. Даже неопытный программист, не знающий кроме BASIC других языков программирования и никогда не программировавший под Windows, может за два-три дня с помощью Visual BASIC создать прикладную программу, работающую под Windows. А вот программисту высокого класса, не программировавшему до того под Windows, с помощью C++ зачастую приходится для создания такой же программы затратить недели, а то и месяцы. Правда, Visual BASIC обладает рядом существенных ограничений. С помощью сред визуального проектирования можно создавать весьма сложные программы, не набрав с клавиатуры ни строчки кода. Однако у всех программ, созданных на основе традиционных языков программирования процедурного типа, имеется один и тот же недостаток. Для них исполняемый код -это одно, а обрабатываемые программой данные -совсем другое. Действительно, код программы содержится в файле с расширением EXE, а данные -либо в специальных файлах данных (как правило, в текстовом либо двоичном виде во внутреннем представлении компьютера), либо вводятся с клавиатуры или с какого либо другого внешнего устройства. А теперь зададим вопрос: как быть, если пользователь должен дать исполняемой программе информацию, которую можно рассматривать как “добавку” к тексту программы? Например, мы хотим, чтобы на экране был построен график функции, и в подобной программе обеспечиваем все необходимые сервисные возможности. Однако формулу для функции должен задать сам пользователь, и заранее неизвестно, какая она будет. Совершенно очевидно, что подобного рода задачи можно решать только с помощью системы-интерпретатора. Но “за все приходится платить”. Компилятор переводит текст программы в исполняемый код, который может работать и без программы-компилятора. Программы же, созданные на основе языков интерпретирующего типа, могут исполняться только под управлением программы-интерпретатора. Кроме того, они работают медленнее скомпилированных, так как интерпретация занимает дополнительное время. Однако во многих случаях это несущественно.

Дата создания: 1963 Повлиял на: ПРОФТ Типизация: бестиповая Диалекты:

    Applesoft BASIC

    Commodore BASIC

    Microsoft BASIC

Реализации и версии:

  • Applesoft BASIC Interpreter in Javascript

    Atari Microsoft BASIC I/II

  • Commodore BASIC

    Galaksija BASIC

    Microsoft Visual Basic

  • Visual Basic for Applications

Бе́йсик (BASIC - сокращение от англ. Beginner’s All-purpose Symbolic Instruction Code - универсальный код символических инструкций для начинающих; англ. basic - основной, базовый) - семейство высокоуровневых языков программирования.

Бейсик был придуман в 1963 году преподавателями Дартмутского Колледжа Джоном Кемени и Томасом Куртцом, и под их руководством был реализован командой студентов колледжа. Со временем, когда стали появляться другие диалекты, этот «изначальный» диалект стали называть Dartmouth BASIC.

Бейсик был спроектирован так, чтобы студенты могли писать программы, используя терминалы с разделением времени. Он создавался как решение для проблем, связанных со сложностью более старых языков, предназначался для более «простых» пользователей, не столько заинтересованных в скорости программ, сколько просто в возможности использовать компьютер для решения своих задач.

При проектировании языка использовались следующие восемь принципов:

    быть простым в использовании для начинающих;

    быть языком программирования общего назначения;

    предоставлять возможность расширения функциональности, доступную опытным программистам;

    быть интерактивным;

    предоставлять ясные сообщения об ошибках;

    быстро работать на небольших программах;

    не требовать понимания работы аппаратного обеспечения;

    быть посредником меду пользователем и операционной системой.

Язык был основан частично на Фортран II и частично на Алгол-60, с добавлениями, делающими его удобным для работы в режиме разделения времени, обработки текста и матричной арифметики. Первоначально Бейсик был реализован на GE-265 с поддержкой множества терминалов. Вопреки распространённому убеждению, в момент своего появления это был компилируемый язык. Всеобщую же популярность язык получил с его появления на микрокомпьютере Altair 8800. Многие языки программирования были слишком громоздкими, чтобы умещаться в небольшой памяти. Для машин с таким медленным носителем как бумажная лента, аудиокассета и без подходящего текстового редактора такой небольшой язык как Бейсик был отличной находкой. В 1975 году Майкрософт (тогда это были лишь двое - Билл Гейтс и Пол Аллен, при участии Монте Давидова) выпустила Altair BASIC. Для операционной системы CP/M был создан диалект BASIC-80, надолго определивший развитие языка. В этот период было создано несколько новых версий Бейсика. Майкрософт продавала несколько версий BASIC для MS-DOS/PC-DOS, включая BASICA, GWBASIC и Quick BASIC (QBASIC).Компания Borland в 1985 выпустила Turbo BASIC 1.0 (его наследники впоследствии продавались другой компанией под именем PowerBASIC). На домашних компьютерах появились различные расширения Бейсика, обычно включающие средства для работы с графикой, звуком, выполнением DOS-команд, а также средства структурного программирования. Некоторые другие языки использовали хорошо известный синтаксис Бейсика в качестве основы, на которой строилась совершенно иная система (см. например, GRASS). Однако, начиная с конца 80-х, новые компьютеры стали намного более сложными и предоставляли возможности (такие как графический интерфейс пользователя), которые делали Бейсик уже не столь удобным для программирования. Бейсик начал сдавать свои позиции, несмотря на то, что огромное количество его версий ещё использовалось и продавалось. Вторую жизнь Бейсик получил с появлением Visual Basic от Microsoft. Он стал одним из наиболее часто используемых языков на платформе Microsoft Windows. Позже был создан вариант под названием WordBasic, используемый в MS Word до появления Word 97. Вариант Visual Basic for Applications (VBA) был встроен в Excel 5.0 в 1993 году, затем в Access 95 в 1995-ом, а после и во все остальные инструменты, входящие в пакет Office - в 1997-ом. Internet Explorer 3.0 и выше, а также Microsoft Outlook включали интерпретатор языка VBScript. В полный вариант пакета OpenOffice.org также включён интерпретатор Бейсика.

Hello, World!: Пример для версий QBasic 1.1, QuickBasic 4.50

PRINT " Hello , World !"

Факториал: Пример для версий QBasic 1.1, QuickBasic 4.50

Используется итеративное определение факториала. При вычислении 13! возникает арифметическое переполнение, и здесь поведение разных реализаций отличается: QBasic сообщает о переполнении, а QuickBasic просто выводит отрицательные значения. Кроме того, команда PRINT по умолчанию выводит по одному пробелу перед числом и после него.

DIM f AS LONG f = 1 PRINT " 0 ! ="; f FOR i = 1 TO 16:

f = f * i:

PRINT i; "! ="; f

Язык программирования - искусственный (формальный) язык, предназначенный для записи программ для исполнителя (например, компьютера или станка с числовым управлением). Язык программирования задается своим описанием. Описание языка программирования - это документ, специфицирующий возможности алгоритмического языка. Обычно описание содержит:

· алфавит допустимых символов и служебных (ключевых) слов;

· синтаксические правила построения из алфавита допустимых конструкций языка;

· семантику, объясняющую смысл и назначение конструкций языка.

Языки программирования служат для представления решения задач в такой форме, чтобы они могли быть выполнены на ЭВМ.

Машинный язык, который состоит из команд процессора ЭВМ, также является языком программирования. Но алгоритмы, записанные на машинном языке, трудны для чтения даже программисту-разработчику, кроме того, работа с таким языком требует знания архитектуры конкретного компьютера, поэтому в программировании, как правило, используют языки более высокого уровня, чем машинные языки. Язык высокого уровня - это язык программирования, понятия и структура которого удобны для восприятия человеком и не зависят от конкретного компьютера, на котором будет выполняться программа.

Для того чтобы программу, записанную на языке программирования высокого уровня, можно было выполнить на компьютере, ее надо перевести на машинный язык. Программное средство, выполняющее эту функцию, называется транслятором.

Транслятор - это программа, которая считывает текст программы, написанной на одном языке, и транслирует (переводит) его в эквивалентный текст на другом языке (обычно на машинном языке). Трансляторы бывают двух основных видов: компиляторы и интерпретаторы .

Компилятор преобразует текст исходной программы в набор инструкций для данного типа процессора (машинный код) и далее записывает его в исполняемый файл (exe-файл), который может быть запущен на выполнение как отдельная программа. Другими словами, компилятор переводит программу с языка высокого уровня на низкоуровневый язык.

Интерпретатор в результате трансляции выполняет операции, указанные в исходной программе. При этом программа остается на исходном языке и не может быть запущена на выполнение без интерпретатора.

Разделение на компилируемые и интерпретируемые языки является несколько условным. Так, для любого традиционно компилируемого языка, как, например, Pascal, можно написать интерпретатор, а для любого интерпретируемого языка можно создать компилятор, - например, язык Бейсик, изначально интерпретируемый, может компилироваться без каких бы то ни было ограничений.

Некоторые языки, например Java и C#, находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код. Далее байт-код выполняется виртуальной машиной. Для выполнения байт-кода обычно используется интерпретация. Подобный подход в некотором смысле позволяет использовать плюсы как интерпретаторов, так и компиляторов.

Со времени создания первых программируемых машин человечество придумало уже более двух с половиной тысяч языков программирования. Количество языков программирования постоянно растет, хотя этот процесс явно замедлился. Некоторыми языками пользуется только небольшое число программистов, другие становятся известны миллионам людей. Часть из них узкоспециализированны (предназначены для решения определенного класса задач), а часть - универсальны. Профессиональные программисты иногда применяют в своей работе более десятка разных языков программирования.

Классификацию языков программирования можно вести по нескольким критериям: машинно-ориентированные (ассемблеры) и машинно-независимые, специализированные и универсальные.

К специализированным языкам можно отнести язык АРТ (A utomatically P rogrammed T ools ) - первый специализированный язык программирования для станков с числовым управлением. Язык был разработан группой американских специалистов в 1956–1959 гг. под руководством математика Дугласа Т. Росса. Язык СOBOL (Co mmon B usiness–O riented L anguage ), созданный в США под руководством Грейс Мюррей Хоппер в 1959 г., ориентирован на обработку экономической информации. Математик Грейс Мюррей Хоппер возглавила проект по разработке СOBOL в чине капитана второго ранга, впоследствии она стана контр-адмиралом. Г.М. Хоппер называют “мамой и бабушкой” СOBOLа.


(Grace Murray Hopper)

К специализированным языкам можно отнести и современные языки web-программирования Perl и PHP. Языки Рапира, Е-язык (Россия), SMR (Великобритания), LOGO (США) можно отнести к языкам, предназначенным для обучения программированию.

Самыми распространенными универсальными языками программирования сегодня являются C++, Delphi, Java, Pascal, Visual Basic, Python.

Но, рассматривая языки программирования как самостоятельный объект исследования, можно провести их классификацию по концепции построения языка.

Классификация языков программирования

Языки программирования можно разделить на два класса: процедурные и непроцедурные. Процедурные (императивные ) языки - это языки операторного типа. Описание алгоритма на этом языке имеет вид последовательности операторов. Характерным для процедурного языка является наличие оператора присваивания (Basic, Pascal, С). Программа, написанная на императивном языке, очень похожа на приказы, выражаемые повелительным наклонением в естественных языках, то есть это последовательность команд, которые должен выполнить компьютер. Программируя в императивном стиле, программист должен объяснить компьютеру, как нужно решать задачу.

Непроцедурные (декларативные ) языки - это языки, при использовании которых в программе в явном виде указывается, какими свойствами должен обладать результат, но не говорится, каким способом он должен быть получен. Непроцедурные языки делятся на две группы: функциональные и логические.

Декларативные языки программирования - это языки программирования высокого уровня, в которых операторы представляют собой объявления или высказывания в символьной логике. Типичным примером таких языков являются языки логического программирования (языки, основанные на системе правил и фактов). Характерной особенностью декларативных языков является их декларативная семантика. Основная концепция декларативной семантики заключается в том, что смысл каждого оператора не зависит от того, как этот оператор используется в программе. Декларативная семантика намного проще семантики императивных языков, что может рассматриваться как преимущество декларативных языков над императивными.

Логические языки

В программах на языках логического программирования соответствующие действия выполняются только при наличии необходимого разрешающего условия на вывод новых фактов из данных фактов согласно заданным логическим правилам. Логическое программирование основано на математической логике (см. “Логические операции. Кванторы ”, “Логические выражения ”).

Первым языком логического программирования был язык Planner, он был разработан Карлом Хьюитом в Лаборатории искусственного интеллекта Массачусетсского технологического института в 1969 г. В этом языке была заложена возможность автоматического вывода (получения) результата из данных и заданных правил путем перебора вариантов (совокупность которых называлась планом). Но самым известным языком логического программирования является ПРОЛОГ (Prolog), который был создан во Франции в Марсельском университете в 1971 г. Аленом Кольмеро (Colmerauer).

Ален Кольмеро
(Alain Colmerauer)

Программа на языке ПРОЛОГ содержит две составные части: факты и правила. Факты представляют собой данные, с которыми оперирует программа, а совокупность фактов составляет базу данных ПРОЛОГа, которая, по сути, является реляционной базой данных. Основная операция, выполняемая над данными, - это операция сопоставления, называемая также операцией унификации или согласования. Правила состоят из заголовка и подцелей. Выполнение программы, написанной на ПРОЛОГе, начинается с запроса и состоит в доказательстве истинности некоторого логического утверждения в рамках заданной совокупности фактов и правил. Алгоритм этого доказательства (алгоритм логического вывода) и определяет принципы исполнения программы, написанной на ПРОЛОГе.

В отличие от программ, составленных на языках процедурного типа, предписывающих последовательность шагов, которые должен выполнять компьютер для решения задачи, на ПРОЛОГе программист описывает факты, правила, отношения между ними, а также запросы по проблеме. Например, пусть у нас есть следующие факты относительно того, кто является чьей мамой:

мама("Даша","Маша").

мама("Наташа","Даша").

Кроме этого, имеется правило, вводящее отношение бабушка:

бабушка(X,Y):-

Теперь мы можем делать запросы на предмет того, кто бабушка того или иного человека, или кто является внучкой (внуком) определенной женщины:

бабушка("Наташа",X).

Ответ на этот запрос система ПРОЛОГ выдаст так:

Возможности применения языка ПРОЛОГ весьма обширны. Среди наиболее известных - применение в символической математике, планировании, автоматизированном проектировании, построении компиляторов, базах данных, обработке текстов на естественных языках. Но, наверное, самое характерное применение ПРОЛОГа - это экспертные системы.

На сегодняшний день существует целый класс логических языков; так, от языка Planner также произошли логические языки программирования QA-4, Popler, Conniver и QLISP. Языки программирования Mercury, Visual Prolog, Oz и Fril произошли уже от языка Prolog.

Функциональные языки

Первым языком функционального типа является язык ЛИСП, созданный в Массачусетсском технологическом институте в 1956–1959 гг. Джоном Маккарти, который в 1956 г. на Дармутской конференции (США) впервые предложил термин “искусственный интеллект”.

Джон Маккарти (John McCarthy)

И хотя до сих пор не утихают споры вокруг этого термина и развившегося научного направления в его рамках, исследователи единодушны в использовании функциональных и логических языков для данной области. Значительное число работ по искусственному интеллекту реализовано на ЛИСПе.

После своего появления ЛИСПу присваивали много эпитетов, отражающих его черты: язык функций, символьный язык, язык обработки списков, рекурсивный язык. С позиций сегодняшней классификации ЛИСП определяется как язык программирования функционального типа, в основу которого положен метод -исчисления (метод -исчисления разработан в 30-е годы прошлого столетия А.Черчем в качестве строгой математической модели для вычислимых функций, см. “Теория алгоритмов” ).

Программа, написанная на функциональном языке, состоит из неупорядоченного набора уравнений, определяющих функции и значения, которые задаются как функции от других значений. Программы и данные ЛИСПа существуют в форме символьных выражений, которые хранятся в виде списковых структур. ЛИСП имеет дело с двумя видами объектов: атомами и списками . Атомы - это символы, используемые для идентификации объектов, которые могут быть числовыми и символьными (понятия, материалы, люди и т.д.). Список - это последовательность из нуля или более элементов, заключенных в круглые скобки, каждый из которых является либо атомом, либо списком. Над списками выполняются три примитивные операции: извлечение первого элемента списка; получение оставшейся части списка после удаления первого элемента; объединение первого элемента списка L и оставшейся части списка Q.

Тексты программ на функциональных языках программирования только описывают способ решения задачи, но не предписывают последовательность действий для решения.

В качестве основных свойств функциональных языков программирования обычно рассматриваются следующие: краткость и простота; строгая типизация; модульность; функции - объекты вычисления; чистота (отсутствие побочных эффектов); отложенные (ленивые) вычисления.

Кроме ЛИСПа, к функциональным языкам относят РЕФАЛ (разработан в середине 60-х годов В.Ф. Турчиным в МГУ им. М.В. Ломоносова), Haskell, Clean, ML, OCaml, F#.

Приведем пример описания известного алгоритма быстрой сортировки списка на языке Haskell:

qsort (x:xs) = qsort elts_lt_x ++ [x]

Qsort elts_greq_x where

elts_lt_x =

elts_greq_x =

Здесь записано, что пустой список уже отсортирован. А сортировка непустого списка состоит в том, чтобы разбить список на три: список элементов, меньших головы исходного списка, голова исходного списка ([x]) и список элементов хвоста исходного списка, больше или равных x.

Объектно-ориентированные языки

Объектно-ориентированные языки - это языки, в которых понятия процедуры и данных, используемых в обычных системах программирования, заменены понятием “объект” (см. статью “Объектно-ориентированное программирование ”). Языком объектно-ориентированного программирования в чистом виде считается SmallTalk, возможности объектно-ориентированного программирования заложены также в Java, C++, Delphi.

Дальнейшее развитие современного программирования связано с так называемым “параллельным программированием”. Для реализации этой технологии разрабатываются специализированные объектно-ориентированные языки. К языкам такого типа относят, например, MC# (mcsharp ) - высокоуровневый объектно-ориентированный язык программирования для платформы.NET, поддерживающий создание программ, работающих в распределенной среде с асинхронными вызовами.

Структура языка программирования

Между существующими языками программирования есть принципиальные расхождения в концепции построения языков, особенно это справедливо для более ранних языков, но все эти языки потому и называются языками программирования, что они с точки зрения внутренней системы построения имеют одинаковое формальное строение.

Любой язык программирования состоит из предложений (операторов). Предложения (как и слова) определены над неким алфавитом С. Синтаксис языка описывает множество предложений над алфавитом С, которые внешне представляют правильно сформированные программы.

Синтаксис языка - это правила получения слов и предложений этого языка. Синтаксис схематически описывается с помощью определенных грамматических правил.

Знание формального языка (алфавита + синтаксиса) хотя и достаточно для установления синтаксической корректности программы, однако недостаточно для понимания ее назначения и способа действий. Значение и способ действия программы на языке программирования уточняются путем задания семантики.

Семантика языка - это правила интерпретации слов формального языка, т.е. установления значения отдельных языковых элементов.

Для определения формальных языков, в том числе для языков программирования, используют БНФ (формы Бэкуса - Наура) и синтаксические диаграммы. Это два взаимозаменяемых способа описания.

При описании языка программирования через БНФ используются следующие обозначения:

1) <..>- определяемое слово;

2) R - правило из синтаксиса для формирования слова;

3) ::= - БНФ-правило.

Каждое R состоит из терминальных слов или лексем языка и, возможно, следующих символов:

· [..] - данный элемент присутствует в БНФ;

· {..} - данное вхождение может быть использовано в БНФ;

· {..}* - данное вхождение может быть использовано в БНФ конечное число раз.

Пример 1. Приведем пример БНФ-правила, определяющего целое число.

Читается это правило так: “Целое число - это символ 0 или последовательность символов, которая может начинаться символом “–”, а далее следует отличная от нуля цифра, вслед за которой может следовать любая конечная последовательность цифр”.

Специальную, схожую с БНФ, форму описания формальных языков представляют синтаксические диаграммы. В синтаксических диаграммах используются три типа элементов: овал/круг, прямоугольник, стрелки. В овалах помещаются терминальные слова или лексемы, в прямоугольниках - определяемые слова. Графическое представление языка через синтаксические диаграммы делает описание языка наглядным.

Пример 2 . Описание целого числа с помощью синтаксической диаграммы.

Согласно Примерной программе, необходимо, чтобы школьники представляли современную классификацию языков программирования, а также ориентировались в областях применения каждого из них. Проще всего изложение данной темы проводить после того, как уже произошло подробное знакомство с одним из языков программирования.

Следует рассказать, почему возникают новые языки и совершенствуются старые: в первую очередь это происходит при поиске средства для быстрого написания сложных программ, которые к тому же не содержали ошибок. Известен пример, когда создание языка АДА (назван так в честь первой женщины-программиста Ады Лавлейс, дочери Байрона) было инициировано в 1974 году в Министерстве обороны США. Американские военные осознали, что они теряют много времени, усилий и денег на разработку и сопровождение встроенных компьютерных систем (например, систем наведения ракет), а трудноуловимые ошибки языков программирования приводят к настоящим катастрофам.

Декларативные языки были очень популярны в конце 80-х - начале 90-х годов прошлого столетия, они были названы языками программирования искусственного интеллекта для компьютеров пятого поколения. Однако надежды на их широкое распространение пока не оправдались. Возможно, потому, что существующие системы функционального и логического программирования не позволяют создавать быстро работающие программы для содержательных задач. Не исключено, что их время просто еще не наступило.

Выбирая стратегию преподавания темы “Алгоритмизация и программирование”, необходимо учитывать, что задача общеобразовательного курса - это в большой степени выработка определенного стиля мышления, формирование наиболее общих навыков, умений и представлений, нежели освоение тех или иных конкретных языков и технических средств программирования. В то же время, такой курс должен служить базой для последующего профессионального изучения программирования в высшей школе или старших классах средней школы (в рамках профессионального обучения).

В настоящее время существуют два наиболее распространенных подхода к преподаванию программирования:

1) преподавание на основе специально разработанного языка учебного языка, ориентированного на обучение основным навыкам программирования;

2) изучение одного или нескольких языков программирования, широко используемых на практике при решении научных и хозяйственных задач (такие языки можно назвать стандартными).

Первый подход часто используется при преподавании основ программирования в младших классах средней школы с использованием специальных языков, например, Рапиры, Е-языка, LOGO. Эти языки учитывают возможности школьников младших классов. Такой подход хорош при углубленном изучении информатики в 5–6-х классах.

Относительно второго подхода можно сказать, что большинство современных реализаций стандартных языков загружено большим количеством технических деталей и сложны в изучении. Тем не менее наиболее приемлемым для общеобразовательной школы, где курс информатики преподается в 8–11-х классах, является обучение теоретическим основам программирования на базе стандартного языка. При этом не обязательно вдаваться в глубины языка. Учащиеся, которых он заинтересует, могут сделать это и сами. Наибольшее внимание следует уделить переходу от алгоритмических структур к их программной реализации на языке программирования.

Здесь стоит отметить, что Pascal первоначально создавался как учебный язык, но со временем получил широкое распространение в качестве стандартного языка и развитие в виде объектно-ориентированного языка с визуальной технологией программирования Delphi. За основу курса в 8–9-х классах можно взять Pascal или Basic, а в качестве расширенного (факультативного) курса в 10–11-х классах ознакомить учащихся с их объектно-ориентированными расширениями (Delphi и Visual Basic). У каждого языка есть свои сторонники и противники, и конечный выбор остается за учителем.

Существует два основных подхода к изучению языка программирования: формальный и “программирование по образцу”. Первый основан на формальном (строгом) описании конструкций языка программирования (синтаксиса языка и его семантики ) тем или иным способом (с помощью синтаксических диаграмм, мета-языка или формального словесного описания, в частности, семантики) и использовании при решении задач только изученных, а следовательно понятных, элементов языка. При втором подходе школьникам сначала выдаются готовые программы, рассказывается, что именно они делают, и предлагается написать похожую программу или изменить имеющуюся, не объясняя до конца ряд “технических” или несущественных, с точки зрения учителя, для решения задачи деталей. При этом говорится, что точный смысл соответствующих конструкций вы узнаете позднее, а пока поступайте аналогичным образом. Второй подход дает возможность так называемого “быстрого старта”, но создает опасность получить полуграмотных пользователей среды программирования, т.е. людей, которые используют в своей практике достаточно сложные конструкции, но не могут четко объяснить, почему в том или ином случае нужно применять именно их, и как они работают. В результате рано или поздно такие “программисты” сталкиваются с ошибками, исправить которые они просто не в состоянии - им не хватает знаний.

Одна из задач школьной информатики - научить именно формальному подходу, в частности, при применении различных определений. И формальное изучение языка программирования этому немало способствует. Но и без хороших примеров (образцов) при обучении программированию школьников не обойтись. И чем младше ученики, тем больше примеров необходимо приводить при описании языка (иногда даже заменяя ими строгое определение). Другое дело, что следует добиваться того, чтобы в результате обсуждения примера все его детали оказались понятны школьникам (обязательно нужно объяснить, как и почему это работает, в том числе опираясь на уже изученный формальный материал). В этом случае сильные ученики получат возможность понять все досконально и смогут использовать полученные знания в дальнейшем, а остальные приобретут конкретные навыки и оставят для себя возможность вернуться при необходимости к формальным определениям позже.